ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2913–2921 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.53

θG^*S -REGULAR AND θG^*S -NORMAL SPACES IN TOPOLOGICAL SPACES

L. CHINNAPPARAJ¹ AND P. SATHISHMOHAN

ABSTRACT. The aim of this paper is to introduce and study the basic properties of two new classes of spaces, called θg^*s -regular and θg^*s -normal spaces.

1. INTRODUCTION

Munshi [7] introduced *g*-regular and *g*-normal spaces using *g*-closed sets in topological spaces. Noiri and Popa [8] have further investigated the concepts introduced by Munshi. In 1975 Maheshwari and Prasad [5, 6] introduced and studied *s*-regular, *s*-normal spaces. In 2002 semi-*g*-regular and semi-*g*-normal spaces were introduced and studied by Ganster et al. in [3]. The notion of θ -regular introduced by Kohli and Das [4] and the set θg^*s -closed set was introduced by Sathishmohan [9]. The aim of this paper is to introduce and investigate the notions of θg^*s -regularity and θg^*s -normality utilizing θg^*s -closed set.

2. Preliminaries

Throughout this paper the space (X, τ) represents the topological spaces on which no separation axioms are assumed unless otherwise mentioned. Let *A* be

¹corresponding author

2010 Mathematics Subject Classification. 54A05.

Key words and phrases. θg^*s -regular, θg^*s -normal.

a subset of a space (X, τ) then cl(A), int(A) and A^c denote the closure of A, interior of A and complement of A respectively.

Definition 2.1. A subset A of space (X, τ) is called

- (1) semi-closed set, if $int(cl(A)) \subseteq A$, [1];
- (2) regular closed set, if A = cl(int(A)), [11].

Definition 2.2. [12], A point x of a space (X, τ) is called θ -adherent point of a subset A of X if $cl(U) \cap A \neq \phi$, for every open set U containing x.

The set of all θ -adherents points of A is called the θ -closure of A and is denoted by $cl_{\theta}(A)$. A subset A of a space X is called θ -closed if and only if $A = cl_{\theta}(A)$. The complement of a θ -closed set is called θ -open.

Definition 2.3. [2], A point x of a space (X, τ) is called semi θ -cluster point of A if $A \cap scl(U) \neq \phi$, for every semi-open set U containing x.

The set of all semi θ -cluster points of A is called semi θ -closure of A and is denoted by $scl_{\theta}(A)$. Hence, a subset A is called semi θ -closed if $scl_{\theta}(A) = A$. The complement of a semi θ -closed set is called semi θ -open set.

Definition 2.4. [9], A subset A of a topological space (X, τ) is called θ -generalized star semi-closed (briefly θg^*s -closed) if $scl_{\theta}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open. The complement of θg^*s -closed set is called θg^*s -open.

The family of all θg^*s -open(resp θg^*s -closed) sets of a space X is denoted by $\theta g^*so(X)$ (resp. $\theta g^*sc(X)$).

The following three definitions are given in [9].

Definition 2.5. A function $f : (X, \tau) \to (Y, \sigma)$ is called θg^*s -continuous if $f^{-1}(V)$ is θg^*s -closed set in (X, τ) for every closed set V in (Y, σ) .

Definition 2.6. A function $f : (X, \tau) \to (Y, \sigma)$ is called θg^*s -irresolute if $f^{-1}(V)$ is θg^*s -closed set in (X, τ) for every θg^*s -closed set V in (Y, σ) .

Definition 2.7. A space (X, τ) is called a $_{\theta g}T^*_{\frac{1}{2}}$ -space if every θg^*s -closed set of (X, τ) is a closed set.

Definition 2.8. [10], A space X is said to be almost normal if for each closed set A and each regular closed set B such that $A \cap B = \phi$, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$.

3. θg^*s -Regular Spaces

In this section, we define and study the concepts of θg^*s -regular and we discuss some of its properties.

Definition 3.1. A topological space X is said to be θg^*s -regular if for every θg^*s closed set F and a point $x \notin F$, there exist disjoint open sets U and V such that $F \subseteq U$ and $x \in V$.

Theorem 3.1. Every θg^*s -regular space is regular.

Proof. The proof follows from the definition.

Theorem 3.2. If X is regular space and $_{\theta g}T_{\underline{1}}^*$ -space, then X is θg^*s -regular space.

Proof. Let X be a regular space. Let $x \in X$ and A be a θg^*s -closed set in X such that $x \notin A$. Since X is $_{\theta g}T^*_{\frac{1}{2}}$ -space, A is a closed set in X. As X is a regular space, there exist disjoint open sets G and H such that $A \subseteq G$ and $x \in H$. Hence X is a θg^*s -regular space.

Theorem 3.3. Let X be a topological space. Then the following statements are equivalent.

- (i) X is a θg^*s -regular space.
- (ii) For each $x \in X$ and each θg^*s -open set A of X there exists an open set V containing x such that $cl_{\theta}(V) \subseteq A$.

Proof. $(i) \Rightarrow (ii)$. Let A be any θg^*s -open set of X. Then there exists a θg^*s -open set G such that $x \in A \subseteq X$. Since X - G is θg^*s -closed and $x \notin X - G$, by hypothesis, there exist open sets U and V such that $X - G \subseteq U$, $x \in V$ and $U \cap V = \Phi$ and so $V \subseteq X - U$. Now $cl_{\theta}(V) \subseteq cl_{\theta}(X - U) = X - U$ and $X - G \subseteq U$ implies $X - U \subseteq G \subseteq A$. Therefore $cl_{\theta}(V) \subseteq A$.

 $(ii) \Rightarrow (i)$. Let *F* be a θg^*s -closed set and $x \notin F$. Then $x \in X - F$ is θg^*s open and so X - F is a θg^*s -open set containing *x*. By hypothesis, there exists
an open set *V* containing *x* such that $x \in X$ and $cl_{\theta} \subseteq X - F$, which implies $F \subseteq X - cl_{\theta}(V)$. Then $X - cl_{\theta}(V)$ is an open set containing *F* and $V \cap X - cl_{\theta}(V) = \phi$. Therefore *X* is θg^*s -regular space.

Theorem 3.4. A space X is a θg^*s -regular if and only if for each θg^*s -closed set F of X and each $x \in X - F$, there exist open sets U and V of X such that $x \in U$ and $F \subseteq V$ and $cl_{\theta}(U) \cap cl_{\theta}(V) = \phi$.

L. CHINNAPPARAJ AND P. SATHISHMOHAN

Proof. Necessity: Let F be a θg^*s -closed set of X and $x \notin X$. Then there exist open sets U_0 and V such that $x \in U_0$, $F \subseteq V$ and $U_0 \cap V = \phi$. This implies $U_0 \cap cl_\theta(V) = \phi$. Since X is θg^*s -regular, there exists open sets G and H of Xsuch that $x \in G$, $cl_\theta(V) \subseteq H$ and $G \cap H = \phi$. This implies $cl_\theta(G) \cap H = \phi$. Now, put $U = U_0 \cap G$, then U and V are open sets of X such that $x \in U$, $F \subseteq V$ and $cl_\theta(U) \cap cl_\theta(V) = \phi$.

Sufficiency: If for each θg^*s -closed set F of X and each point $x \in X - F$, there exist open sets G and H such that $x \in G$, $F \subseteq H$ and $cl_{\theta}(G) \cap cl_{\theta}(H) = \phi$, then it implies that $x \in G$, $F \subseteq H$ and $G \cap H = \phi$. Hence X is θg^*s -regular. \Box

Theorem 3.5. Every subspace of θg^*s -regular space is θg^*s -regular.

Proof. Let *X* be a θg^*s -regular space and *Y* be a subspace of *X*. Let $x \in Y$ and *F* be a θg^*s -closed set in *Y* such that $x \notin F$. Then there is a closed set and so θg^*s -closed set *A* of *X* with $F = Y \cap A$ and $x \notin A$. Since *X* is θg^*s -regular, there exist open sets *G* and *H* such that $x \in G$, $A \subseteq H$ and $G \cap H = \phi$. Note that $Y \cap G$ and $Y \cap H$ are open sets in *Y*. Also $x \in G$ and $x \in Y$ which implies $x \in Y \cap G$ and $A \subseteq H$. This implies $Y \cap A \subseteq Y \cap G$, $F \subseteq Y \cap H$. Also $(Y \cap G) \cap (Y \cap H) = \phi$. Hence *Y* is a θg^*s -regular space.

Theorem 3.6. Let X be a topological space. Then the following statements are equivalent.

- (i) X is θg^*s -regular space.
- (ii) For each point $x \in X$ and for each θg^*s -open set U of X, there exists an open set V of X such that $x \in V \subseteq cl_{\theta}(V) \subseteq U$.
- (iii) For each point $x \in X$ and for each θg^*s -open set A not containing x, there exists an open set V of X such that $cl_{\theta}(V) \cap A = \phi$.

Proof. $(i) \leftrightarrow (ii)$. Follows from the Theorem 3.5.

 $(ii) \rightarrow (iii)$. Let $x \in X$ and A be a θg^*s -closed set such that $x \notin A$. Then A^C is a θg^*s -open set such that $x \in A^C$. By hypothesis, there exists an open set V such that $x \in cl_{\theta}(V) \subseteq A^C$. That is $x \in V$, $V \subseteq cl_{\theta}(V)$ and $cl_{\theta}(V) \subseteq A^C$. So $x \in V$ and $cl_{\theta}(V) \cap A = \phi$.

 $(iii) \rightarrow (i)$. Let $x \in X$ and U be a θg^*s -open set in X such that $x \in X$. Then U^C is a θg^*s -closed set such that $x \notin U^C$. Then by hypothesis, there exists an open set V containing such that $cl_{\theta}(V) \cap U^C = \phi$. Therefore $x \in V$, $cl_{\theta}(V) \subseteq U$. So $x \in V \subseteq cl_{\theta}(V) \subseteq U$.

Theorem 3.7. If $f : X \to Y$ is bijective, θg^*s -irresolute and open from θg^*s -regular space X into a topological space Y, then Y is θg^*s -regular.

Proof. Let $y \in Y$ and F be a θg^*s -closed set of Y with $y \notin F$. Since f is θg^*s -irresolute, $f^{-1}(F)$ is θg^*s -closed set in X. As f is bijective, let f(x) = y and $x = f^{-1}(y)$ and $x \notin f^{-1}(F)$. Again since X is θg^*s -regular space, there exist open sets U and V such that $x \in U$ and $f^{-1}(F) \subseteq G$ and $U \cap V = \phi$. Since f is open and bijective, we have $y \in f(U)$, $F \subseteq f(V)$ and $f(U) \cap f(V) = f(U \cap V) = f(\phi) = \phi$. Hence Y is θg^*s -regular space.

Theorem 3.8. If $f : X \to Y$ is one-to-one, θg^*s -closed function from a topological space X into θg^*s -regular space Y. If X is $_{\theta g}T^*_{\frac{1}{2}}$ -space, then X is θg^*s -regular.

Proof. Let $x \in X$ and F be a θg^*s -closed set in X such that $x \notin F$. Since X is $\theta g T_{\frac{1}{2}}^*$ -space, F is closed in X. Then f(F) is θg^*s -closed set with $f(x) \notin f(F)$ in Y as f is θg^*s -closed. Again Y is θg^*s -regular, there exist disjoint open sets U and V such that $f(x) \in U$ and $f(F) \subseteq V$. Therefore $x \in f^{-1}(U)$ and $F \subset f^{-1}(V)$. Hence X is θg^*s -regular space.

4. θg^*s -Normal Spaces

In this section, we define and study the concepts of θg^*s -normal and we have discuss some of its properties.

Definition 4.1. A topological space X is said to be θg^*s -normal if for any pair of disjoint closed sets A and B, there exists disjoint θg^*s -open sets U and V such that $A \subset U, B \subset V$.

Theorem 4.1. For a space *X* the following are equivalent:

- (i) *X* is θg^*s -normal,
- (ii) for every pair of open sets U and V whose union is X, there exist θg^*s -closed sets A and B such that $A \subset U$, $B \subset V$ and $A \cup B = X$,
- (iii) for every closed set F and every open set D containing F, there exists a θg^*s -open set U such that $C \subset U \subset \theta g^*scl(U) \subset D$.

Proof. (i) \Rightarrow (ii): Let U and V be a pair of open sets in a θg^*s -normal space X such that $X = U \cup V$. Then $X \setminus U$, $X \setminus V$ are disjoint closed sets. Since X is θg^*s -normal, there exist disjoint θg^*s -open sets U_1 and V_1 such that $X \setminus U \subset U_1$

and $X \setminus V \subset V_1$. Let $A = X \setminus U_1$, $B = X \setminus V_1$. Then A and B are θg^*s -closed sets such that $A \subset U$, $B \subset V$ and $A \cup B = X$.

(ii) \Rightarrow (iii): Let C be a closed set and D be an open set containing C. Then $X \setminus C$ and D are open sets whose union is X. Then by (ii), there exist θg^*s -closed sets M_1 and M_2 such that $M_1 \subset X \setminus C$ and $M_2 \subset D$ and $M_1 \cup M_2 = X$. Then $C \subset X \setminus M_1, X \setminus D \subset X \setminus M_2$ and $(X \setminus M_1) \cap (X \setminus M_2) = \phi$. Let $U = X \setminus M_1$ and $V = X \setminus M_2$. Then U and V are disjoint θg^*s -open sets such that $C \subset U \subset X \setminus V \subset D$. As $X \setminus V$ is θg^*s -closed set, we have $\theta g^*scl(U) \subset X \setminus V$ and $C \subset U \subset \theta g^*scl(U) \subset D$.

(iii) \Rightarrow (i): Let C_1 and C_2 be any two disjoint closed sets of X. Put $D = X \setminus C_2$, then $C_2 \cap D = \phi$. $C_1 \subset D$ where D is an open set. Then by (iii), there exists a θg^*s -open set U of X such that $C_1 \subset U \subset \theta g^*scl(U) \subset D$. It follows that $C_2 \subset X \setminus \theta g^*scl(U) = V$, then V is θg^*s -open and $U \cap V = \phi$. Hence, C_1 and C_2 are separated by θg^*s -open sets U and V. Therefore X is θg^*s -normal. \Box

Definition 4.2. A function $f : X \to Y$ is called strongly θg^*s -closed if $f(U) \in \theta g^*sc(Y)$ for each $U \in \theta g^*sc(X)$.

Definition 4.3. A function $f : X \to Y$ is called strongly θg^*s -open if $f(U) \in \theta g^*so(Y)$ for each $U \in \theta g^*so(X)$.

Theorem 4.2. A function $f : X \to Y$ is strongly θg^*s -closed if and only if for each subset B in Y and for each θg^*s -open set U in X containing $f^{-1}(B)$, there exists a θg^*s -open set V containing B such that $f^{-1}(V) \subset U$.

Proof. (\Rightarrow) : Suppose that f is strongly θg^*s -closed. Let B be a subset of Y and $U \in \theta g^*so(X)$ containing $f^{-1}(B)$. Put $V = Y \setminus f(X \setminus U)$, then V is a θg^*s -open set of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

(\Leftarrow) : Let K be any θg^*s -closed set of X. Then $f^{-1}(Y \setminus f(K)) \subset X \setminus K$ and $X \setminus K \in \theta g^*so(X)$. There exists a θg^*s -open set V of Y such that $Y \setminus f(K) \subset V$ and $f^{-1}(V) \subset X \setminus K$. Therefore, we have $f(K) \supset Y \setminus V$ and $K \subset f^{-1}(Y \setminus V)$. Hence, we obtain $f(K) = Y \setminus V$ and f(K) is θg^*s -closed in Y. This shows that f is strongly θg^*s -closed.

Theorem 4.3. If $f : X \to Y$ is a strongly θg^*s -closed continuous function from a θg^*s -normal space X onto a space Y, then Y is θg^*s -normal.

Proof. Let K_1 and K_2 be disjoint closed sets in Y. Then $f^{-1}(K_1)$ and $f^{-1}(K_2)$ are closed sets. Since X is θq^*s -normal, then there exist disjoint θq^*s -open sets U and

V such that $f^{-1}(K_1) \subset U$ and $f^{-1}(K_2) \subset V$. By Theorem 4.2 there exist θg^*s open sets A and B such that $K_1 \subset A$, $K_2 \subset B$, $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$.
Also, A and B are disjoint. Thus, Y is θg^*s -normal.

Definition 4.4. A function $f : X \to Y$ is said to be almost θg^*s -irresolute if for each x in X and each θg^*s -neighborhood V of f(x), θg^*s -cl $(f^{-1}(V))$ is a θg^*s -neighborhood of x.

Lemma 4.1. Let $f : X \to Y$ be a function. Then f is almost θg^*s -irresolute if and only if $f^{-1}(V) \subset \theta g^*s$ -int $(\theta g^*scl(f^{-1}(V)))$ for every $V \in \theta g^*so(Y)$.

Theorem 4.4. A function $f : X \to Y$ is almost θg^*s -irresolute if and only if $f(\theta g^*scl(U)) \subset \theta g^*scl(f(U))$ for every $U \in \theta g^*so(X)$.

Proof. (\Rightarrow) : Let $U \in \theta g^* so(X)$. Suppose $y \notin \theta g^* scl(f(U))$. Then there exists $V \in \theta g^* so(Y, y)$ such that $V \cap f(U) = \phi$. Hence $f^{-1}(V) \cap U = \phi$. Since $U \in \theta g^* so(X)$, we have $\theta g^* s$ -int $(\theta g^* scl(f^{-1}(V))) \cap \theta g^* scl(U) = \phi$. Then by lemma 4.1, $f^{-1}(V) \cap \theta g^* scl(U) = \phi$ and hence $V \cap f(\theta g^* scl(U)) = \phi$. This implies that $y \notin f(\theta g^* scl(U))$.

 (\Leftarrow) : If $V \in \theta g^* so(Y)$, then $M = X \setminus \theta g^* scl(f^{-1}(V)) \in \theta g^* so(X)$. By hypothesis, $f(\theta g^* scl(M)) \subset \theta g^* scl(f(M))$ and hence

$$\begin{split} X &\langle \theta g^* sint(\theta g^* scl(f^{-1}(V))) = \theta g^* scl(M) \\ &\subset f^{-1}(\theta g^* scl(f(M))) \subset f^{-1}(\theta g^* scl(f(X \setminus f^{-1}(V)))) \\ &\subset f^{-1}(\theta g^* scl(Y \setminus V)) = f^{-1}(Y \setminus V) = X \setminus f^{-1}(V). \end{split}$$

Therefore, $f^{-1}(V) \subset \theta g^* sint(\theta g^* scl(f^{-1}(V)))$. By Lemma 4.1, f is almost $\theta g^* s$ -irresolute.

Theorem 4.5. If $f : X \to Y$ is a strongly θg^*s -open continuous almost θg^*s -irresolute function from a θg^*s -normal space X onto a space Y, then Y is θg^*s -normal.

Proof. Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, $f^{-1}(A)$ is closed and $f^{-1}(B)$ is an open set of X such that $f^{-1}(A) \subset f^{-1}(B)$. As X is θg^* s-normal, there exists a θg^* s-open set U in X such that $f^{-1}(A \subset U \subset \theta g^* scl(U) \subset f^{-1}(B)$ by Theorem 4.1 Then, $f(f^{-1}(A)) \subset$ $f(U) \subset f(\theta g^* scl(U)) \subset f(f^{-1}(B))$. Since f is strongly θg^* s-open almost θg^* sirresolute surjection, we obtain $A \subset f(U) \subset \theta g^* scl(f(U)) \subset B$. Then again by Theorem 4.1 the space Y is θg^* s-normal. **Theorem 4.6.** If X is Normal space and $_{\theta g}T_{\frac{1}{2}}^*$ -space, then X is θg^*s -Normal space.

Proof. Let A and B be two disjoint θg^*s -closed sets in X. Since X is $_{\theta g}T_{\frac{1}{2}}^*$ -space, A and B are disjoint closed sets in X. Again X is Normal space, there exists a pair of disjoint open sets G and H such that $A \subseteq G$ and $B \subseteq H$. Hence X is θg^*s -Normal space.

Theorem 4.7. If $f : X \to Y$ is bijective, open, θg^*s -irresolute function from θg^*s -Normal space X into a topological space Y, then Y is θg^*s -normal.

Proof. Let A and B disjoint θg^*s -closed sets in Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint θg^*s -closed sets in X as f is θg^*s -irresolute. Since X is θg^*s -Normal, there exist disjoint open sets G and H in X such that $f^{-1}(A) \subseteq G$ and $f^{-1}(B) \subseteq H$. Again since f is bijective and open, f(G) and f(H) are disjoint open sets in Y such that $A \subseteq f(G)$ and $B \subseteq f(H)$. Hence Y is θg^*s -Normal.

REFERENCES

- S. G. CROSSELY, S. K. HILDBRAND: On semi-closure, Texas Journal of Science, 22 (1971), 99 – 112.
- [2] G. DI MAIO, T. NOIRI: On S-closed spaces, Indian Journal of Pure and Applied Mathematics, 26(3) (1995), 271 – 284.
- [3] M. GANSTER, S. JAFARI, G. B. NAVALAGI: On semi-g-regular and semi-g-normal spaces, Demonstratio Mathematica, **35**(2) (2002), 415 421.
- [4] J. K. KOHLI, A. K. DAS: New normality axioms and decompositions of normality, Glasnik Mathematick, 37(57) (2002), 165 – 175.
- [5] S. N. MAHESHWARI, R. PRASAD: On s-regular spaces, Glasnik Mathematick, 10(30) (1975), 347 – 350.
- [6] S. N. MAHESHWARI, R. PRASAD: On s-normal spaces, Bulletin mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie, 22(70) (1978), 27 – 29.
- [7] B. M. MUNSHI: Separation axioms, Acta Ciencia Indica, 12 (1986), 140 144.
- [8] T. NOIRI, V. POPA: On g-regular and some functions, Memoirs of the Faculty of Science Kochi University Seires A Mathematics, 20 (1999), 67 – 74.
- [9] P. SATHISHMOHAN, V. RAJENDIRAN, L. CHINNAPPARAJ: On new class of generalization of closed sets in Topological Spaces, International Journal of Scientific Research and Review, 7 (2018), 69 – 79.
- [10] M. K. SINGAL, S. P. ARYA: On almost normal and almost completely regular spaces, Glasnik Matematicki, 5(25) (1970), 141 – 152.

- [11] M. STONE: Application of the theory of boolean rings to general topology, Transaction of the American Mathematical Society, 41 (1937), 389 – 392.
- [12] N. V. VELICKO: On H-closed topological spaces, American Mathematical Society Translations, 78 (1968), 81 – 90.

DEPARTMENT OF MATHEMATICS KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) COIMBATORE, TAMILNADU, INDIA *E-mail address*: cj.chinnapparaj@gmail.com

DEPARTMENT OF MATHEMATICS Kongunadu Arts and Science College (Autonomous) Coimbatore, Tamilnadu,India