

Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2863–2872 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.48

WEAKLY NANO δG -CLOSED SETS

R. VIJAYALAKSHMI¹ AND A. P. MOOKAMBIKA

ABSTRACT. Lellis Thivagar presented Na-TSs and concentrated a portion of their properties. Nano $G\delta$ closed sets and Nano δg closed sets presented by R. Vijayalakshmi et al. in Na-TSs. Point of the current paper is to present new type of closed sets is called Weakly Nano(δg)-closed sets in Na-TSs. Likewise we research a portion of their connection and portrayals.

1. INTRODUCTION

The idea of Nano topology was presented by Lellis Thivagar, [4], which was characterized as far as approximations and limit area of a subset of a universe utilizing a proportionality connection on it. Nano (δ) closed sets , Nano (δg) closed sets and Nano ($G\delta$) closed sets are presented by R. Vijayalakshmi et al. in Na-TSs and concentrated a portion of their properties, [5]. Additionally we examine the connections between the other existing Nanoclosed sets. Point of the current paper is we present more fragile type of closed set is called Weakly Nano δg -closed sets in Na-TSs. Likewise we research a portion of their connection and portrayals.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. ???, ???

Key words and phrases. Nano δg closed sets, Nano δg open sets , Weakly Nano δg closed sets, weakly Nano δg open sets , Na-TSs.

R. VIJAYALAKSHMI AND A. P. MOOKAMBIKA

2. Preliminaries

Definition 2.1. [3] Let \mathcal{U} be a non-empty finite set of objects called the universe and \mathbb{R}^* be an equivalence relation on \mathcal{U} named as the indiscernibility relation.

- (i) The lower approximation of Ω with respect to \mathbf{R}^* is $\mathbf{L}_{\mathbf{R}^*}(\Omega) = \bigcup_{\sigma \in \mathbf{U}^*} \{ \mathbf{R}^*(\sigma) : \mathbf{R}^*(\sigma) \subseteq \Omega \}.$
- (ii) The upper approximation of Ω with respect to \mathbf{R}^* is $\bigcup_{\mathbf{R}^*} (\Omega) = \bigcup_{\sigma \in \mathbf{U}^*} \{ \mathbf{R}^* (\sigma) : \mathbf{R}^* (\sigma) \cap \Omega \neq = \emptyset \}$
- (iii) The boundary region of Ω with respect to **R** is $\mathbf{B}_{\mathbf{R}}(\Omega) = \mathcal{U}^* R(\Omega) - \mathbf{L}_{\mathbf{R}}(\Omega).$

Definition 2.2. [4] Let \mathcal{U} be a non-empty, finite universe of objects and \mathbb{R}^* be an equivalence relation on \mathcal{U} . Let $\Omega \subseteq \mathcal{U}$.

Let $\tau_{\mathbf{R}^*}(\Omega) = \mathbf{Na}^{\tau} = \{\mathcal{U}, \emptyset, \mathbf{L}_{\mathbf{R}^*}(\Omega), \bigcup_{\mathbf{R}^*}(\Omega), \mathbf{B}_{\mathbf{R}}(\Omega)\}$. Then \mathbf{Na}^{τ} is a topology on \mathcal{U} , called as the Nano topology with respect to Ω . Elements of the Nano topology are known as the Nano-open sets in \mathcal{U} and $(\mathcal{U}, \mathbf{Na}^{\tau})$ is called the Na-TS. $[\mathbf{Na}^{\tau}]^{\mathbf{C}}$ is called as the dual Nano topology of \mathbf{Na}^{τ} . Elements of $[\mathbf{Na}^{\tau}]^{\mathbf{C}}$ are Nanoclosed sets.

Definition 2.3. Let $(\mathcal{U}^{ast}, Na^{\tau})$ be a Na-TS with respect to Ω where $\Omega \subseteq \mathcal{U}$ and if $M_1^* \subseteq \mathcal{U}$, then M_1^* is said to be

- (i) Nano semi-open set if $M_1^* \subseteq N^{cl}(N^{int}(M_1^*))$, [5];
- (ii) Nano-regular open set if $M_1^* = N^{cl}(N^{int}(M_1^*))$, [5];
- (iii) Nano Pre-open set if $M_1^* \subseteq Nint(N^{cl}(M_1^*))$, [5];
- (iv) Nano α -open set if $M_1^* \subseteq N^{int}(N^{cl}(N^{int}(M_1^*)))$, [5];
- (v) Nano β -open set if $M_1^* \subseteq N^{cl}(N^{int}(N^{cl}(M_1^*)))$, [7];
- (vi) Nano b-open set if $M_1^* \subseteq Nint(N^{cl}(M_1^*)) \cup N^{cl}(N^{int}(M_1^*))$, [6]
- (vii) The finite union of Nano regular open sets is said to be Nano π -open, [10].

Definition 2.4. Let $(\mathcal{U}^*, \mathbf{Na}^{\tau})$ be a Na-TS with respect to Ω where $\Omega \subseteq \mathcal{U}$ and if $\mathbf{M}_1^* \subseteq \mathcal{U}$, then \mathbf{M}_1^* is said to be

- (i) Nano δ -closed, if $\mathbf{M}_{\mathbf{1}}^* = Ncl\delta(\mathbf{M}_{\mathbf{1}}^*)$ where $Ncl\delta(\mathbf{M}_{\mathbf{1}}^*) = \{\sigma \in \mathcal{U} : \mathbf{N}^{int}(\mathbf{N}^{cl}(Z)) \cap \mathbf{M}_{\mathbf{1}}^* \neq \emptyset, Z \in N\tau \text{ and } \sigma \in Z\}$, [10].
- (ii) Nano δg-closed set, if N(δ)cl (M₁^{*}) ⊆ Z whenever M₁^{*} ⊆ Z, Z is Nano open in (U^{*}, Na^τ), [10].
- (iii) Nano $G\delta$ -closed set, if $\mathbf{N}^{cl}(\mathbf{M}_1^*) \subseteq Z$ whenever $\mathbf{M}_1^* \subseteq Z$, Z is $N(\delta)$ -open in $(\mathcal{U}^*, \mathbf{Na}^{\tau})$, [9].

Definition 2.5. Let (\mathcal{U}, Na^{τ}) be a Na-TS with respect to Ω where $\Omega \subseteq \mathcal{U}^*$ and if $M_1^* \subseteq \mathcal{U}^*$, then M_1^* is said to be:

- (i) Nano g-closed if Nano $cl(M_1^*) \subseteq Z$ whenever $M_1^* \subseteq Z$ and Z is Nano open, [1].
- (ii) Nano gp-closed if Nano $pcl(M_1^*) \subseteq Z$ whenever $M_1^* \subseteq Z$ and Z is Nano open. [2].
- (iii) Nano $g\alpha$ -closed set if Nano $\alpha cl(M_1^*) \subseteq Z$ whenever $M_1^* \subseteq Z$ and Z is Nano α open. [8]
- (iv) weakly g-closed (briefly, wg-closed) set if $N^{cl}(N^{int}(M_1^*)) \subset \mathcal{U}^*$ whenever $M_1^* \subset \mathcal{U}^*$ and \mathcal{U}^* is open in $(\mathcal{U}^*, Na^{\tau})$, [8].
- (v) Nano sg-closed if Nano $scl(M_1^*) \subseteq Q$ whenever $M_1^* \subseteq Z$ and Z is Nano open, [4].

3. Weakly $N(\delta g)$ -closed sets

In this section we introduce the definition of weakly $N(\delta g)$ -closed sets in a Na-TS.

Definition 3.1. A subset M_1^* of a Na-TS $(\mathcal{U}^*, Na^{\tau})$ is called a weakly $N(\delta g)$ -closed (briefly, $N(WG\delta)$ -closed) set if $N^{cl}(N^{Int}(M_1^*)) \subset \mathcal{H}$ whenever $M_1^* \subset \mathcal{H}$ and \mathcal{H} is $N(\delta)$ -open in $(\mathcal{U}^*, Na^{\tau})$.

Theorem 3.1. If a subset M_1^* of a Na-TS $(\mathcal{U}^*, Na^{\tau})$ is both closed and Nano(g)closed, then it is $N(WG\delta)$ -closed in $(\mathcal{U}^*, Na^{\tau})$.

Proof. Let M_1^* be a Nano (αg) -closed set in $(\mathcal{U}^*, Na^{\tau})$ and \mathcal{H} be an $N(\delta)$ -open set containing M_1^* . Then \mathcal{H} is Nano open containing M_1^* and so $\mathcal{H} \supset N - Cl(M_1^*) = M_1^* \cup N^{int}(N^{Int}(N^{cl}(M_1^*)))$. Since M_1^* is Nanoclosed, $\mathcal{H} \supset N^{cl}(N^{Int}(M_1^*))$ and hence M_1^* is $N(WG\delta)$ -closed in $(\mathcal{U}^*, Na^{\tau})$.

Theorem 3.2. If a subset M_1^* of a Na- $TS(\mathcal{U}^*, Na^{\tau})$ is both $N(\delta)$ -open and $N(WG\delta)$ closed, then it is Nanoclosed.

Proof. Since M_1^* is both $N(\delta)$ -open and $N(WG\delta)$ -closed, $M_1^* \supset N^{cl}(N^{Int}(M_1^*)) = N^{cl}(M_1^*)$ and hence M_1^* is Nanoclosed in $(\mathcal{U}^*, Na^{\tau})$.

Corollary 3.1. If a subset M_1^* of a Na-TS(\mathcal{U}^* , Na^{τ}) is both $N(\delta)$ -open and $N(WG\delta)$ closed, then it is both Nano (\mathcal{R}) open and Nano (\mathcal{R}) closed in (\mathcal{U}^* , Na^{τ}). **Theorem 3.3.** Let $(\mathcal{U}^*, Na^{\tau})$ be a $N(\delta g)$ - $T_{1/2}$ space and $M_1^* \subset \mathcal{U}^*$ be $N(\delta)$ -open. Then, M_1^* is $N(WG\delta)$ -closed Iff if M_1^* is $N(\delta g)$ -closed.

Proof. Let M_1^* be $N(\delta g)$ -closed. By theorem 3.1, it is $N(WG\delta)$ -closed. Conversely, let M_1^* be $N(WG\delta)$ -closed. Since M_1^* is $N(\delta)$ -open, by theorem 3.2, M_1^* is Nanoclosed. Since \mathcal{U}^* is $N(\delta g)$ - $T_{1/2}$, M_1^* is $N(\delta g)$ -closed.

Theorem 3.4. A set M_1^* is $N(WG\delta)$ -closed Iff if $N^{cl}(N^{Int}(M_1^*)) - M_1^*$ contains no non-empty $N(\delta)$ -closed set.

Proof. Necessity. Let \mathcal{F} be a $N(\delta)$ -closed set such that $\mathcal{F} \subset N^{cl}(N^{Int}(M_1^*)) - M_1^*$. Since \mathcal{F}^C is $N(\delta)$ -open and $M_1^* \subset \mathcal{F}^C$, by definition of $N(WG\delta)$ -closed set then $N^{cl}(N^{Int}(M_1^*)) \subset \mathcal{F}^C$, i.e. $\mathcal{F} \subset (N^{cl}(N^{Int}(M_1^*)))^C$. Implies $\mathcal{F} \subset (N^{cl}(N^{Int}(M_1^*))) \subset (N^{cl}(N^{Int}(M_1^*)))^C = \emptyset$.

Sufficiency. Let $M_1^* \subset \mathcal{G}$, where \mathcal{G} is $N(\delta)$ -open set in \mathcal{U}^* . If $N^{cl}(N^{Int}(M_1^*))$ is $\not\subseteq$ in \mathcal{G} , then $N^{cl}(N^{Int}(M_1^*)) \subset \mathcal{G}^C$ is a non-empty $N(\delta)$ -closed subset of $N^{cl}(N^{Int}(M_1^*)) - M_1^*$, we obtain a contradiction. This is sufficiency of theorem.

Corollary 3.2. A $N(WG\delta)$ -closed set M_1^* is nano (\mathcal{R}) closed Iff if $N^{cl}(N^{Int}(M_1^*)) - M_1^*$ is $N(\delta)$ -closed and $N^{cl}(N^{Int}(M_1^*)) \supset M_1^*$.

Proof. Necessity. Since the set M_1^* is (\mathcal{R}) closed, $N^{cl}(N^{Int}(M_1^*)) - M_1^* = \emptyset$ is Nano (\mathcal{R}) closed and hence $N(\delta)$ -closed.

Sufficiency. By Theorem 3.3, $N^{cl}(N^{Int}(M_1^*)) - M_1^*$ contains no non-empty $N(\delta)$ -closed set. That is $N^{cl}(N^{Int}(M_1^*)) - M_1^* = \emptyset$. Therefore, M_1^* is regular closed. \Box

Theorem 3.5. Let $(\mathcal{U}^*, Na^{\tau})$ be a Na-TS and $M_2^* \subset M_1^* \subset \mathcal{U}^*$. If M_2^* is $N(WG\delta)$ closed set comparative with M_1^* and M_1^* is both open and $N(WG\delta)$ -closed subset of \mathcal{U}^* then M_2^* is $N(WG\delta)$ -closed set comparative with \mathcal{U}^* .

Proof. Let $M_2^* \subset \mathcal{H}$ and \mathcal{H} be a $N(\delta)$ -open in (\mathcal{U}, Na^{τ}) . Then $M_2^* \subset M_1^* \subset \mathcal{H}$. Since M_2^* is $N(WG\delta)$ -closed comparative with $M_1^*, clA(intA(M_2^*)) \subset M_1^* \subset \mathcal{H}$. That is $M_1^* \subset N^{cl}(N^{Int}(M_2^*)) \subset M_1^* \subset \mathcal{H}$. We have $M_1^* \subset N^{cl}(N^{Int}(M_2^*)) \subset$ and then $[M_1^* \subset N^{cl}(N^{Int}(M_2^*))] \cup (N^{cl}(N^{Int}(M_2^*)))C \subset \mathcal{H} \cup (N^{cl}(N^{Int}(M_2^*)))^C$. Since M_1^* is $N(WG\delta)$ -closed in $(\mathcal{U}^*, Na^{\tau})$, we have $N^{cl}(N^{Int}(M_1^*)) \subset \mathcal{H} \cup (N^{cl}(N^{Int}(M_2^*)))^C$.

 $N^{cl}(N^{Int}(M_2^*)) \not\subseteq (N^{cl}(N^{Int}(M_2^*)))^C$. Thus, M_2^* is $N(WG\delta)$ -closed set comparative with $(\mathcal{U}^*, Na^{\tau})$.

Corollary 3.3. If M_1^* is both Nano open and $N(WG\delta)$ -closed and \mathcal{F} is Nanoclosed in a Na-TS $(\mathcal{U}^*, Na^{\tau})$, then $M_1^* \subset \mathcal{F}$ is $N(WG\delta)$ -closed in $(\mathcal{U}^*, Na^{\tau})$.

Proof. Since \mathcal{F} is Nanoclosed, we have $M_1^* \subset \mathcal{F}$ is Nanoclosed in M_1^* . Therefore $clA(M_1^* \subset \mathcal{F}) = M_1^* \subset \mathcal{F}$ in M_1^* . Let $M_1^* \subset \mathcal{F} \subset \mathcal{G}$, where \mathcal{G} is $N(\delta)$ -open in M_1^* . Then $clA(intA(M_1^* \subset \mathcal{F})) \subset \mathcal{G}$ and hence $M_1^* \subset \mathcal{F}$ is $N(WG\delta)$ -closed in M_1^* . By theorem 3.3, $M_1^* \subset \mathcal{F}$ is $N(WG\delta)$ -closed in $(\mathcal{U}^*, Na^{\tau})$.

Theorem 3.6. If M_1^* is $N(WG\delta)$ -closed and $M_1^* \subset M_2^* \subset N^{cl}(N^{Int}(M_1^*))$, then M_2^* is $N(WG\delta)$ -closed.

Proof. Since $M_1^* \subset M_2^*$, $N^{cl}(N^{Int}(M_2^*)) - M_2^* \subset N^{cl}(N^{Int}(M_1^*)) - M_1^*$. By Theorem 3.3 $N^{cl}(N^{Int}(M_1^*)) - M_1^*$ contains no non-empty $N(\delta)$ -closed set and so $N^{cl}(N^{Int}(M_2^*)) - M_2^*$. Again by Theorem 3.3, M_2^* is $N(WG\delta)$ -closed. \Box

Theorem 3.7. Let $(\mathcal{U}^*, Na^{\tau})$ be a Na-TS and $M_1^* \subset \mathcal{V}^* \subset \mathcal{U}^*$ and \mathcal{V}^* be open. If M_1^* is $N(WG\delta)$ -closed in \mathcal{U}^* , then M_1^* is $N(WG\delta)$ -closed comparative with \mathcal{V}^* .

Proof. Let $M_1^* \subset \mathcal{V}^* \subset \mathcal{G}$ where \mathcal{G} is $N(\delta)$ -open in $(\mathcal{U}^*, Na^{\tau})$. Since M_1^* is $N(WG\delta)$ -closed in $(\mathcal{U}^*, Na^{\tau})$, $M_1^* \subset \mathcal{G}$ implies $N^{cl}(N^{Int}(M_1^*)) \subset \mathcal{G}$. That is $\mathcal{V}^* \subset (N^{cl}(N^{Int}(M_1^*))) \subset \mathcal{V}^* \subset \mathcal{G}$ where $\mathcal{V}^* \subset N^{cl}(N^{Int}(M_1^*))$ is closure of interior of M_1^* in $(\mathcal{V}^*, N\sigma)$. Thus, M_1^* is $N(WG\delta)$ -closed comparative with $(\mathcal{V}^*, Na^{\sigma})$.

Theorem 3.8. If a subset M_1^* of a Na-TS(\mathcal{U}^* , Na^{τ}) is nowhere dense, then it is $N(WG\delta)$ -closed.

Proof. Since $N^{Int}(M_1^*) \subset N^{Int}(N^{cl}(M_1^*))$ and M_1^* is nowhere dense, $N^{Int}(M_1^*) = \emptyset$. Therefore $N^{cl}(N^{Int}(M_1^*)) = \emptyset$ and hence M_1^* is $N(WG\delta)$ -closed in $(\mathcal{U}^*, Na^{\tau})$.

Example 1. Let $U^* = \{ \varrho_{a_1}, \varrho_{a_2}, \varrho_{a_3} \}$ with $U^*/R^* = \{ \{ \varrho_{a_1} \}, \{ \varrho_{a_2}, \varrho_{a_3} \} \}.$

Let $\Omega = \{\varrho_{a_1}, \varrho_{a_2}\} \subseteq \mathcal{U}^*$. Then $\mathbf{Na}^{\tau} = \{\mathbf{U}^*, \phi, \{\varrho_{\mathbf{a_1}}\}, \{\varrho_{\mathbf{a_2}}, \varrho_{\mathbf{a_3}}\}\}$. Then the set ϱ_{a_1} is $N(WG\delta)$ -closed in $(\mathcal{U}^*, Na^{\tau})$ but not nowhere dense in $(\mathcal{U}^*, Na^{\tau})$.

Remark 3.1. If any subsets M_1^* and M_2^* of Na-TS \mathcal{U}^* are $N(WG\delta)$ -closed, then their intersection need not be $N(WG\delta)$ -closed.

Example 2. Let $\mathcal{U}^* = \{ \varrho_{a_1}, \varrho_{a_2}, \varrho_{a_3}, \varrho_{a_4} \}$, with $\mathcal{U}^* / \mathcal{R}^* = \{ \{ \varrho_{a_1} \}, \{ \varrho_{a_3} \}, \{ \varrho_{a_2}, \varrho_{a_4} \} \}$. Let $\Omega = \{ \varrho_{a_1}, \varrho_{a_2} \} \subseteq \mathcal{U}^*$. Then $\mathbf{Na}^{\tau} = \{ \mathbf{U}^*, \phi, \{ \varrho_{\mathbf{a_1}} \}, \{ \varrho_{\mathbf{a_2}}, \varrho_{\mathbf{a_4}} \}, \{ \varrho_{\mathbf{a_1}}, \varrho_{\mathbf{a_2}}, \varrho_{\mathbf{a_4}} \} \}$. In this Na-TS the subsets $\{\varrho_{a_1}, \varrho_{a_3}\}$ and $\{\varrho_{a_1}, \varrho_{a_4}\}$ are $N(WG\delta)$ -closed but their intersection $\{\varrho_{a_1}\}$ is not $N(WG\delta)$ -closed in $(\mathcal{U}^*, Na^{\tau})$.

Proposition 3.1. Every Nano g-closed set is $N(WG\delta)$ -closed.

Proof. Let M_1^* be any Nano (g)-closed subset of $(\mathcal{U}^*, Na^{\tau})$ and let \mathcal{H} be an $N(\delta)$ open set containing M_1^* . Then \mathcal{H} is Nano (α) -open set containing M_1^* . Now $\mathcal{G} \supset$ $N\alpha - Cl(M_1^*) \supset N^{cl}(N^{Int}(N^{cl}(M_1^*))) \supset N^{cl}(N^{Int}(M_1^*))$. Thus, M_1^* is $N(WG\delta)$ closed in $(\mathcal{U}^*, Na^{\tau})$.

Example 3. Let $\mathcal{U}^* = \{\varrho_{a_1}, \varrho_{a_2}, \varrho_{a_3}\}$ with $\mathcal{U}^*/R^* = \{\{\varrho_{a_1}, \varrho_{a_2}\}, \{\varrho_{a_3}\}\}$. Let $\Omega = \{\varrho_{a_1}, \varrho_{a_2}\} \subseteq \mathcal{U}^*$. Then $Na^{\tau} = \{\mathcal{U}^*, \phi, \{\varrho_{a_1}, \varrho_{a_2}\}\}$. Then the set $\{\varrho_{a_1}, \varrho_{a_2}\}$ is $N(WG\delta)$ -closed but not Nano g-closed in $(\mathcal{U}^*, Na^{\tau})$.

Remark 3.2. $N(WG\delta)$ -closedness is independent of Nano semi-closedness, Nano β -closedness, Nano b-closedness and Nano sg-closedness in $(\mathcal{U}^*, Na^{\tau})$.

Example 4. Let $\mathcal{U}^* = \{\varrho_{a_1}, \varrho_{a_2}, \varrho_{a_3}, \varrho_{a_4}\}$, with $\mathcal{U}^*/R^* = \{\{\varrho_{a_1}, \varrho_{a_2}\}, \{\varrho_{a_3}, \varrho_{a_4}\}\}$. Let $\Omega = \{\varrho_{a_1}, \varrho_{a_2}\} \subseteq \mathcal{U}^*$. Then $\mathbf{Na}^{\tau} = \{\mathbf{U}^*, \phi, \{\varrho_{\mathbf{a_1}}, \varrho_{\mathbf{a_2}}\}\}$ Then the set $\{\varrho_{a_1}, \varrho_{a_2}\}$ is $N(WG\delta)$ -closed in $(\mathcal{U}^*, Na^{\tau})$ but not Nano semi-closed, Nano (β) -closed, Nano (b)-closed, and Nano(sg)-closed.

Example 5. Let $\mathcal{U}^* = \{\varrho_{a_1}, \varrho_{a_2}, \varrho_{a_3}, \varrho_{a_4}\}$, with $\mathcal{U}^*/R^* = \{\{\varrho_{a_1}\}, \{\varrho_{a_3}\}, \{\varrho_{a_2}, \varrho_{a_4}\}\}$. Let $\Omega = \{\varrho_{a_1}, \varrho_{a_2}\} \subseteq \mathcal{U}^*$. Then $Na^{\tau} = \{\mathcal{U}^*, \phi, \{\varrho_{a_1}\}, \{\varrho_{a_2}, \varrho_{a_4}\}, \{\varrho_{a_1}, \varrho_{a_2}, \varrho_{a_4}\}\}$. Then the set $\{\varrho_{a_1}\}$ is Nano semi-closed, Nano (β)-closed, Nano (b)-closed, Nano (sg)-closed closed in (\mathcal{U}^* , Na^{τ}) but not $N(WG\delta)$ -closed in (\mathcal{U}^* , Na^{τ}).

Definition 3.2. A subset M_1^* of a Na-TSU^{*} is called $N(WG\delta)$ -open set if M_1^{*C} is $N(WG\delta)$ -closed in U^* .

Proposition 3.2. (i) Every $N(\delta g)$ -open set is $N(WG\delta)$ -open; (ii) Every Nano g-open set is $N(WG\delta)$ -open.

Theorem 3.9. A subset M_1^* of a Na-TSU^{*} is $N(WG\delta)$ -open if $\mathcal{G} \subset N^{Int}(N^{cl}(M_1^*))$ whenever $\mathcal{G} \subset M_1^*$ and \mathcal{G} is $N(\delta)$ -closed.

Proof. Let M_1^* be any $N(WG\delta)$ -open. Then M_1^{*C} is $N(WG\delta)$ -closed. Let \mathcal{G} be a $N(\delta)$ -closed set contained in M_1^* . Then \mathcal{G}^C is a $N(\delta)$ -open set in \mathcal{U}^* containing M_1^{*C} . Since M_1^{*C} is $N(WG\delta)$ -closed we have $N^{cl}(N^{Int}(M_1^{*C})) \subset \mathcal{G}^C$. Therefore $\mathcal{G} \subset N^{Int}(N^{cl}(M_1^*))$.

Conversely, we suppose that $\mathcal{G} \subset N^{Int}(N^{cl}(M_1^*))$ whenever $\mathcal{G} \subset M_1^*$ and \mathcal{G} is $N(\delta)$ -closed. Then \mathcal{G}^C is a $N(\delta)$ -open set containing M_1^{*C} and $\mathcal{G}^C \supset (N^{Int}(N^{cl}(M_1^*)))^C$. It follows that $\mathcal{G}^C \supset N^{cl}(N^{Int}(M_1^{*C}))$. Hence M_1^{*C} is $N(WG\delta)$ -closed and so M_1^* is $N(WG\delta)$ -open.

4. Weakly $G\delta$ -continuous function

Definition 4.1. Let \mathcal{U}^* and \mathcal{V}^* be Na-T-S. A map $Na_f : \mathcal{U}^* \to \mathcal{V}^*$ is called weakly $N(\delta g)$ -CTS (briefly, $N(WG\delta)$ -CTS) if $Na_f^{-1}(\mathcal{H})$ is a $N(WG\delta)$ -open set in \mathcal{U}^* , for each open set \mathcal{H} in \mathcal{V}^* .

Example 6. Let $\mathcal{U}^* = \mathcal{V}^* = \{\varrho_{a_1}, \varrho_{a_2}, \varrho_{a_3}\}$, with $\mathcal{U}^*/R^* = \{\{\varrho_{a_1}\}, \{\varrho_{a_2}, \varrho_{a_3}\}\}$. Let $\Omega = \{\varrho_{a_1}, \varrho_{a_2}\} \subseteq \mathcal{U}^*$. Then $\mathbf{Na}^{\tau} = \{\mathbf{U}^*, \phi, \{\varrho_{\mathbf{a_1}}\}, \{\varrho_{\mathbf{a_2}}, \varrho_{\mathbf{a_3}}\}\}$ with $\mathcal{V}^*/R^* = \{\{\varrho_{a_1}\}, \{\varrho_{a_2}, \varrho_{a_3}\}\}$. Let $\Omega = \{\varrho_{a_1}\} \subseteq \mathcal{U}^*$. $Na^{\sigma} = \{f, \{\varrho_{a_1}\}, \mathcal{V}^*\}$. The map $Na_f : (\mathcal{U}^*, Na^{\tau}) \to (\mathcal{V}^*, Na^{\sigma})$ defined by the identity map is $N(WG\delta)$ -CTS, because every subset of \mathcal{U}^* is $N(WG\delta)$ -closed.

Proposition 4.1. Every $N(G\delta)$ -CTS map is $N(WG\delta)$ -CTS.

Proof. It follows from Proposition 3.2 (i).

Example 7. Let $\mathcal{U}^* = \mathcal{V}^* = \{\varrho_{a_1}, \varrho_{a_2}, \varrho_{a_3}, \varrho_{a_4}\}$, with $\mathcal{U}^*/R^* = \{\{\varrho_{a_1}\}, \{\varrho_{a_3}\}, \{\varrho_{a_2}, \varrho_{a_4}\}\}$. Let $\Omega = \{\varrho_{a_1}, \varrho_{a_2}\} \subseteq \mathcal{U}^*$. Then $\mathbf{Na}^{\tau} = \{\mathcal{U}, \phi, \{\varrho_{\mathbf{a_1}}\}, \{\varrho_{\mathbf{a_2}}, \varrho_{\mathbf{a_4}}\}, \{\varrho_{\mathbf{a_1}}, \varrho_{\mathbf{a_2}}, \varrho_{\mathbf{a_4}}\}\}$ with $\mathcal{V}^*/R^* = \{\{\varrho_{a_2}\}, \{\varrho_{a_1}, \varrho_{a_3}\}\}$. Let $\Omega = \{\varrho_{a_2}\} \subseteq \mathcal{U}^*$. $\mathbf{Na}^{\sigma} = \{f, \{\varrho_{\mathbf{a_2}}\}, \mathbf{V}^*\}$. Let the map $Na_f : (\mathcal{U}^*, Na^{\tau}) \to (\mathcal{V}^*, Na^{\sigma})$ be the identity map. Then Na_f is $N(WG\delta)$ -CTS but it is not $N(G\delta)$ -CTS.

Theorem 4.1. A map $Na_f : \mathcal{U}^* \to \mathcal{V}^*$ is called $N(WG\delta)$ -CTS Iff if $Na_f^{-1}(\mathcal{H})$ is a $N(WG\delta)$ -closed set in \mathcal{U}^* for each Nanoclosed set \mathcal{H} in \mathcal{V}^* .

Proof. Let \mathcal{H} be any nano closed set in \mathcal{V}^* . By assumption $Na_f^{-1}((\mathcal{U}^*C)) = \mathcal{U}^* Na_f^{-1}(\mathcal{H})$ is $N(WG\delta)$ -open in \mathcal{U}^* , so $Na_f^{-1}(\mathcal{H})$ is $N(WG\delta)$ -closed in \mathcal{U}^* . \Box

Theorem 4.2. Suppose that \mathcal{U}^* and \mathcal{V}^* are spaces and the family of $N(\delta g)$ -open sets of \mathcal{U}^* is nano closed under arbitrary unions. If a map $Na_f : \mathcal{U}^* \to \mathcal{V}^*$ is contra $N(\delta g)$ -CTS and \mathcal{V}^* is $N(\delta)$, then Na_f is $N(WG\delta)$ -CTS.

Proof. Let $Na_f : \mathcal{U}^* \to \mathcal{V}^*$ be contra $N(\delta g)$ -CTS and \mathcal{V}^* be $N(\delta)$. then, Na_f is $N(\delta g)$ -CTS. Hence, Na_f is $N(WG\delta)$ -CTS.

R. VIJAYALAKSHMI AND A. P. MOOKAMBIKA

Theorem 4.3. Let $Na_f : (\mathcal{U}^*, Na^{\tau}) \to (\mathcal{V}^*, Na^{\sigma})$ be a map. If Na_f is contra $N(\delta g)$ -CTS and $(\mathcal{U}^*, Na^{\tau})$ is locally $N(\delta g)$ -indiscrete, then Na_f is $N(WG\delta)$ -CTS.

Proof. Let $Na_f : \mathcal{U}^* \to \mathcal{V}^*$ be contra $N(\delta g)$ -CTS and $(\mathcal{U}^*, Na^{\tau})$ be locally $N(\delta g)$ -indiscrete., Na_f is CTS. Hence, Na_f is $N(WG\delta)$ -CTS.

Definition 4.2. A Na-TS U^* is weakly $G\delta$ -compact (briefly, $N(WG\delta)$ -compact) if every $N(WG\delta)$ -open cover of U^* has a finite subcover.

Remark 4.1. Every $N(WG\delta)$ -compact space is $N(G\delta)$ -compact.

Theorem 4.4. Let $Na_f : \mathcal{U}^* \to \mathcal{V}^*$ be a surjective $N(WG\delta)$ -CTS map. If \mathcal{U}^* is $N(WG\delta)$ -compact, then \mathcal{V}^* is compact.

Proof. Let $\{M_i^* : i \in I\}$ be an open cover of \mathcal{V}^* . Then $\{Na_f^{-1}(M_i^*) : i \in I\}$ is a $N(WG\delta)$ -open cover of \mathcal{U}^* . Since \mathcal{U}^* is $N(WG\delta)$ -compact, it has a finite subcover, say $\{Na_f^{-1}(M_1^*), Na_f^{-1}(M_2^*), \ldots, Na_f^{-1}(M_n^*)\}$. Since Na_f is surjective $\{M_1^*, M_2^*, \ldots, M_n^*\}$ is a finite subcover of \mathcal{V}^* and hence \mathcal{V}^* is compact. \Box

Definition 4.3. A Na-TS \mathcal{U}^* is Nanoweakly $G\delta$ -connected (briefly, $N(WG\delta)$ -connected) if \mathcal{U}^* cannot be written as the disjoint union of two non-empty $N(WG\delta)$ -open sets.

Theorem 4.5. If a Na-TS \mathcal{U}^* is $N(WG\delta)$ -connected, then \mathcal{U}^* is almost connected and $G\delta$ -connected.

Proof. It follows from each $N(\delta)$ open set and each $N(G\delta)$ -open set is $N(WG\delta)$ -open.

Theorem 4.6. For a Na-TS U^* the following statements are equivalent:

- (i) \mathcal{U}^* is $N(WG\delta)$ -connected.
- (ii) The empty set f and \mathcal{U}^* are only subsets which are both $N(WG\delta)$ -open and $N(WG\delta)$ -closed.
- (iii) Each $N(WG\delta)$ -CTS map from \mathcal{U}^* into a discrete space \mathcal{V}^* which has at least two points is a constant map.

Proof. (i) \Rightarrow (ii). Let $S^* \subset \mathcal{U}^*$ be any proper subset, which is both $N(WG\delta)$ -open and $N(WG\delta)$ -closed. Its complement $\mathcal{U}^* S^*$ is also $N(WG\delta)$ -open and $N(WG\delta)$ closed. Then $\mathcal{U}^* = S^* \cup (\mathcal{U}^* S^*)$ is a disjoint union of two non-empty $N(WG\delta)$ open sets logical inconsistency with the fact that \mathcal{U}^* is $N(WG\delta)$ -connected. Hence, $S^* = f$ or \mathcal{U}^* .

(ii) \Rightarrow (i). Let $\mathcal{U}^* = M_1^* \cup M_2^*$ where $M_1^* \cap M_2^* = f$, $M_1^* \neq \emptyset$, $M_2^* \neq \emptyset$ and M_1^* , M_2^* are $N(WG\delta)$ -open. Since $M_1^* = \mathcal{U}^* M_2^*, M_1^*$ is $N(WG\delta)$ -closed. According to the assumption $M_1^* = f$, logical inconsistency.

(ii) \Rightarrow (iii). Let $Na_f : \mathcal{U}^* \to \mathcal{V}^*$ be a $N(WG\delta)$ -CTS map where \mathcal{V}^* is a discrete space with at least two points. Then $Na_f^{-1}(v^*)$ is $N(WG\delta)$ -closed and $N(WG\delta)$ -open for each $v^* \in \mathcal{V}^*$ and $\mathcal{U}^* = \cup \{Na_f^{-1}(v^*) \cap v^* \in \mathcal{V}^*$. by assumption, $Na_f^{-1}(v^*) = f$ or $Na_f^{-1}(v^*) = \mathcal{U}^*$. If $Na_f^{-1}(v^*) = f$ for all $v^* \in \mathcal{V}^*$, Na_f will not be a map. Also there is no exist more than one $v^* \in \mathcal{V}^*$ such that $Na_f^{-1}(v^*) = \mathcal{U}^*$. Hence, there exists only one $v^* \in \mathcal{V}^*$ such that $Na_f^{-1}(v^*) = \mathcal{U}^*$ and $Na_f^{-1}(v^1) = f$ where $v^* \neq v1 \in \mathcal{V}^*$. This shows Na_f is a constant map.

(iii) \Rightarrow (ii). Let $S^* \neq \emptyset$ be both $N(WG\delta)$ -open and $N(WG\delta)$ -closed in \mathcal{U}^* . Let $Na_f : \mathcal{U}^* \rightarrow \mathcal{V}^*$ be a $N(WG\delta)$ -CTS map defined by $Na_f(S^*) = \{a\}$ and $Na_f(\mathcal{U}^* S^*) = \{b\}$ where $a \neq b$. Since Na_f is constant map we get $S^* = \mathcal{U}^*$. \Box

Theorem 4.7. Let $Na_f : \mathcal{U}^* \to \mathcal{V}^*$ be a $N(WG\delta)$ -CTS surjective map. If \mathcal{U}^* is $N(WG\delta)$ -connected, then \mathcal{V}^* is connected.

Proof. We suppose that \mathcal{V}^* is not connected. Then $\mathcal{V}^* = M_1^* \cup M_2^*$ where $M_1^* \cap M_2^* = f$, $M_1^* \neq \emptyset$, $M_2^* \neq \emptyset$ and M_1^* , M_2^* are open sets in \mathcal{V}^* . Since Na_f is $N(WG\delta)$ -CTS surjective map $\mathcal{U}^* = Na_f^{-1}(M_1^*) \cup Na_f^{-1}(M_2^*)$ are disjoint union of two non-empty $N(WG\delta)$ -open subsets. This is logical inconsistency with the way that \mathcal{U}^* is $N(WG\delta)$ -connected.

REFERENCES

- [1] K. BHUVANESHWARI, K. M. GNANAPRIYA: *Nano Generalizesd closed sets*, International Journal of Scientific and Research Publications, **4**(5) (2014), 1–3.
- [2] K. BHUVANESWARI, K. M. GNANAPRIYA: On Nano Generalised Pre Closed Sets and Nano Pre Generalised Closed Sets in Nano Topological Spaces, International Journal of Innovative Research in Science, Engineering and Technology, 3(10) (2014), 16825–16829.
- [3] S. CHANDRASEKAR, T. RAJESH KANNAN, R. SELVARAJ: $\delta\omega\alpha$ closed maps and $\delta\omega\alpha$ Closed Functions in Topological Spaces, International Journal of Mathematical Archive, **8**(11) (2017), 33–44.
- [4] S. CHANDRASEKAR, M. SURESH, T. RAJESH KANNAN: Nano Sg-Interior And Nano Sg-Closure In Nano Topological Spaces, International Journal of Mathematical Archive, 8(4) (2017), 94–100.
- [5] M. L. THIVAGAR, C. RICHARD: On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1) (2013), 31–37.

R. VIJAYALAKSHMI AND A. P. MOOKAMBIKA

- [6] M. PARIMALA, C. INDIRANI, S. JAFARI : On Nano b open sets in nano topological spaces, Jordan Journal of Mathematics and Statistics (JJMS), **9**(3) (2016), 173–184.
- [7] A. REVATHY, G. ILANGO: On Nano β-open sets Int. Jr. of Engineering, Contemporary Mathematics and Sciences, 1(2) (2015), 1–6.
- [8] R. VIJAYALAKSHMI, A. P. MOOKAMBIKA: Totally and Slightly Nano Gδ-Continuous Functions, International Journal of Research in Advent Technology, 6(12) (2018), 3330–3333.
- [9] R. VIJAYALAKSHMI, A. P. MOOKAMBIKA: Nano δG -Continuous Functions and Nano δG -Irresolute Functions in Nano Topological Spaces, International Journal of Scientific Research in Mathematical and Statistical Sciences, **6**(2) (2019), 86–90.
- [10] R. VIJAYALAKSHMI, A. P. MOOKAMBIKA: Some new nano sets in nano topological spaces, AIP Conference Proceedings 2177, 020105, 2019.

PG AND RESEARCH DEPARTMENT OF MATHEMATICS ARIGNAR ANNA GOVERNMENT ARTS COLLEGE NAMAKKAL(DT),TAMIL NADU, INDIA *E-mail address*: viji-lakshmi80@rediffmail.com

DEPARTMENT OF MATHEMATICS MAHATMA GANDHI GOVERNMENT ARTS COLLEGE NEW MAHE (PO), MAHE, PUDUCHERRY, INDIA *E-mail address*: mookiratna@gmail.com