

Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2945–2954 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.56

SOME NORMALITIES IN FORMS OF NANO TOPOLOGICAL SPACES

P. K. DHANASEKARAN¹, C. VIGNESH KUMAR, P. SATHISHMOHAN, AND V. RAJENDRAN

ABSTRACT. The purpose of this paper is to introduce and investigate the properties of nanopre-normal, almost nanopre-normal, nano mildly pre-normal, completely nanopre-normal spaces and further the relationship between them are derived.

1. INTRODUCTION

Sathishmohan et al. in [7] and the authors in [3–5] defined nanopre - neighbourhoods, nanopre- interior, nanopre-limit point, nanopre-derived set, nanopre-frontier and nano-pre-regular in nano topological spaces and obtained some of its properties. Also, in [9] and [2] are introduced and investigated the properties of nano semipre-neighbourhoods, nano semipre-interior, nano semipre-frontier, na-no semipre-exterior, nano-dense and nano-submaximal. Further, the authors in [6] introduced and examined the properties of nano- T_0 space, nano-semi- T_0 space, nano- T_1 space, nanosemi- T_1 space, nanopre- T_1 space, nanopre- T_1 space, nanopre- T_2 space, nanopre- T_2 space and obtain some of its basic results. The same authors in [8] have defined and examined the properties of nanopre-irresolute, almost nanopre-irresolute, quasi nanopre-irresolute,

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54B05.

Key words and phrases. nanopre-normal, almost nanopre-normal, mildly nanopre-normal, completely nanopre-normal spaces.

nano semi-regular, nanopre-regular, strongly nanopre-regular, almost nanopreregular and obtain some relationship between the existing sets. In [1] are defined quasi nano *p*-normal spaces.

The structure of this manuscript as follows:

In section 2, we study some additional characterizations of nanopre-normality. Also, we introduce and study the nanopre-normal spaces. In section 3, we introduced and study the characterizations of almost nanopre-normal spaces. In section 4, we introduced and examined the properties of nano mildly pre-normal spaces. In section 5, we study about some strong forms of nanopre-normality.

2. NANO PRE-NORMAL SPACES

Definition 2.1. A space U is called nano pre-normal if for every pair of disjoint nano closed sets F_1 and F_2 , there exist disjoint nano pre-open sets X and Y such that $F_1 \subset X$ and $F_2 \subset Y$.

Clearly, every nano normal space is nano pre-normal since every nano open set is nano pre-open, but not conversely.

Example 1. Let $U = \{a, b, c, d\}, U/R = \{\{a, d\}, \{b\}, \{c\}\}.$ $X = \{a, b\}.$ $\tau_R(X) = \{\phi, U, \{b\}, \{a, b, d\}, \{a, d\}\}, \tau_R^c(X) = \{\phi, U, \{a, c, d\}, \{c\}, \{b, c\}\}.$ *NP-open* = $\{\pi, U, \{a\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}.$ *NP-closed* = $\{\pi, U, \{b, c, d\}, \{a, b, c\}, \{c, d\}, \{b, c\}, \{a, c\}, \{d\}, \{c\}, \{a\}\}.$ *F*₁ = $\{a\}, F_2 = \{c, d\}, X = \{a\}, Y = \{b, c, d\}.$ Then *F*₁ \subset X and *F*₂ \subset Y is nano pre-normal space but not nano normal space.

Theorem 2.1. For a space U the following are equivalent.

- (a) U is nano pre-normal.
- (b) For every pair of nano open sets X and Y whose union is U, there exist nano pre-closed sets A and B such that $A \subset X$, $B \subset Y$ and $A \cup B = U$.
- (c) For every nano closed set F and every nano open set G containing F, there exists a nano pre-open set X such that $F \subset X \subset X^* \subset G$.

Proof. (a) \Rightarrow (b): Let *X* and *Y* be a pair of nano open sets in a nano pre-normal space *U* such that $X \cup Y = U$. Then U - X, U - Y are disjoint nano closed sets. Since *U* is nano pre-normal there exist disjoint nano pre-open sets X_1 and Y_1 such that $U - X \subset X_1$ and $U - Y \subset Y_1$. Let $A = U - X_1$, $B = U - Y_1$. Then

2947

A, B are disjoint nano pre-closed sets such that $A \subset X, B \subset Y$ and $A \cup B = U$. (b) \Rightarrow (c): Let F be a nano closed set and G be an nano open set containing F. Then U - F and G are open sets whose union is U. Then by (b), there exist nano pre-closed sets W_1 and W_2 such that $W_1 \subset U - F, W_2 \subset G$ and $W_1 \cup W_2^* = U$. Then, $F \subset U - W_1 U - G \subset U - W_2$ and $(U - W_1) \cap (U - W_2) = \phi$. Let $X = U - W_1$ and $Y = U - W_2$. Then X, Y are disjoint nano pre-open sets such that $F \subset X \subset U - Y \subset G$. As U - Y is nano pre-closed, we have $X^* \subset U - Y$ and $F \subset X \subset X^* \subset G$.

(c) \Rightarrow (a): Let F_1 and F_2 be any two disjoint nano closed sets of U. Put $G = U - F_2$, then $F_1 \cap F_2 = \phi$. $F_1 \subset G$ where G is an nano open set. Then by (c), there exists a nano pre-open set X of U such that $F_1 \subset X \subset X^* \subset G$. It follows that $F_2 \subset U - X^* = Y$ say, then Y is nano pre-open and $X \cap Y = \phi$. Hence F_1 and F_2 are separated by disjoint nano pre-open sets X and Y. Therefore U is nano pre-normal.

Theorem 2.2. A nano regular closed subspace of a nano pre-normal space is nano pre-normal.

Proof. Let *V* be a nano regular closed subspace of a nano pre-normal space *U*. Let *A* and *B* be disjoint nano closed sets of *V*. As *V* is nano regular closed and hence nano closed. *A*, *B* are closed sets of *U*. By nano pre-normality of *U*, there exist disjoint nano pre-open sets *X* and *Y* in *U* such that $A \subset X$ and $B \subset Y$. As every nano regular closed set is nano semi-open, $X \cap V$ and $Y \cap V$ are nano pre-open sets in *V* such that $A \subset X \cap V$ and $B \subset Y \cap V$ with $(X \cap V) \cap (Y \cap V) = \phi$. Hence *V* is nano pre-normal.

A nano pre-normal space need not to be nano pre-regular, as the following example shows.

Example 2. From example 1, Let $x = \{b\}, F = \{c, d\}, X = \{a\}, Y = \{b, c, d\}$. But $F \not\subset X, x \in Y$ is nano pre-normal space but not nano pre-regular space.

We now prove the following.

Theorem 2.3. If A and B be two nano gp-open sets then $A \cup B$ is nano gp-open.

Theorem 2.4. For a space U, the following are equivalent.

(a) U is nano pre-normal.

2948 P.K. DHANASEKARAN, C.V. KUMAR, P. SATHISHMOHAN, AND V. RAJENDRAN

(b) For every pair of disjoint nano closed sets A and B, there exist disjoint nano gp-open sets X and Y such that A ⊂ X and B ⊂ Y.

Proof. $(a) \Rightarrow (b)$. Since every nano pre-open set is nano gp-open, the (b) follows from (a) immediately.

 $(b) \Rightarrow (a)$. Let A and B be disjoint nano closed sets in U. Then by (b), there exist disjoint nano gp-open sets X and Y such that $A \subset X$ and $B \subset Y$. Since X is nano gp-open and A is nano pre-closed and $A \subset X$, then $A \subset X_*$. Similarly $B \subset Y_*$. Further, $X_* \cap Y_* \subset X \cap Y = \phi$. Hence X_* and Y_* are disjoint nano pre-open sets such that $A \subset X_*$ and $B \subset Y_*$. This shows that U is nano pre-normal. \Box

3. Almost nano pre-normal spaces.

In this section, we introduce and study the characterizations of almost nanoprenormal spaces.

Definition 3.1. A space U is said to be almost nano pre-normal if for each nano closed set A and each nano regular closed set B such that $A \cap B = \phi$, there exist disjoint nano pre-open sets X and Y such that $A \subset X$ and $B \subset Y$.

We have the following characterization of almost nano pre-normality.

Lemma 3.1. Let A be a subset of U. Then, $Nscl(Nint(A)) = Nint(A^*) = Nint(Ncl(Nint(A))).$

Theorem 3.1. For a space U the following are equivalent.

- (a) U is almost nano pre-normal.
- (b) For every pair of sets X and Y, one of which is nano open and the other is regular open whose union is U, there exist nano pre-closed sets G and H such that G ⊂ X, H ⊂ Y and G ∪ H = U.
- (c) For every nano closed set A and every nano regular open set B containing A, there is a nano pre-open set Y such that $A \subset Y \subset Y^* \subset B$.
- (d) For every nano regular open set B containing a nano closed set A, there exists a nano regular open set X such that $A \subset X \subset Ncl(X) \subset B$.
- (e) For every pair of disjoint sets A and B where A is nano closed and B is nano regular closed, there exist nano pre-open sets X and Y such that $A \subset X$, $B \subset Y$ and $X^* \cap Y^* = \phi$.

Proof. The proofs of $(a) \Rightarrow (b)$ and $(b) \Rightarrow (c)$, are similar to those of Theorem 2.1.

 $(c) \Rightarrow (d)$. If *B* be a nano regular open set containing a nano closed set *A*, then there exists a nano pre-open set Y such that $A \subset Y \subset Y^* \subset B$ by (c). If $X = Nint(Y^*)$ then $A \subset X \subset Ncl(X) \subset B$, where *X* is nano regular open.

 $(d) \Rightarrow (e)$. Let A be a nano closed set and B be nano regular closed set disjoint from B. Then (U - B) is nano regular open set containing the nano closed set A. Therefore by (d), there exists a nano regular open set W such that $A \subset W \subset Ncl(W) \subset U - B$. Again, since W is a nano regular open set containing a nano closed set A, there exists a nano regular open set X such that $A \subset X \subset$ $Ncl(X) \subset W$. Let U - Ncl(W) = Y say. Then X and Y are nano regular open sets such that $A \subset X$ and $B \subset Y$, with $Ncl(X) \cap Ncl(Y) = \phi$. Since every nano regular open set is nano pre-open and hence X and Y are nano pre-open sets such that $A \subset X$ and $B \subset Y$. Further more, $X^* \subset Ncl(X)$ and $Y^* \subset Ncl(Y)$ and hence $X^* \cap Y^* = \phi$.

 $(e) \Rightarrow (a)$. This is obvious.

Next, we need the following.

Lemma 3.2. Every nano pre-closed subset of a nano strongly compact space is nano strongly compact.

Lemma 3.3. The following are equivalent for any space U.

- (a) U is almost nano regular.
- (b) For every nano regular closed set A and $U \notin A$, there exist disjoint nano α -open sets X and Y such that $x \in X$ and $A \subset Y$.
- (c) For every regular closed set A and $U \notin A$, there exist disjoint sets X_1 and X_2 such that $U \in X_1$. $A \subset X_2$ and for each $i = 1, 2, X_i \cap Y$ is nano semi-open for each nano semi-open set Y.

Lemma 3.4. Let U be a space and $\{X_i | i = 1, 2...n\}$ be a finite family of nano semi-open sets. Then $Nint(Ncl(\bigcap_{i=1}^n U_i) = \bigcap_{i=1}^n Nint(Ncl(U_i)))$.

We now prove the following.

Theorem 3.2. Every almost regular strongly compact space U is almost nano prenormal.

Proof. The proof follows from Lemmas 3.2, 3.3 and 3.4.

4. NANO MILDLY PRE-NORMAL SPACES

Definition 4.1. A space U is said to be mildly nano pre-normal if for every pair of disjoint nano regular closed subsets F_1 and F_2 of U there exist disjoint nano pre-open sets X and Y such that $F_1 \subset X$ and $F_2 \subset Y$.

Clearly every nano mildly normal space as well as almost nano pre-normal space is nano mildly pre-normal.

We have the following characterization of nano mildly pre-normal spaces.

Theorem 4.1. For a space U the following are equivalent.

- (a) U is nano mildly pre-normal.
- (b) For every pair of nano regular open sets X and Y whose union is U, there exist nano pre-closed sets A and B such that A ⊂ X, B ⊂ Y and A ∪ B = U.
- (c) For every nano regular closed set A and every nano regular open set B containing A, there exist a nano pre-open set X such that $A \subset X \subset X^* \subset B$.
- (d) For every nano regular open set B containing a nano regular closed set A, there exists a nano regular open set X such that $A \subset X \subset Ncl(X) \subset B$.
- (e) For every pair of disjoint nano regular closed sets, there exist nano pre-open sets X and Y such that $A \subset X$, $B \subset Y$ and $X^* \cap Y^* = \phi$.

Proof. This theorem may be proved by using arguments similar to those of Theorem 3.1. \Box

Lemma 4.1. Let U be a space, the following hold,
(a) NSO(U, τ) = NSO(U, τ^α); NSF(U, τ) = NSF(U, τ^α).
(b) NRO(U, τ) = NRO(U, τ^α); NRF(U, τ) = NRF(U, τ^α).

Theorem 4.2. If (U, τ) is mildly nano pre-normal iff (U, τ^{α}) is mildly nano prenormal. *Proof.* Let (U, τ) be mildly nano pre-normal space. Suppose A and B be two disjoint nano regular closed sets in (U, τ^{α}) . Then by Lemma 4.1 (b), A, B will be disjoint nano regular closed subsets of (U, τ) . Since (U, τ) is mildly nano prenormal, there exist disjoint nano pre-open sets U and V such that $A \subset X$ and $B \subset Y$. X and Y will be disjoint nano pre open sets of (U, τ^{α}) . Hence it follows that (U, τ^{α}) is mildly nano pre-normal space.

Converse follows on similar lines using Lemma 4.1.

We need the following.

Definition 4.2. We say that a subset A of space U is said to be:

- (i) $N\pi$ -open if A is a finite union of nano regular open sets.
- (ii) $N\pi$ -closed if A is a finite intersection of nano regular closed sets.
- (iii) Ncl-open if A is both nano closed and nano open.

Clearly, if A is Ncl-open, U - A also is a Ncl-open. And, A is $N\pi$ -open $\rightarrow A$ is $N\delta$ -open.

Example 3. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c\}, \{d\}\}$, $X = \{a, d\}$. $\tau_R(X) = \{\phi, U, \{d\}, \{a, b, d\}, \{a, b\}\}$, $\tau_R(X)^c = \{\phi, U, \{b, c, a\}, \{c\}, \{c, d\}\}$. Let $A = \{d\}$. Then A is Nδ-open but not N π -open.

Definition 4.3. A space U is said to be quasi nano normal if any two disjoint $N\pi$ -closed sets are separated by nano open sets.

Definition 4.4. A space U is said to be quasi nano pre-normal if any two disjoint $N\pi$ -closed sets F_1 and F_2 , there exist disjoint nano pre-open sets X and Y such that $F_1 \subset X$ and $F_2 \subset Y$.

Theorem 4.3. For any space *U*, the following are equivalent.

- (a) U is quasi nano pre-normal.
- (b) For every $N\pi$ -closed set G, and every $N\pi$ -open set H containing G, there exists a nano pre-open set X such that $G \subset X \subset X^* \subset H$.
- (c) For every $N\pi$ -closed set F, and every $N\pi$ -open set G containing F, there exists a nano regular open set Y such that $F \subset Y \subset Ncl(Y) \subset G$.

Proof. The proof is similar to the proof of Theorem 3.1.

5. STRONG FORMS OF NANO PRE-NORMALITY

In this section we introduce and study, some more strong forms of normality.

Definition 5.1. A space U is said to be completely nano normal if for any two separated subsets A and B of U, there exist disjoint nano open sets X and Y such that $A \subset X$ and $B \subset Y$.

Definition 5.2. A space U is said to be completely nano pre-normal if for any two separated subsets A and B of U, there exist disjoint nano pre-open sets X and Y such that $A \subset X$ and $B \subset Y$.

Theorem 5.1. *Complete nano pre-normality is a nano topological property.*

Proof. Let *U* be a completely nano pre-normal space and $f : U \to V$ be a nano homeomorphism. Let *A* and *B* any two separated nano sets in *V*. Then *A* ∩ $Ncl(B) = \phi$ and $Ncl(A) \cap B = \phi$. Since f is nano continuous, $Ncl(f^{-1}(A)) \subset$ $f^{-1}(Ncl(A))$ and $Ncl(f^{-1}(B)) \subset f^{-1}(Ncl(A))$. Therefore $f^{-1}(A)$ and $f^{-1}(B)$ are two separated nano sets in *U*. Since *U* is a completely nano pre-normal space, there exist disjoint nano pre-open sets *X* and *Y* such that $f^{-1}(A) \subset X$ and $f^{-1}(B) \subset Y$. As f is bijective, $A \subset f(X)$ and $B \subset f(Y)$ and $f(X) \cap f(Y) = \phi$. Since *f* is nano open and nano continuous and hence *f* is nano pre-open and nano semi-open continuous function. Hence $f(X), f(Y) \in NPO(V)$. Therefore *V* is completely nano pre-normal. □

Definition 5.3. A space U is said to be strongly nano pre-normal if for every pair of disjoint nano pre-closed sets A and B in U, there exist disjoint nano pre-open sets X and Y such that $A \subset X$ and $B \subset Y$.

Definition 5.4. A space U is said to be nano generalized pre-normal if for every pair of disjoint nano generalized pre-closed sets A and B, there exist disjoint nano pre-open sets X and Y such that $A \subset X$ and $B \subset Y$.

Definition 5.5. A space U is said to be nano generalized pre-regular if for every Ngp-closed set F and a point $x \notin F$, there exist disjoint nano pre-open sets X and Y such that $F \subset X$ and $U \subset Y$.

Theorem 5.2. For a space U, the following are equivalent.

(a) U is strongly nano normal.

- (b) For every nano pre-closed set F and every nano generalized pre-open set Gcontaining F, there is a nano pre-open set X such that $F \subset X \subset X^* \subset G$.
- (c) For every nano generalized pre-closed set F and every nano pre-open set Gcontaining F, there is a nano pre-open set X such that $F \subset X \subset X^* \subset G$.
- (d) For every pair of disjoint sets F_1 and F_2 , one of which is nano pre-closed and the other is nano generalized pre-closed, there exist nano pre-open sets *X* and *Y* such that $F_1 \subset X$ and $F_2 \subset Y$ and $X^* \cap Y^* = \phi$.

Proof. The proof is similar to the proof of Theorem 2.1.

Theorem 5.3. For a space U, the following are equivalent.

- (a) U is nano generalized pre-normal.
- (b) For every generalized pre-closed set F and every generalized pre-open set Gcontaining F, there is a nano pre-open set X such that $F \subset X \subset X^* \subset G$.

Proof. $(a) \Rightarrow (b)$: Let F be nano generalized pre-closed and G be nano generalized pre-open set containing F, then $F \cap (U - G) = \phi$, U - G is also nano generalized pre-closed set. Then by (a), there exist disjoint nano pre-open sets X and Y such that $F \subset X$ and $U - G \subset Y$ that is, $U - Y \subset G$. Now, $X \cap Y = \phi$ implies $X \subset U - Y$. As U - Y is nano pre-closed, $X^* \subset U - Y$. Therefore $F \subset X \subset X^* \subset G.$ $(b) \Rightarrow (a)$ Obvious.

References

- [1] A. C. UPADHYA: On quasi nano p-normal spaces, International Journal of Recent Scientific Research, 8(6) (2017), 17748-17751.
- [2] K. BHUVANESHWARI, K. MYTHILI GNANAPRIYA: On nano generalized pre closed sets and nano pre generalized closed sets in nano topological spaces, International journal of innovative research in science, engineering and technology, 3(1) (2014), 16825–16829.
- [3] M. L. THIVAGAR, C. RICHARD: On nano forms of weakly open sets, International journal of mathematics and statistics invention, 1(1) (2013), 31-37.
- [4] M. L. THIVAGAR, C. RICHARD: On nano continuity, Mathematical Theory and Modelling, 7 (2013), 32-37.
- [5] V. PANKAJAM, K. KAVITHA: δ -open sets and δ -nano continuity in δ -nano topological space, International journal of innovative science and research technology, 2(12) (2017), 110-118.

2954 P.K. DHANASEKARAN, C.V. KUMAR, P. SATHISHMOHAN, AND V. RAJENDRAN

- [6] P. SATHISHMOHAN, V. RAJENDRAN, P. K. DHANASEKARAN: Further properties of nano pre- T_0 , nano pre- T_1 and nano pre- T_2 spaces, Malaya Journal of Mathematik, 7(1) (2019), 34–38.
- [7] P. SATHISHMOHAN, V. RAJENDRAN, P. K. DHANASEKARAN, S. BRINDHA: More on pre neighbourhoods in nano topological spaces, Journal of Applied Science and Computations, 5(10) (2018), 899–907.
- [8] P. SATHISHMOHAN, V. RAJENDRAN, P. K. DHANASEKARAN, C. VIGNESH KUMAR: Nano pre-regular and strongly nano pre-regular spaces, International Journal of Recent Technology and Engineering, 7(5) (2019), 464–466.
- [9] P. SATHISHMOHAN, V. RAJENDRAN, C. VIGNESH KUMAR, P. K. DHANASEKARAN: On nano semi pre neighbourhoods on nano topological spaces, Malaya Journal of Mathematik, 6(1) (2018), 294–298.

DEPARTMENT OF MATHEMATICS KONGUNDU ARTS AND SCIENCE COLLEGE COIMBATORE, TAMIL NADU - 641 029, INDIA *Email address*: dhanasekaranmath@gmail.com

DEPARTMENT OF MATHEMATICS KONGUNDU ARTS AND SCIENCE COLLEGE COIMBATORE, TAMIL NADU - 641 029, INDIA *Email address*: vigneshkumarcvk@gmail.com

DEPARTMENT OF MATHEMATICS KONGUNDU ARTS AND SCIENCE COLLEGE COIMBATORE, TAMIL NADU - 641 029, INDIA *Email address*: iiscsathish@yahoo.co.in

DEPARTMENT OF MATHEMATICS KONGUNDU ARTS AND SCIENCE COLLEGE COIMBATORE, TAMIL NADU - 641 029, INDIA *Email address*: rajendrankasc@gmail.com