

Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2853–2861 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.47

NEUTROSOPHIC WEAKLY G*-CLOSED SETS

A. ATKINSWESTLEY¹ AND S. CHANDRASEKAR

ABSTRACT. In this paper are presented and explored new sort of Neutrosophic closed set which is called Neutrosophic feebly g^* -closed sets in NTSs and furthermore talked about properties and portrayal.

1. INTRODUCTION

A. Salama presented NTSs in [11, 12] by utilizing Smarandache's NSs, [5, 6]. Neutrosophic g closed set presented by R. Dhavasheelan et al. in [3, 4], what's more, Neutrosophic g^* -closed sets introduced by A. Atkinswesley et al. in [2]. Point of this current paper is, to present and research about new sort of Neutrosophic closed set is called Neutrosophic weakly g^* -closed sets in Neutrosophic topological spaces and furthermore examined about properties and portrayal.

2. Preliminaries

In this part, we review required results of Neutrosophic.

Definition 2.1. [4] A Neutrosophic set W_1^* is in the form

 $W_{1}^{*} = \{ < r, \mu_{W_{1}^{*}}(w), \sigma_{W_{1}^{*}}(w), \gamma_{W_{1}^{*}}(w) >: r \in Nu_{X}^{*} \},\$

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54E99.

Key words and phrases. Nu. g^* open set, Nu. g^* closed set, Nu. weakly g^* open set, Nu. weakly g^* closed set, NTSs.

where $\mu_{W_1^*}(w)$ denotes membership function, $\sigma_{W_1^*}(w)$ denotes indeterminacy and $\gamma_{W_1^*}(w)$ denotes non-membership function.

Definition 2.2. [4] Neutrosophic set is the set

$$W_{1}^{*} = \{ < r, \mu_{W_{1}^{*}}(w), \sigma_{W_{1}^{*}}(w), \gamma_{W_{1}^{*}}(w) >: r \in Nu_{X}^{*} \},\$$

on Nu_X^* and $\forall w \in Nu_X^*$. Then complement of W_1^* is

$$W_1^{*C} = \{ < r, \gamma_{W_1^*}((w)), 1 - \sigma_{W_1^*}(w), \mu_{W_1^*}(w) >: r \in Nu_X^* \}.$$

Definition 2.3. [4] Let W_1^* and W_2^* are two NSs, $\forall w \in Nu_X^* W_1^* = \{ < r, \mu_{W_1^*}(w), \sigma_{W_1^*}(w), \gamma_{W_1^*}(w) >: r \in Nu_X^* \}$ $W_2^* = \{ < r, \mu_{W_2^*}(w), \sigma_{W_2^*}(w), \gamma_{W_2^*}(w) >: r \in Nu_X^* \}$. Then $W_1^* \subseteq W_2^* \Leftrightarrow \mu_{W_1^*}(w) \le \mu_{W_2^*}(w), \sigma_{W_1^*}(w) \le \sigma_{W_2^*}(w), \gamma_{W_1^*}(w) \le \gamma_{W_2^*}(w)$.

Definition 2.4. [4] Let W_1^* and W_2^* be two NSs are

$$\begin{split} W_{1}^{*} &= \{ < r, \mu_{W_{1}^{*}}(w), \sigma_{W_{1}^{*}}(w), \gamma_{W_{1}^{*}}(w) >: r \in Nu_{X}^{*} \}, \\ W_{2}^{*} &= \{ < r, \mu_{W_{2}^{*}}(w), \sigma_{W_{2}^{*}}(w), \gamma_{W_{2}^{*}}(w) >: r \in Nu_{X}^{*} \}. \text{ Then} \\ W_{1}^{*} \cap W_{2}^{*} &= \{ < r, \mu_{W_{1}^{*}}(w) \cap \mu_{W_{2}^{*}}(w), \sigma_{W_{1}^{*}}(w) \cap \sigma_{W_{2}^{*}}(w), \gamma_{W_{1}^{*}}(w) \cup \gamma_{W_{2}^{*}}(w) >: r \in Nu_{X}^{*} \} \\ W_{1}^{*} \cup W_{2}^{*} &= \{ < r, \mu_{W_{1}^{*}}(w) \cup \mu_{W_{2}^{*}}(w), \sigma_{W_{1}^{*}}(w) \cup \sigma_{W_{2}^{*}}(w), \gamma_{W_{1}^{*}}(w) \cap \gamma_{W_{2}^{*}}(w) >: r \in Nu_{X}^{*} \}. \end{split}$$

Definition 2.5. [10] Let Nu_X^* be non-empty set and NS_{τ} be the collection of Neutrosophic subsets of Nu_X^* satisfying the accompanying properties:

- (1) $0_{Nu}, 1_{Nu} \in NS_{\tau}$
- (2) $Nu_{T_1} \cap Nu_{T_2} \in NS_{\tau}$ for any $Nu_{T_1}, Nu_{T_2} \in Nu_{\tau}$
- (3) $\cup Nu_{T_i} \in NS_{\tau}$ for every $Nu_{T_i} : i \in j \subseteq Nu_{\tau}$.

Then the space (Nu_X^*, NS_{τ}) , is called a NTS(NS - T - S). The component of NS_{τ} are called NS-OS (Neutrosophic open set) and its complement is NS-CS(Neutrosophic closed set)

Example 1. Let $Nu_X^* = \{w\}$ and $\forall w \in Nu_X^*$ $W_1^* = \langle w, \frac{6}{10}, \frac{6}{10}, \frac{5}{10} \rangle, W_2^* = \langle w, \frac{5}{10}, \frac{7}{10}, \frac{9}{10} \rangle$ $W_3^* = \langle w, \frac{6}{10}, \frac{7}{10}, \frac{5}{10} \rangle, W_4^* = \langle w, \frac{5}{10}, \frac{6}{10}, \frac{9}{10} \rangle$ Then collection $NS_{\tau} = \{0_{Nu}, W_1^*, W_2^*, W_3^*, W_4^* | N_u\}$ is called a NS-T-S on Nu_X^* .

Definition 2.6. [10] Let (Nu_X^*, Nu_{τ}) be NTS., Then Neutrosophic closure of W_1^* is Nu-cl $(W_1^*) = \cap \{K : K \text{ is a Neutrosophic closed set in } Nu_X^* and W_1^* \subseteq K\}$.

Neutrosophic interior of W_1^* is:

Nu-int $(W_1^*) = \bigcup \{ G_1^* : G_1^* \text{ is a Neutrosophic open set in } Nu_X^* \text{ and } G_1^* \subseteq W_1^* \}.$

Definition 2.7. Let (Nu_X^*, Nu_{τ}) be a NTS. Then W_1^* is called

- (1) Neutrosophic regular Closed set (Neu-RCS) if W₁^{*} = Neu-Cl(Neu-Int(W₁^{*})), [1];
- (2) Neutrosophic α -Closed set (Neu- α CS) if Neu-Cl(Neu-Int(Neu-Cl(W_1^*))) $\subseteq W_1^*$, [1];
- (3) Neutrosophic semi Closed set (Neu-SCS) if Neu-Int(Neu-Cl(W_1^*)) $\subseteq W_1^*$, [7];
- (4) Neutrosophic pre Closed set (Neu-PCS) if Neu-Cl(Neu-Int(W_1^*)) $\subseteq W_1^*$, [15];

Definition 2.8. Let (Nu_X^*, Nu_{τ}) be a NTS. Then W_1^* is called:

- (1) Neutrosophic (regular open) set Neu-ROS) if W₁^{*} = Neu-Int(Neu-Cl(W₁^{*})),
 [1];
- (2) Neutrosophic (α -open)set (Neu- α OS) if $W_1^* \subseteq$ Neu-Int(Neu-Cl(Neu-Int(W_1^*))), [1];
- (3) Neutrosophic (semi open) set (Neu-SOS) if $W_1^* \subseteq$ Neu-Cl(Neu-Int(W_1^*)), [7];
- (4) Neutrosophic (pre open) set (Neu-POS) if $W_1^* \subseteq$ Neu-Int(Neu-Cl(W_1^*)), [15].

Definition 2.9. A Neutrosophic set W_1^* of a NTS (Nu_X^*, Nu_τ) is called

- (1) Neutrosophic(g-closed) if Nu-cl $(W_1^*) \subseteq G_1^*$ whenever $W_1^* \subseteq G_1^*$ and G_1^* is Neutrosophic open, [3];
- (2) Neutrosophic (sg-closed) if Nu-(S)Cl(W_1^*) $\subseteq G_1^*$ whenever $W_1^* \subseteq G_1^*$ and G_1^* is Neutrosophic semi open, [14];
- (3) Neutrosophic (g^* -closed) if Nu-cl(W_1^*) $\subseteq G_1^*$ whenever $W_1^* \subseteq G_1^*$ and G_1^* is Neutrosophic g-open, [2];
- (4) Neutrosophic (αg-closed) if Nu-(α)cl(W₁^{*}) ⊆ G whenever W₁^{*} ⊆ G₁^{*} and G₁^{*} is Neutrosophic open, [8];
- (5) Neutrosophic (g α -closed) if Nu-(α)cl(W_1^*) $\subseteq G_1^*$ whenever $W_1^* \subseteq G_1^*$ and G_1^* is Neutrosophic α open, [4];
- (6) Neutrosophic (w-closed) if Nu-cl(W₁^{*}) ⊆ G whenever W₁^{*} ⊆ G₁^{*} and G₁^{*} is Neutrosophic semi open, [13];

- (7) Neutrosophic (gP-closed) if Nu-(P)Cl(W_1^*) $\subseteq G_1^*$ whenever $W_1^* \subseteq G$ and G_1^* is Neutrosophic open, [9];
- (8) Neutrosophic (gs-closed) if Nu-(S)Cl(W_1^*) $\subseteq G_1^*$ whenever $W_1^* \subseteq G_1^*$ and G_1^* is Neutrosophic open, [14].

The complements of the above mentioned closed set are their respective open sets.

Definition 2.10. [3] If W_1^* is a Neutrosophic set in NTS(Nu_X^*, Nu_τ) then

- (1) Nu-(S)Cl(W_1^*) = $\cap \{F_1^* : W_1^* \subseteq F_1^*, F_1^* \text{ is } Nu(S)CS\}.$
- (2) Nu-(P)Cl(W_1^*) = $\cap \{F_1^* : W_1^* \subseteq F_1^*, F_1^* \text{ is } Nu(P)CS\}.$
- (3) $Nu-(\alpha)cl(W_1^*) = \cap \{F_1^*: W_1^* \subseteq F_1^*, F_1^* \text{ is } Nu(\alpha)CS\}.$

Remark 2.1. (1) Every NuCS is Nu(g)CS.

- (2) Every $Nu(\alpha)CS$ is $Nu(\alpha g)CS$.
- (3) Every Nu(g)CS is $Nu(g\alpha)CS$.
- (4) Every $Nu(\alpha g)CS$ is $Nu(g\alpha)CS$.
- (5) Every Nu(w)CS is Nu(g)CS.
- (6) Every Nu(w)CS is Nu(sg)CS.
- (7) Every Nu(sg)CS is Nu(gs)CS.

Lemma 2.1. [7] Let W_1^* and W_2^* be any two NSs of a NTS (Nu_X^* , Nu_τ). Then:

- (a) W_1^* is a NuCS in $Nu_X^* \Leftrightarrow Nu\text{-}cl(W_1^*) = W_1^*$
- (b) W_1^* is a NuOS in $Nu_X^* \Leftrightarrow Nu\text{-int}(W_1^*) = W_1^*$.
- (c) $Nu-cl(W_1^{*c}) = (Nu-int(W_1^*))C.$
- (d) Nu-int $(W_1^{*c}) = (Nu$ -cl $(W_1^{*}))C$.
- (e) $W_1^* \subseteq W_2^* \Rightarrow Nu\text{-}int(W_1^*) \subseteq Nu\text{-}int(W_2^*).$
- (f) $W_1^* \subseteq W_2^* \Rightarrow Nu\text{-}cl(W_1^*) \subseteq Nu\text{-}cl(W_2^*).$
- (g) $Nu-cl(W_1^* \cup W_2^*) = Nu-cl(W_1^*) \cup Nu-cl(W_2^*).$
- (h) $Nu-int(W_1^* \cap W_2^*) = Nu-int(W_1^*) \cap Nu-int(W_2^*).$

3. Neutrosophic weakly g^* -closed

Definition 3.1. A Neutrosophic set W_1^* of a NTS(Nu_X^*, Nu_τ) is called $Nu(wg^*)CS$ Neutrosophic weakly g^* -closed if Nu-cl(Nu-int(W_1^*)) $\subseteq G_1^*$ whenever $W_1^* \subseteq G_1^*$ and G_1^* is Neutrosophic g-open in Nu_X^* .

Theorem 3.1. Every Nu(w)CS set is $Nu(wg^*)CS$.

Proof. Let W_1^* is Nu(w)CS. Let $W_1^* \subseteq H_1^*$ and H_1^* Nu(S)OS in Nu_X^{*}. Since every Nu(S)OS is Nu(g)OS H₁^{*} is Nu(g)OS. using definition Nu(w)CS Nu-cl(W_1^*) $\subseteq H_1^*$. But Nu-cl(Nu-int(W_1^*)) \subseteq Nu-cl(W_1^*) $\subseteq H_1^*$. We have Nu-cl(Nu-int(W_1^*)) $\subseteq H_1^*$ whenever $W_1^* \subseteq H_1^*$ and H_1^* is Nu(g)OS in Nu_X^{*}. Therefore W_1^* is Nu(wg*)CS.

Remark 3.1. Every Nu(wg*)CS is not Nu(w)CS set.

Example 2. Let $Nu_X^* = \{a, b\}$ and $Nu_\tau = \{0_{Nu}, W_1^*, 1_{Nu}\}$ is Neutrosophic topology on Nu_X^* , where $W_1^* = \langle w, (\frac{7}{10}, \frac{5}{10}, \frac{2}{10}), (\frac{6}{10}, \frac{5}{10}, \frac{3}{10}) \rangle$. Then $W_2^* = \langle w, (\frac{7}{10}, \frac{5}{10}, \frac{2}{10}), (\frac{8}{10}, \frac{5}{10}, \frac{1}{10}) \rangle$ is $Nu(wg^*)CS$ but not Nu(w)CS.

Theorem 3.2. Every $Nu(g^*)CS$ is $Nu(wg^*)CS$.

Proof. Let W_1^* is Nu(g^*)CS. Let $W_1^* \subseteq H_1^*$ and H_1^* is Nu(g)OS in Nu_X^{*}. using definition Nu(g^*)CS Nu-cl(W_1^*) $\subseteq H_1^*$. But Nu-cl(Nu-int(W_1^*)) \subseteq Nu-cl(W_1^*) $\subseteq H_1^*$. We have Nu-cl(Nu-int(W_1^*)) $\subseteq H_1^*$ whenever $W_1^* \subseteq H_1^*$ and H_1^* is Nu(g)OS in Nu_X^{*}. Therefore W_1^* is Nu(w g^*)CS.

Remark 3.2. Every $Nu(wg^*)CS$ is not $Nu(g^*)CS$.

Example 3. Let $Nu_X^* = \{w_1, w_2, w_3, w_4\}$ and NSs $W_1^*, W_2^*, W_3^*, W_4^*$ defined as $W_1^* = \langle w, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $W_2^* = \langle w, \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $W_3^* = \langle w, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $W_4^* = \langle w, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $Nu_{\tau} = \{0_{Nu}, W_1^*, W_2^*, W_3^*, W_4^*, 1_{Nu}\}$ be a NT on Nu_X^* . Then $W_1^* = \langle w, \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ is $Nu(wg^*)CS$ but it is not $Nu(g^*)CS$.

Theorem 3.3. Every Nu(g)CS is $Nu(wg^*)CS$.

Proof. Let W_1^* is Nu(g)CS. Let $W_1^* \subseteq H_1^*$ and H_1^* NuOS in Nu_X^{*}. Since every NuOS is Nu(g)OS H_1^* is Nu(g)OS. Presently using definition Nu(g)CSs Nu-cl(W_1^*) \subseteq H_1^* . But Nu-cl(Nu-int(W_1^*)) \subseteq Nu-cl(W_1^*) \subseteq H_1^* . We have Nu-cl(Nu-int(W_1^*)) \subseteq H_1^* whenever $W_1^* \subseteq H_1^*$ and H_1^* is Nu(g)OS in Nu_X^{*}. Therefore W_1^* is Nu(wg^{*})CS set.

Remark 3.3. *Every Nu*(*wg*^{*})*CS is not Nu*(*g*)*CS*.

Example 4. Let $Nu_X^* = \{w_1, w_2, w_3\}$ and $NSsW_1^*, W_2^*, W_3^*$, defined as $W_1^* = \langle w, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $W_2^* = \langle w, \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $W_3^* = \langle w, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ Let $Nu_{\tau} = \{0_{Nu}, W_1^*, W_2^*, W_3^*, 1_{Nu}\}$ is Neutrosophic topology on Nu_X^* . Then the Neutrosophic set $W_4^* = \langle w, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ is $Nu(wg^*)CS$ but it is not Nu(g)CS.

Theorem 3.4. Every $Nu(\alpha g)CS$ is $Nu(wg^*)CS$.

Proof. Let W_1^* is Nu(α g)CS. Let $W_1^* \subseteq H_1^*$ and H_1^* NuOS in Nu_X^{*}. Since every NuOS is Nu(g)OS H_1^* is Nu(g)OS. Presently using definition Nu(α g)CS, Nu-(α)cl(W_1^*) $\subseteq H_1^*$. But Nu-(α)cl(W_1^*) \subseteq Nu-cl(W_1^*) therefore Nu-cl(W_1^*) $\subseteq W_1^*$. Now Nu-cl(Nu-int(W_1^*)) \subseteq Nu-cl(W_1^*) $\subseteq H_1^*$. We have Nu-cl(Nu-int(W_1^*)) $\subseteq H_1^*$ whenever $W_1^* \subseteq H_1^*$ and H_1^* is Nu(g)OS in Nu_X^{*}. Therefore W_1^* is Nu(wg^*)CS.

Remark 3.4. Every $Nu(wg^*)CS$ is not $Nu(\alpha g)CS$.

Example 5. Let $Nu_X^* = \{w_1, w_2\}$ and NSs W_1^* , W_2^* defined as $W_1^* = \langle w, \left(\frac{7}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $W_2^* = \langle w, \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$ Let $Nu_{\tau} = \{0_{Nu}, W_1^*, W_2^*, 1_{Nu}\}$ be a Neutrosophic topology on Nu_X^* . Then Neutrosophic set $W_3^* = \langle w, \left(\frac{7}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ is $Nu(wg^*)CS$ but it is not $Nu(\alpha \ g)CS$.

Theorem 3.5. Every $Nu(g \alpha)CS$ is $Nu(wg^*)CS$.

Proof. From theorem 3.4 we get every Nu(g α)CS is Nu(α g)CS.

Theorem 3.6. Every Nu(gP)CS is $Nu(wg^*)CS$.

Proof. Let W_1^* is Nu(gP)CS. Let $W_1^* \subseteq H_1^*$ and H_1^* NuOS in Nu_X^{*}. Since every NuOS is Nu(g)OS H_1^* is Nu(g)OS. Presently using definition Nu(gP)CS Nu-(P)Cl(W_1^*) $\subseteq H_1^*$. But Nu-(P)Cl(W_1^*) \subseteq Nu-cl(W_1^*) therefore Nu-cl(W_1^*) $\subseteq W_1^*$. Now Nu-cl(Nu-int(W_1^*)) \subseteq Nu-cl(W_1^*) $\subseteq H_1^*$. We have Nu-cl(Nu-int(W_1^*)) $\subseteq H_1^*$

whenever $W_1^* \subseteq H_1^*$ and H_1^* is Nu(g)OS in Nu_X^{*}. Therefore W_1^* is Nu(wg^{*})CS.

Remark 3.5. Every $Nu(wg^*)CS$ is not Nu(gP)CS.

Example 6. Let $Nu_X^* = \{w_1, w_2\}$ and $Nu_\tau = \{0_{Nu}, W_1^*, 1_{Nu}\}$ be a NTon Nu_X^* , where $W_1^* \langle w, \left(\frac{4}{10}, \frac{5}{10}, \frac{3}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$. Then $W_2^* = \langle w, \left(\frac{4}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$ is $Nu(wg^*)CS$ but it is not Nu(gP)CS.

Corollary 3.1. (1) Every NuCS is $Nu(wg^*)CS$.

- (2) Every $Nu(\alpha)CS$ is $Nu(wg^*)CS$.
- (3) Every Nu(P)CS is $Nu(wg^*)CS$.
- (4) Every Nu(R)CS is $Nu(wg^*)CS$.

Proof. Obvious.

Remark 3.6. The intersection of two $Nu(wg^*)CS$ is a NTS (Nu_X^*, Nu_τ) may not be $Nu(wg^*)CS$.

Example 7. Let $Nu_X^* = \{w_1, w_2, w_3, w_4\}$ and $NSs W_1^*, W_2^*, W_3^*, W_4^*$ defined as $W_1^* = \langle w, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $W_2^* = \langle w, \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $W_3^* = \langle w, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $W_4^* = \langle w, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $\tau_{Nu} = \{0_{Nu}, W_1^*, W_2^*, W_3^*, W_4^* 1_{Nu}\}$ is Neutrosophic topology on Nu_X^* . Then $W_1^* = \langle w, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right) \rangle$ $W_2^* = \langle w, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{10}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$ are $Nu(wg^*)CS$ in (Nu_X^*, Nu_τ) but $W_1^* \cap W_2^*$ is not $Nu(wg^*)CS$.

Theorem 3.7. Let W_1^* is $Nu(wg^*)CS$ is a NTS (Nu_X^*, Nu_τ) and $W_1^* \subseteq W_2^* \subseteq Nu$ -cl (Nu-int $(W_1^*))$. Then W_2^* is $Nu(wg^*)CS$ in Nu_X^* .

Proof. Let G_1^* is Nu(g)OS in Nu^{*}_X such that $W_2^* \subseteq G_1^*$. Then $W_1^* \subseteq G_1^*$ and since W_1^* is Nu(wg*)CS, Nu-cl(Nu-int(W_1^*)) $\subseteq G_1^*$. Now $W_2^* \subseteq$ Nu-cl (Nu-int(W_1^*)) \Rightarrow Nu-cl(Nu-int(W_2^*)) \subseteq Nu-cl(Nu-int(Nu-cl(Int(W_1^*)))) = Nu-cl(Nu-int(W_1^*)), Nu-cl(Nu-int(W_2^*)) \subseteq Nu-cl(Nu-int(W_1^*)) $\subseteq G_1^*$. Consequently W_2^* is Nu(wg*)CS.

Definition 3.2. A Neutrosophic set W_1^* of a NTS (Nu_X^*, Nu_τ) is called $Nu(g^*)OS$ iff W_1^{*c} is $Nu(wg^*)CS$.

Remark 3.7. Every Nu(w)OS is $Nu(wg^*)OS$.

Example 8. Let $Nu_X^* = \{w_1, w_2\}$ and $Nu_{\tau} = \{0_{Nu}, W_1^*, 1_{Nu}\}$ is Neutrosophic topology on Nu_X^* , where $W_1^* \langle w, (\frac{7}{10}, \frac{5}{10}, \frac{2}{10}), (\frac{6}{10}, \frac{5}{10}, \frac{3}{10}) \rangle$. Then $W_2^* = \langle w, (\frac{2}{10}, \frac{5}{10}, \frac{7}{10}), (\frac{1}{10}, \frac{5}{10}, \frac{8}{10}) \rangle$ is $Nu(wg^*)OS$ in (Nu_X^*, Nu_{τ}) but it is not Nu(w)OS in (Nu_X^*, Nu_{τ}) .

Theorem 3.8. A Neutrosophic set W_1^* of a NTS (Nu_X^*, Nu_τ) $Nu(wg^*)OS$ if $F_1^* \subseteq$ $Nu-cl(Nu-int(W_1^*))$ whenever F_1^* is Nu(g)CS and $F_1^* \subseteq W_1^*$.

Proof. Follows from Definition 3.1 and Lemma 2.1.

Theorem 3.9. Let W_1^* is $Nu(wg^*)OS$ of a NTS (Nu_X^*, Nu_τ) and Nu-cl(Nu-int $(W_1^*)) \subseteq W_2^* \subseteq W_1^*$. Then W_2^* is $Nu(wg^*)OS$.

Proof. Suppose W_1^* is a Nu(wg*)OS in Nu_X and Nu-cl(Nu-int(W_1^*)) $\subseteq W_2^* \subseteq W_1^*$. $\Rightarrow W_1^{*c} \subseteq W_2^{*C} \subseteq$ (Nu-cl(Nu-int(W_1^*))) $C \subseteq W_1^{*c} \subseteq W_2^{*C} \subseteq$ Nu-cl(Nu-int(W_1^{*c}) by Lemma 2.18 and W_1^{*c} is Nu(wg*)CS it follows from theorem that W_2^{*C} is Nu(wg*)CS. Hence W_2^* is Nu(wg*)OS. \Box

4. CONCLUSION

The hypothesis of g-closed sets assumes a significant job when all is said in done topology. Since its initiation numerous powerless and solid types of g-closed sets have been presented by and large topology just as fuzzy topology and Neutrosophic topology. The current paper researched another type of Nu(g)CSs called Nu(wg*)CS which has been contrasted and the classes of Neutrosophic closed sets, Nu(P)CS, Nu(α)CS, Nu(w)CS, Nu(gP)CS , Nu(α g)CS, Nu($g \alpha$)CS, Nu(g^*)CS. A few properties and utilization of Nu(wg*)CS are examined. Numerous models are given to legitimize the outcome.

REFERENCES

[1] I. AROKIARANI, R. DHAVASEELAN, S. JAFARI, M. PARIMALA: On Some New Notions and Functions in NTSs, Neutrosophic Sets and Systems, **16** (2017), 16–19.

- [2] A. ATKINSWESTLEY, S. CHANDRASEKAR: *Neutrosophic* g*- closed sets (Communicated)
- [3] R. DHAVASEELAN, S. JAFARI: *Generalized Neutrosophic closed sets*, New trends in Neutrosophic theory and applications, **2** (2018), 261–273.
- [4] R. DHAVASEELAN, S. JAFARI, M. HANIF PAGE: Neutrosophic Generalized α -contracontinuity, Creat. Math. Inform., 27(2) (2018), 1–6.
- [5] F. SMARANDACHE: Neutrosophic and Neutrosophic Logic, First International Conference On Neutrosophic, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.
- [6] F. SMARADACHE: Neutrosophic Set: A Generalization of Neutrosophic set, Journal of Defense Resourses Management, 1 (2010), 107–114.
- [7] P. ISWARYA, K. BAGEERATHI: On Neutrosophic semi-open sets in NTSs, International Journal of Mathematics Trends and Technology (IJMTT), 37(3) (2016), 24–33.
- [8] D. JAYANTHI: α -Generalized closed Sets in NTSs, International Journal of Mathematics Trends and Technology (IJMTT)- Special Issue ICRMIT, 2018.
- [9] A. M. MARGARET, M. T. PRICILLA: Neutrosophic vague generalized pre-closed sets in neutrosophic vague topological spaces, International journal of mathematics and its applications, 5(4-E) (2017), 747âÅŞ 759.
- [10] C. MAHESWARI, M. SATHYABAMA, S. CHANDRASEKAR: Neutrosophic generalized bclosed Sets In NTSs, Journal of physics Conf. Series, 1139(1) (2018), 012065.
- [11] A. A. SALAMA, S. A. ALBLOWI: Generalized Neutrosophic Set and Generalized NTSs, Journal computer Sci. Engineering, 2(7) (2012), 129–132.
- [12] A. A. SALAMA, S. A. ALBLOWI: Neutrosophic set and NTS, ISOR J. Mathematics, 3(4) (2012), 31–35.
- [13] R. SANTHI, UDHAYARANI: Nω-Closed Sets In NTSs, Neutrosophic Sets and Systems, 12 (2016), 114–117
- [14] V. K. SHANTHI, S. CHANDRASEKAR, K. SAFINA BEGAM: Neutrosophic Generalized Semi Closed Sets In NTSs, International Journal of Research in Advent Technology, 6(7) (2018), 1739–1743.
- [15] V. VENKATESWARA RAO, Y. SRINIVASA RAO: Neutrosophic Pre-open Sets and Preclosed Sets in Neutrosophic Topology, International Journal of ChemTech Research, 10(10) (2017), 449–458.

DEPARTMENT OF MATHEMATICS ROEVER COLLEGE ENGINEERING AND TECHNOLOGY ELAMBALUR, PERAMBALUR (DT), TAMIL NADU, INDIA *E-mail address*: ats.wesly@gmail.com

DEPARTMENT OF MATHEMATICS ARIGNAR ANNA GOVERNMENT ARTS COLLEGE NAMAKKAL(DT), TAMIL NADU, INDIA *E-mail address*: chandrumat@gmail.com