

Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2923–2929 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.54

$\pi G^*\beta$ -CONTINUOUS FUNCTIONS

R. VANI¹ AND A. DEVIKA

ABSTRACT. The purpose of this paper is to introduce a new class of functions, namely, π generalized star β continuous functions and π generalized star β irresolute functions. Also, some of the characterization and basic properties of π generalized star β continuous functions are brought out.

1. INTRODUCTION

Levine [7] introduced the notion of generalized closed sets in 1970. Zaitsev [11] defined the concept of π -closed sets in topological spaces. Abd El-Monsef [1] introduced the notions of β -continuous functions in topological spaces. Dontchev [5] defined the concept of πg -closed sets in topological space and Tahiliani [8] study the concept of $\pi g\beta$ -closed sets in topological spaces. Veerakumar [10] introduced g*-closed sets. Devika and Vani has introduced the $\pi g^*\beta$ -closed sets and studied some of its relations with the existing sets. In this paper, we define and study $\pi g^*\beta$ -continuous functions and prove some theorems which satisfies the definition. The basic definitions are recalled from the papers [1–11].

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. continuous functions, $\pi g^*\beta$ -closed set, $\pi g^*\beta$ -continuous functions, $\pi g^*\beta$ -irresolute functions.

R. VANI AND A. DEVIKA

2. $\pi g^*\beta$ -continuous functions

In this section, the notion of π generalized star β continuous functions and π generalized star β irresolute functions are studied and the pasting lemma for $\pi g^*\beta$ - closed maps is also proved.

Definition 2.1. A function f from a topological space (X, τ) into a topological space (Y, σ) is called π generalized star β continuous ($\pi g^*\beta$ - continuous) if $f^{-1}(V)$ is a $\pi g^*\beta$ - closed set in (X, τ) for every closed set V in (Y, σ) .

Remark 2.1. If $\tau_{\pi g^*\beta} = \tau$ in X, then continuity and $\pi g^*\beta$ - continuity coincide.

Theorem 2.1. If a function $f : (X, \tau) \to (Y, \sigma)$ is r-continuous, then it is $\pi g^* \beta$ -continuous.

Proof. Let $f : X \to Y$ be r-continuous. Let F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is r-closed set in X. Since for every r-closed set is $\pi g^*\beta$ - closed, $f^{-1}(F)$ is $\pi g^*\beta$ - closed set in X. Therefore f is $\pi g^*\beta$ - continuous. \Box

Remark 2.2. The converse of the above theorem need not be true as seen from the following example.

Example 1. Let $X = Y = \{a,b,c\}$ with $\tau = \{\emptyset, \{c\}, \{b,c\}, \{a,c\}, X\}$ and $\sigma = \{\emptyset, \{b\}, \{a,b\}, \{a,c\}, Y\}$. Let $f : X \to Y$ be the identity function, then f is $\pi g^*\beta$ - continuous but not continuous and r-continuous. Since for the closed set $\{a,c\}$ in $Y, f^{-1}(\{a,c\}) = \{a,c\}$, it is $\pi g^*\beta$ -closed but not r-closed set in (X,τ) .

Theorem 2.2. For the function $f : (X, \tau) \to (Y, \sigma)$, the following hold:

- (i) If f is $\pi g^*\beta$ -continuous function, then f is g-continuous.
- (ii) If f is $\pi g^*\beta$ -continuous function, then f is rg-continuous.
- (iii) If f is $\pi g^*\beta$ -continuous function, then f is gs-continuous.
- (iv) If f is $\pi g^*\beta$ -continuous function, then f is gp-continuous.
- (v) If f is $\pi g^*\beta$ -continuous function, then f is gsp-continuous.
- (vi) If f is $\pi g^*\beta$ -continuous function, then f is gpr-continuous.

Proof. (i) Let U be closed set in Y. Since f is a $\pi g^*\beta$ - continuous function, $f^{-1}(U)$ is $\pi g^*\beta$ - closed in X. Since every $\pi g^*\beta$ -closed set is g-closed, $f^{-1}(U)$ is g-closed in X. Hence f is g-continuous.

(ii) The proof for (ii) to (vi) is similar as (i).

2924

Remark 2.3. The converse of the above theorem need not be true as seen from the following examples.

Example 2. Let $X = Y = \{a,b,c\}$ with $\tau = \{\emptyset, \{c\}, X\}$ and $\sigma = \{\emptyset, \{b\}, Y\}$. Let $f : X \to Y$ be the identity function, then f is g- continuous but not $\pi g^*\beta$ continuous. Since for the closed set $\{a,c\}$ in Y, $f^{-1}(\{a,c\}) = \{a,c\}$ is g-closed set but not $\pi g^*\beta$ -closed set in (X, τ) .

Example 3. Let $X = Y = \{a,b,c\}$ with $\tau = \{\emptyset, \{c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, Y\}$. Let $f : X \to Y$ be the identity function, then f is gs-continuous, rg-continuous, gp-continuous, gpr-continuous but not $\pi g^*\beta$ - continuous. Since for the closed set $\{b,c\}$ in Y, $f^{-1}(\{b,c\}) = \{b,c\}$ is gs-closed, rg- closed, gp-closed, gp-closed but not $\pi g^*\beta$ -closed in (X, τ) .

Theorem 2.3. Let $f : (X, \tau) \to (Y, \sigma)$ be the function from a topological space X into a topological space Y. If $f : X \to Y$ is $\pi g^*\beta$ -continuous, then $f(\pi g^*\beta cl(A)) \subseteq cl(f(A))$ for every subset A of X.

Proof. Since $f(A) \subseteq cl(f(A))$, $A \subset f^{-1}(cl(f(A)))$. Since cl(f(A)) is a closed set in Y and f is $\pi g^*\beta$ -continuous, $f^{-1}(cl(f(A)))$ is a $\pi g^*\beta$ -closed set in X containing A. Hence $\pi g^*\beta cl(A) \subseteq f^{-1}(cl(f(A)))$. Therefore $f(\pi g^*\beta cl(A)) \subseteq cl(f(A))$.

Lemma 2.1. For any $x \in X$, $x \in \pi g^*\beta$ -cl(A) if and only if $V \cap A \neq \emptyset$, for every $\pi g^*\beta$ -open set V containing X.

Theorem 2.4. Let A be a subset of a topological space X. Then $x \in \pi g^*\beta cl(A)$ if and only if for any $\pi g^*\beta$ -open set U containing $x, A \cap U \neq \emptyset$.

Proof. Let $x \in \pi g^*\beta cl(A)$ and suppose that, there is a $\pi g^*\beta$ -open set U in X such that $x \in U$ and $A \cap U = \emptyset$. Then $A \subset U^c$ which is $\pi g^*\beta$ -closed in X. Hence $\pi g^*\beta cl(A) \subseteq \pi g^*\beta cl(U^c) = U^c$. Since $x \in U$, $x \notin U^c$, therefore $x \notin \pi g^*\beta cl(A)$, which is a contradiction.

Conversely, suppose that, for any $\pi g^*\beta$ -open set U containing $x, A \cap U \notin \emptyset$. To prove that $x \in \pi g^*\beta cl(A)$. Suppose that $x \notin \pi g^*\beta cl(A)$, then there is a $\pi g^*\beta$ closed set F in X such that $x \notin F$ and $A \subseteq F$. Since $x \notin F$, it implies that $x \in F^c$ which is $\pi g^*\beta$ -open in X. Since $A \subseteq F$, it implies that $A \cap F^c = \emptyset$, which is a contradiction. Thus $x \in \pi g^*\beta cl(A)$.

Theorem 2.5. Let $f : (X, \tau) \to (Y, \sigma)$ be a function from a topological space X into a topological space Y. Then the following statements are equivalent:

R. VANI AND A. DEVIKA

- (i) For each point x in X and each open set V in Y with $f(x) \in V$, there is a $\pi g^*\beta$ -open set U in X such that $x \in U$ and $f(U) \subseteq V$.
- (ii) For each subset A of X, $f(\pi g^*\beta cl(A)) \subseteq cl(f(A))$.
- (iii) For each subset B of Y, $\pi g^* \beta cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

Proof. (i) \Rightarrow (ii) Suppose that (i) holds and let $y \in f(\pi g^*\beta - cl(A))$ and let V be any neighbourhood of Y. Since $y \in f(\pi g^*\beta - cl(A))$, there exists $x \in \pi g^*\beta$ -cl(A) such that f(x) = Y. Since $f(x) \in V$, by (i) there exists a $\pi g^*\beta$ -open set U in X such that $x \in U$ and $f(U) \subseteq V$. Since $x \in f(\pi g^*\beta$ -cl(A)), by Theorem 2.4, $U \cap A \neq \emptyset$. Therefore we have $Y = f(x) \in cl(f(A))$. Hence $f(\pi g^*\beta - cl(A)) \subseteq$ cl(f(A)).

(ii) \Rightarrow (i) Suppose that (ii) holds and let $x \in X$ and V be any open set in Y containing f(x). Let $A = f^{-1}(V^c)$, this implies that $x \notin A$. Since $f(\pi g^*\beta \text{-cl}(A)) \subseteq cl(f(A)) \subseteq V^c$, $\pi g^*\beta \text{-cl}(A) \subseteq f^{-1}(V^c) = A$. Since $x \notin A$, $x \notin \pi g^*\beta \text{-cl}(A)$ and by Theorem 2.4 there exists a $\pi g^*\beta$ -open set U containing x such that $U \cap A = \emptyset$, that is, $U \subseteq A^c$ and hence $f(U) \subseteq f(A^c) \subseteq V$.

(ii) \Rightarrow (iii) Suppose that (ii) holds and Let B be any subset of Y. Replacing A by $f^{-1}(B)$ in (ii), we get $f(\pi g^*\beta - cl(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B)$. Hence $\pi g^*\beta - cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

(iii) \Rightarrow (ii) Suppose that (iii) holds, let B = f(A) where A is a subset of X. Then we get from (iii) $\pi g^*\beta cl(A) \subseteq \pi g^*\beta - cl(f^{-1}(f(A))) \subseteq f^{-1}(cl(f(A)))$. Therefore $f(\pi g^*\beta - cl(A)) \subseteq cl(f(A))$.

Theorem 2.6. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then the following statements are equivalent:

- (i) f is $\pi g^*\beta$ -continuous.
- (ii) The inverse image of each open set in Y is $\pi g^*\beta$ -open in X.

Proof. (i) \Rightarrow (ii) Assume that $f: X \to Y$ is $\pi g^*\beta$ -continuous. Let G be an open set in Y. Then G^c is closed in Y. Since f is $\pi g^*\beta$ -continuous, $f^{-1}(G^c)$ is $\pi g^*\beta$ -closed in X. But $f^{-1}(G^c) = X - f^{-1}(G)$. Thus $f^{-1}(G)$ is $\pi g^*\beta$ -open in X.

(ii) \Rightarrow (i) Assume that the inverse image of each open set in *Y* is $\pi g^*\beta$ - open in *X*. Let *F* be any closed set in *Y*. Then F^c is open in *X*. But $f^{-1}(F^c) = X - f^{-1}(F)$ is $\pi g^*\beta$ - open in *X* and so $f^{-1}(F)$ is $\pi g^*\beta$ -closed in *X*. Therefore *f* is $\pi g^*\beta$ - continuous.

2926

Theorem 2.7. If a function $f : (X, \tau) \to (Y, \sigma)$ is $\pi g^*\beta$ -continuous, then $f(\pi g^*\beta$ cl(A)) $\subseteq cl(f(A))$ for every subset A of X.

Proof. Let $f : X \to Y$ be $\pi g^*\beta$ -continuous. Let $A \subseteq X$. Then cl(f(A)) is closed in Y. Since f is $\pi g^*\beta$ -continuous, $f^{-1}(cl(f(A)))$ is $\pi g^*\beta$ -closed in X and $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(cl(f(A)))$ implies $\pi g^*\beta - cl(A) \subseteq f^{-1}(cl(f(A)))$. Hence $f(\pi g^*\beta - cl(A)) \subseteq cl(f(A))$.

Theorem 2.8. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Let (X, τ) and (Y, σ) be any two spaces such that $\tau_{\pi g^*\beta}$ is a topology on X. Then the following statements are equivalent:

- (i) For every subset A of X, $f(\pi g^*\beta$ -cl(A)) \subseteq cl(f(A)) holds.
- (ii) $f: (X, \tau_{\pi g^*\beta}) \to (Y, \sigma)$ is continuous.

Proof. Suppose (i) holds. Let A be closed set in Y. By hypothesis $f(\pi g^*\beta - cl(f^{-1}(A))) \subseteq cl(f(f^{-1}(A))) \subseteq cl(A) = A$, i.e., $\pi g^*\beta - cl(f^{-1}(A)) \subseteq f^{-1}(A)$. Also $f^{-1}(A) \subseteq \pi g^*\beta - cl(f^{-1}(A))$. Hence, $\pi g^*\beta - cl(f^{-1}(A)) = f^{-1}(A)$. This implies $(f^{-1}(A))^c \in \tau_{\pi g^*\beta}$. Thus $f^{-1}(A)$ is closed in (X, $\tau_{\pi g^*\beta}$) and so f is continuous. This proves (ii).

Suppose (ii) holds. For every subset A of X, cl(f(A)) is closed in Y. Since $f:(X, \tau_{\pi g^*\beta}) \to (Y, \sigma)$ is continuous, $f^{-1}(cl(A))$ is closed in $(X, \tau_{\pi g^*\beta})$, that implies Theorem 2.3 $\pi g^*\beta$ - $cl(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A)))$. Now we have, $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(cl(f(A)))$ and by Lemma 2.1, $\pi g^*\beta cl(A) \subseteq \pi g^*\beta - cl(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A)))$. Therefore $f(\pi g^*\beta - cl(A)) \subseteq cl(f(A))$.

Theorem 2.9. Let $f : (X, \tau) \to (Y, \sigma)$ is a $\pi g^*\beta$ - continuous function and $g : (Y, \sigma) \to (Z, \eta)$ is a continuous function. Then $g \circ f : (X, \tau) \to (Z, \eta)$ is $\pi g^*\beta$ - continuous.

Proof. Let g be a continuous function and V be any open set in Z, then $f^{-1}(V)$ is open in Y. Since f is $\pi g^*\beta$ - continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\pi g^*\beta$ - open in X. Hence $g \circ f$ is $\pi g^*\beta$ - continuous.

Now we generalize the pasting lemma for $\pi g^*\beta$ - continuous maps.

Theorem 2.10. Let $X = A \cup B$ be a topological space with topology τ and Y be a topological space with topology σ . Let $f : (A, \tau/A) \to (Y, \sigma)$ and $g : (B, \tau/B) \to (Y, \sigma)$ be $\pi g^*\beta$ - continuous maps such that f(x) = g(x) for every $x \in A \cap B$.

R. VANI AND A. DEVIKA

Suppose that A and B are g-open and $\pi g^*\beta$ - closed sets in X. Then the combination $\alpha : (X, \tau) \to (Y, \sigma)$ is $\pi g^*\beta$ - continuous.

Proof. Let F be any closed set in Y. Clearly $\alpha^{-1}(F) = f^{-1}(F) \cup g^{-1}(F) = C \cup D$ where $C = f^{-1}(F)$ and $D = g^{-1}(F)$. But C is $\pi g^*\beta$ - closed in A and A is $\pi g^*\beta$ - closed in X and so C is $\pi g^*\beta$ - closed in X. Since we have proved that if $B \subseteq A \subseteq X$, B is $\pi g^*\beta$ - closed in A and A is $\pi g^*\beta$ - closed in X then B is $\pi g^*\beta$ closed in X. Also $C \cup D$ is $\pi g^*\beta$ - closed in X. Therefore $\alpha^{-1}(F)$ is $\pi g^*\beta$ - closed in X. Hence α is $\pi g^*\beta$ -continuous.

3. $\pi g^* \beta$ -irresolute functions

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $\pi g^*\beta$ - irresolute, if $f^{-1}(V)$ is $\pi g^*\beta$ - open set in (X, τ) for every $\pi g^*\beta$ - open set $Vin(Y, \sigma)$.

Theorem 3.1. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be any two functions. Let $h = g \circ f : (X, \tau) \to (Z, \eta)$. Then:

- (i) *h* is $\pi g^*\beta$ continuous if *f* is $\pi g^*\beta$ irresolute and gis $\pi g^*\beta$ continuous.
- (ii) *h* is $\pi g^*\beta$ continuous if *g* is continuous and *f* is $\pi g^*\beta$ continuous.

Proof. Let V be a closed set in Z.

- (i) Suppose f is πg*β irresolute and g is πg*β continuous, g⁻¹(V) is πg*β
 closed in Y. Since f is πg*β irresolute, the Definition 3.1 implies that f⁻¹(g⁻¹(V)) is πg*β closed in X. This proves (i).
- (ii) Let g be continuous and f be $\pi g^*\beta$ continuous. Then $g^{-1}(V)$ is closed in Y. Since f is $\pi g^*\beta$ - continuous, using the Definition 3.1 $f^{-1}(g^{-1}(V))$ is $\pi g^*\beta$ - closed in X. This proves (ii).

Theorem 3.2. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ are $\pi g^*\beta$ - irresolute functions, then $g \circ f : (X, \tau)(Z, \eta)$ is $\pi g^*\beta$ -irresolute.

Proof. Let g be a $\pi g^*\beta$ - irresolute function and V be any $\pi g^*\beta$ - open set in Z, then $g^{-1}(V)$ is $\pi g^*\beta$ - open set in Y. Since f is $\pi g^*\beta$ - irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\pi g^*\beta$ - open in X. Hence $g \circ f$ is $\pi g^*\beta$ - irresolute. \Box

2928

Theorem 3.3. Let X, Y and Z be any topological spaces. For any πg^*s -irresolute map $f : X \longrightarrow Y$ and any πg^*s -continuous map $g : Y \longrightarrow Z$, the composition $gof : X \longrightarrow Y$ is πg^*s -continuous.

Proof. It follows from the definitions.

References

- M. E. ABD EL-MONSEF, S. N. EL-DEEP, R. A. MAHMOUD: β-open sets and βcontinuous mapping, Bulletin of the Faculty of Science. C. Mathematics. Assuit University, 12(1983), 77–90.
- [2] D. ANDRIJEVIC: Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24–32.
- [3] G. ASLIM, C. GULER. T. NOIRI: On π gs-closed sets in topologicl spaces, Acta Math.Hungar., **112**(4) (2006), 275–283.
- [4] A. DEVIKA: On $\pi g^*\beta$ -closed sets in topological spaces, (Communicated).
- [5] J. DONTCHEV: On generalizing semi-preopen sets, Mem.Fac.Sci.Kochi.Ser.A,Math., 16(1995), 35–48.
- [6] C. JANAKI: Studies on $\pi g \alpha$ -closed sets in topology, Ph.D Thesis, Bharathiar University, Coimbatore, 2009.
- [7] N. LEVINE: Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2) (1970), 89–96.
- [8] S. TAHILIANI: On $\pi g\beta$ -closed sets in topological spaces, Note di Matematica, **30**(1) (2010), 49–55.
- [9] M. K. R. S. VEERAKUMAR: Between closed sets and g-closed sets, Mem.Fac.Sci,Kochi Univ.Ser.A.Math, 17(21) (2000), 1–19.
- [10] M. K. R. S. VEERAKUMAR: Between g*-closed sets and g-closed sets, Mem. fac. Sci. Kochi Univ(Math), 3(1) (2000), 43–65.
- [11] V. ZAITSEV: Certain class of topological spaces and their bicompacification, Doklady Akademii Nauk SSSR, **178**(1986), 778–779.

PSG COLLEGE OF ARTS AND SCIENCE COIMBATORE, INDIA *E-mail address*: vanisrivatsan@gmail.com

PSG College of Arts and Science Coimbatore, India