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GENERALIZED REGULAR BLOCK INTUITIONISTIC FUZZY MATRICES

P. JENITA1 AND E. KARUPPUSAMY

ABSTRACT. In this paper, equivalent conditions for k-regularity of block trian-
gular intuitionistic fuzzy matrices are obtained. Necessary and sufficient con-
ditions are established for the k-regularity of block intuitionistic fuzzy matrices
in terms of the Schur complements of its k-regular diagonal blocks.

1. INTRODUCTION

Matrices partition is easy way to find sum and product of smaller matrices.
Blocks or cells of the matrix A = [aij]m×n are obtained by using horizontal lines
between rows and vertical lines between colums. If a matrix is with large order
the primary memory of a computer is unable to store the entire matrix. In this
case partitioning the matrices is useful for matrix operation. In intuitionistic
fuzzy matrices, partitioning of matrices is very useful to perform the matrix
operations.

In [19], Zadeh introduced the concept of fuzzy set with the membership func-
tion and the operations on fuzzy sets are developed. Atanssov [1], defined the
concept of intuitionistic fuzzy set and the generalization of fuzzy set, also the
operations and relations on intuitionistic fuzzy sets are defined. In [4], Cho
introduced regularity properties and ranks of fuzzy matrices, the generalized
inverses of a fuzzy matrix and the solutions of fuzzy equations are studied.
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Cen [3], studied the concept of generalized inverses of fuzzy matrices. In [7],
Kim and Roush defined the basis of row and column and also the concept of
rank of row and column for the fuzzy matrices is introduced. Further the con-
dition for a fuzzy matrix to be regular is discussed. In [10], Meenakshi and
Jenita introduced the concept of k-regular fuzzy matrix and regularity index of
a matrix. In [11], Meenakshi and Jenita introduced the concept of k-regularity
of block fuzzy matrices. Pradhan and Pal [14], studied the decomposition of
block intuitionistic fuzzy matrix to upper triangular idempotent IFM and lower
triangular IFM. In [15], Pradhan and Pal defined the pseudo-similar IFM and
properties of pseudo-similar and semi-similar IFMs are discussed. Paul, Khan
and Shyamal [13], studied the concept of intuitionistic fuzzy matrices and its
properties. In [12], Meenakshi and Gandhimathi studied the regularity and var-
ious g-inverse of intuitionistic fuzzy matrices over Intuitionistic fuzzy algebra.
Khan and Paul [8], discussed the concept of g-inverse for IFM and defined the
partial orderings for IFMs. In [2] Bhowmik and Pal studied IFM and distin-
guish the valid and invalid operations between intuitionistic fuzzy matrices and
generalized intuitionistic fuzzy matrices.

In [16], a problem of reducing intuitionistic fuzzy matrices is examined and
some useful properties are obtained with respect to nilpotent intuitionistic fuzzy
matrices. In [17], Szpilrajn’s theorem on ordering is generalized to intuitionistic
fuzzy orderings. In [18], Riyaz Ahmad Padder and Murugadas introduced the
max-max operations on intuitionistic fuzzy matrices to study the conditions for
convergence of intuitionistic fuzzy matrices. Recently, Jenita, Karuppusamy and
Thangamani [5] introduced the concept of k-regular IFM as a generalization of
regular IFM. In this paper, we introduce the concept of k-regular block intuition-
istic fuzzy matrices as a generalization of results found in [11] and [14].

2. PRELIMINARIES

Here, we are concerned with fuzzy matrices, that is matrices over a fuzzy
algebra FM(FN) with support [0, 1], under maxmin(minmax) operations and the
usual ordering of real numbers. Let (IF )m×n be the set of all intuitionistic fuzzy
matrices of order m × n, FM

m×n be the set of all fuzzy matrices of order m × n,
under the maxmin composition and FN

m×n be the set of all fuzzy matrices of
order m× n, under the minmax composition.
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Let F be a fuzzy algebra over the support [0, 1] with max-min operations (+, ·)
defined as a+b = max {a, b} and a ·b = min {a, b} for all a, b ∈ [0, 1]. Let Fm×n be
the set of all m×n fuzzy matrices over F . In short Fn denotes Fn×n. A ∈ Fm×n is
said to be regular if there exists X such that AXA = A, X is called g-inverse of
A. If A = (aij)m×n ∈ (IF )m×n, then A = (〈aijµ, aijϑ〉)m×n, where aijµ and aijϑ are
the membership values and non membership values of aij in A respectively with
respect to the fuzzy sets µ and ϑ, maintaining the condition 0 ≤ aijµ + aijϑ ≤ 1.

We shall follow the matrix operations on intuitionistic fuzzy matrices as de-
fined in [12]. For A,B ∈ (IF )m×n, the following operations are defined:

A+B = (〈max {aijµ, bijµ} ,min {aijv, bijv}〉) ,

AB =
(〈

max
k

min {aikµ, bkjµ} ,min
k

max {aikv, bkjv}
〉)

.

Let us define the order relation on (IF )m×n as: A ≤ B ⇔ aijµ ≤ bijµ and
aijϑ ≥ bijϑ, for all i and j.

In this work, we shall represent A ∈ (IF )m×n as Cartesian product of fuzzy
matrices. For A = (aij)m×n ∈ (IF )m×n, let A = (aij)m×n = (〈aijµ, aijϑ〉)m×n ∈
(IF )m×n. We define Aµ = (aijµ)m×n ∈ FM

m×n as the membership part of A and
Aϑ = (aijϑ)m×n ∈ FN

m×n as the non-membership part of A. Thus A is written as
the Cartesian product of Aµ and Aϑ, A =< Aµ, Aϑ > with Aµ ∈ FM

m×n, Aϑ ∈
FN
m×n.
For A ∈ (IF )m×n, R(A), C(A) and AT denotes the row space, column space

and transpose of A, respectively.

Definition 2.1. [12] For A,B ∈ (IF )m×n, if A =< Aµ, Aϑ > and B =< Bµ, Bϑ >

then
A+B =< Aµ +Bµ, Aϑ +Bϑ >

Definition 2.2. [12] For A ∈ (IF )m×p and B ∈ (IF )p×n if A =< Aµ, Aϑ > and
B =< Bµ, Bϑ >, then:

(i) AB =< AµBµ, AϑBϑ >, where AµBµ is the max min product in FM
m×n and

AϑBϑ is the min max product in FN
m×n.

(ii) AT =< ATµ , A
T
ϑ >.

Definition 2.3. [12] A matrix A ∈ (IF )n is said to be invertible iff there exists
X ∈ (IF )n such that AX = XA = In =< IMn , I

N
n >, where In is the identity

matrix in (IF )n.
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Definition 2.4. [12] A square intuitionistic fuzzy matrix is called intuitionistic
fuzzy permutation matrix if every row and column contains exactly one < 1, 0 >

and all the other entries are < 0, 1 >.

Let Pn be the set of all n× n permutation matrices in (IF )n.

Definition 2.5. [8] An A ∈ (IF )m×n is said to be regular if there exists X ∈
(IF )m×n satisfying AXA = A and X is called a generalized inverses (g-inverse) of
A, which is denoted by A.

Let A {1} be the set of all g-inverses of A.

Theorem 2.1. [12] Let A ∈ (IF )m×n be of the form A = 〈Aµ, Aϑ〉. Then A is
regular ⇔ Aµ is regular in FM

m×n under max-min composition and Aϑ is regular
in FN

m×n under min-max composition. Aµ = (aijµ)m×n ∈ FM
m×n as the membership

part of A and Aϑ = (aijϑ)m×n ∈ FN
m×n as the non-membership part of A.

Definition 2.6. [5] A matrix A ∈ (IF )n, is said be right k-regular if there exists a
matrix X ∈ (IF )n such that AkXA = Ak, for some positive integer k. X is called
a right k-g-inverse of A.

Let Ar
{
1k
}
=
{
X/AkXA = Ak

}
.

Definition 2.7. [5] A matrix A ∈ (IF )n, is said be left k-regular if there exists a
matrix Y ∈ (IF )n such that AY Ak = Ak, for some positive integer k. Y is called a
left k-g-inverse of A.

Let A`
{
1k
}
=
{
Y/AY Ak = Ak

}
. A
{
1k
}
= Ar

{
1k
}
∪ A`

{
1k
}

.

Lemma 2.1. [12] For A,B ∈ (IF )m×n, R(B) ⊆ R(A) ⇔ B = XA for some
X ∈ (IF )m, C(B) ⊆ C(A)⇔ B = AY for some Y ∈ (IF )n.

Lemma 2.2. [12] If A ∈ (IF )m×n is of the form A = 〈Aµ, Aϑ〉, it hold:

(i) R(A) = 〈R(Aµ), R(Aϑ)〉
(ii) C(A) = 〈C(Aµ), C(Aϑ)〉.

Lemma 2.3. [6] For A,B ∈ (IF )n, and a positive integer k, it hold:

(i) If A is a right k-regular and for some R(B) ⊆ R(Ak) ⇒ B = BXA for
each right k-g inverse X of A.

(ii) If A is a left k-regular and for some C(B) ⊆ C(Ak)⇒ B = AY B for each
left k-g inverse Y of A.
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Theorem 2.2. [5] Let A = 〈Aµ, Aϑ〉 ∈ (IF )n. Then A is right(left) k-regular IFM
⇔ Aµ, Aϑ ∈ Fn are right(left) k-regular.

Remark 2.1. Each element of the set A
{
1k
}

= A
{
1kr
}
∪ A

{
1k`
}

is called a k-g
inverse of A. If A is k-regular then A is q-regular for all integer q ≥ k.

Theorem 2.3. [9] Let M be of the form

[
A B

C D

]
with R(C) ⊆ R(A) and

C(B) ⊆ C(A) .Then the following are equivalent:

(i) R(B) ⊆ R(D), C(C) ⊆ C(D), the Schur complements M/A and M/D are
fuzzy matrices.

(ii) M is regular; BD−C is invariant and

m =

[
A− + A−BD−CA A−BD−

D−CA− D−

]
is a g-inverse of M for some g-inverse A− of A and D− of D.

Definition 2.8. [7] A set S of vectors over a semiring R is independent if and
only if for no v ∈ S is a linear combination of elements of S/ {v}. If v is a linear
combination of elements of S/ {v} it is said to be dependent.

Definition 2.9. [7] A basis C over the fuzzy algebra is a standard basis if and only
if whenever ci =

∑
aijcj for ci, cj ∈ C then aiici = ci.

3. k-REGULARITY OF BLOCK AND TRIANGULAR BLOCK INTUITIONISTIC FUZZY

MATRICES

In this section, we shall derive the equivalent conditions for k-regularity of a

block IFM of the form M =

[
A B

C D

]
with the diagonal blocks A and D are

k-regular with respect to this partitioning. A Schur complement of A in M is
a matrix of the form M/A = D − CXB, where X is some k-g inverse of A.
Similarly M/D = A − BY C is a Schur complement of D in M , where Y is
some k-g inverse of D. In Theorem 3.1, under certain conditions, it is shown
that CXB is invariant for all choices of k-g inverse of A. By M/A is an IFM, we
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mean that CXB is invariant and D ≥ CXB. Therefore M/A is an IFM⇔ CXB

is invariant and

(3.1) D = D + CXB .

Similarly, M/D is an IFM⇔ BY C is invariant and A = A+BY C.

LetM =

[
A B

C D

]
can be expressed asM = 〈Mµ,Mϑ〉 ,whereMµ =

[
Aµ Bµ

Cµ Dµ

]

and Mϑ =

[
Aϑ Bϑ

Cϑ Dϑ

]
are block IFM. A = 〈Aµ, Aϑ〉 , B = 〈Bµ, Bϑ〉 , C =

〈Cµ, Cϑ〉 and D = 〈Dµ, Dϑ〉. Since A and D are k- regular, Aµ, Aϑ, Dµ and Dϑ

are all k-regular IFMs.
Also, we inestigate the k-regularity of block triangular IFM of the form:[

A 0

C D

]
or

[
A B

0 D

]
.

In Theorem 3.3, it is shown that, M is k-regular ⇔ MT is k-regular and the
transpose of a lower block triangular matrix is an upper block triangular matrix,
throughout we shall only investigate the case of lower block triangular IFM. We
derive the equivalent conditions for k-regularity of block IFM of the form:

(3.2) M =

[
A 0

C D

]
withA,D ∈ (IF )n.

For any positive integer s, it can be easily verified that,

(3.3) M s =

[
As 0∑s−1

i=0 D
iCAs−1−i Ds

]
.

Theorem 3.1. Let A ∈ (IF )n be a k-regular intuitionistic fuzzy matrix, C ∈ (IF )n
and B ∈ (IF )n if R(C) ⊆ R(Ak) and C(B) ⊆ C(Ak), then CXB is invariant for
all choice of k-g inverses of A.

Proof.

Case (i): A is right k-regular.
By Lemma 2.1, R(C) ⊆ R(Ak) ⇒ C = Y Ak for some Y ∈ (IF )n and
C(B) ⊆ C(Ak) ⊆ C(A) ⇒ B = AU for some U ∈ (IF )n. Since
A ∈ (IF )n is a right k-regular intuitionistic fuzzy matrix, by Lemma
2.3, R(C) ⊆ R(Ak)⇒ C = CZA for each Z ∈ A

{
1kr
}
.
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Hence for any X ∈ A
{
1kr
}

, CXB = (Y Ak)X(AU) = Y AkXAU =

Y (AkXA)U = Y AkU = CU = CZAU = CZ(AU) = CZB. Thus
CXB = CZB for all X,Z ∈ A

{
1kr
}

Case (ii): A is left k-regular.
By Lemma 2.1, R(C) ⊆ R(Ak) ⊆ R(A) ⇒ C = Y A for some Y ∈ (IF )n
and C(B) ⊆ C(Ak) ⇒ B = AkU for some U ∈ (IF )n. Since A ∈ (IF )n
is a left k- regular intuitionistic fuzzy matrix, by Lemma 2.3, C(B) ⊆
C(Ak) ⇒ B = AZB for each Z ∈ A

{
1k`
}

. Hence for any X ∈ A
{
1k`
}

,
CXB = (Y A)X(AkU) = Y (AXAk)U = Y AkU = Y B = Y (AZB) =

(Y A)(ZB) = CZB. Thus CXB = CZB for all X,Z ∈ A
{
1k`
}

.
Case (iii): A is both right and left k-regular.

By Lemma 2.1, R(C) ⊆ R(Ak) ⇒ C = Y Ak for some Y ∈ (IF )n. Since
A ∈ (IF )n is a left k-regular intuitionistic fuzzy matrix, by Lemma 2.3,
C(B) ⊆ C(Ak) ⇒ B = AZB for each Z ∈ A

{
1k`
}

. Since A ∈ (IF )n is a
right k-regular intuitionistic fuzzy matrix, for any X ∈ A

{
1kr
}

, CXB =

(Y Ak)X(AZB) = Y (AkXA)ZB = Y AkZB = CZB. Thus CXB =

CZB for all X ∈ A
{
1kr
}

and Z ∈ A
{
1k`
}

. Thus CXB is invariant for all
choices of k − g inverses of A.

�

Example 1. Let us consider A =

[
〈0.3, 0〉 〈0, 1〉
〈0.5, 0〉 〈0.2, 0〉

]
∈ (IF )2, where Aµ =[

0.3 0

0.5 0.2

]
∈ FM

2 and Aϑ =

[
0 1

0 0

]
∈ FN

2 . Since each row of Aµ cannot

be expressed as linear combination of the other row, by Definition 2.8, the rows
are linearly independent. By Definition 2.9, they form a standard basis for the row
space of Aϑ.

For both permutation matrices P1 =

[
1 0

0 1

]
and P2 =

[
0 1

1 0

]
, AµP1Aµ =[

0.3 0

0.3 0.2

]
6= Aµ and AµP2Aµ =

[
0.3 0.2

0.5 0.2

]
6= Aµ. Hence Aµ is regular.

Namely, Aµ is regular iff AµPAµ = Aµ for some permutation matrix P. Since
Aϑ is idempotent, Aϑ itself is a g-inverse of Aϑ, therefore Aϑ is regular under min
max composition. Hence by Theorem 2.1, A is not regular.
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For this A, A2 =

[
〈0.3, 0〉 〈0, 1〉
〈0.3, 0〉 〈0.2, 0〉

]
. For X =

[
〈1, 0〉 〈0, 1〉
〈0, 0〉 〈0.3, 0〉

]
, A2XA =

A2 = AXA2 holds. A is 2-regular. Hence X is a 2-g inverse of A.

Consider another 2-g inverse Y of A satisfies the equation A2Y A = A2.

A2Y A =

[
〈0.3, 0〉 〈0, 1〉
〈0.3, 0〉 〈0.2, 0〉

][
〈1, 0〉 〈0, 1〉

〈0.5, 0.5〉 〈0.2, 0.2〉

][
〈0.3, 0〉 〈0, 1〉
〈0.5, 0〉 〈0.2, 0〉

]

=

[
〈0.3, 0〉 〈0, 1〉
〈0.3, 0〉 〈0.2, 0〉

]
= A2

Since C(B) ⊆ C(A2), B = AY B, Y ∈ A {12r}. So, we take:

B = AY B =

[
〈0.2, 0.5〉 〈0.3, 0.5〉
〈0.2, 0.3〉 〈0.3, 0.3〉

]

SinceR(C) ⊆ R(A2), C = UA2 for U ∈ (IF )2. Take U =

[
〈0.6, 0.2〉 〈0.5, 0.4〉
〈0.7, 0.3〉 〈0.5, 0.4〉

]
.

C = UA2 ⇒

C =

[
〈0.6, 0.2〉 〈0.5, 0.4〉
〈0.7, 0.3〉 〈0.5, 0.4〉

][
〈0.3, 0〉 〈0, 1〉
〈0.3, 0〉 〈0.2, 0〉

]
=

[
〈0.3, 0.2〉 〈0.2, 0.4〉
〈0.3, 0.3〉 〈0.2, 0.4〉

]
Now,

CXB =

[
〈0.3, 0.2〉 〈0.2, 0.4〉
〈0.3, 0.3〉 〈0.2, 0.4〉

][
〈1, 0〉 〈0, 1〉
〈0, 0〉 〈0.3, 0〉

][
〈0.2, 0.5〉 〈0.3, 0.5〉
〈0.2, 0.3〉 〈0.3, 0.3〉

]

=

[
〈0.2, 0.4〉 〈0.3, 0.4〉
〈0.2, 0.4〉 〈0.3, 0.4〉

]
and

CY B =

[
〈0.3, 0.2〉 〈0.2, 0.4〉
〈0.3, 0.3〉 〈0.2, 0.4〉

][
〈1, 0〉 〈0, 1〉
〈0, 0〉 〈0.3, 0〉

][
〈0.2, 0.5〉 〈0.3, 0.5〉
〈0.2, 0.3〉 〈0.3, 0.3〉

]

=

[
〈0.2, 0.4〉 〈0.3, 0.4〉
〈0.2, 0.4〉 〈0.3, 0.4〉

]
Hence CXB is invariant for any k-g inverses of A.

Theorem 3.2. Let A ∈ (IF )n and k be a positive integer, then X ∈ A
{
1kr
}
⇔

XT ∈ AT
{
1k`
}

.
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Proof.

X ∈ A
{
1kr
}
⇔AkXA = Ak

⇔(AkXA)T = (Ak)T

⇔ATXT (AT )k = (AT )k

⇔XT ∈ AT
{
1k`
}

�

Theorem 3.3. For any block triangular IFM, M =

[
A 0

C D

]
with A,D ∈ (IF )n,

if M is k-regular for some positive integer k and M has a lower block triangular
k-g inverse, then the block A and D are k-regular IFM.

Proof. SinceM is k-regular, let us assumeM is right k-regular andM has a lower

block triangular right k-g inverse U =

[
X 0

Z Y

]
∈ (IF )n satisfying MkUM =

Mk. Since M is of the form (3.1), Mk is of the form (3.2)), comparing the
corresponding diagonal blocks on both sides, we get AkXA = Ak and DkY D =

Dk. Thus both A and D are right k-regular IFM.
Similarly, if M is left k-regular and M has a lower block triangular left k-g

inverse, U =

[
X 0

Y Z

]
∈ (IF )n is satisfying MUMk = Mk on comparing the

blocks AXAk = Ak and DYDk = Dk.
Thus both A and D are left k-regular IFM. �

Theorem 3.4. Let M be of the form (3.1) with A is right k1-regular and D right
k2-regular. If R(C) ⊆ R(Ak) and C(C) ⊆ C(D), then M is right k-regular IFM,
where k = max {k1, k2}.

Proof. Since k > k1, k2, by Remark 2.1, both A and D are right k-regular. Hence,

(3.4) AkXA = Ak and DkY D = Dk, forsome X, Y ∈ (IF )n

Let us take Z =

[
X 0

0 Y

]
∈ (IF )n. Since R(C) ⊆ R(Ak),

R(C) ⊆ R(Ak) ⊆ R(Ak−1) ⊆ R(Ak−2) ⊆ ........ ⊆ R(A)
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By Lemma 2.1, there exist matrices Xk, Xk−1, ........, X2, X1 ∈ (IF )n such that

(3.5) C = XkA
k = Xk−1A

k−1 . . . . . . = X2A
2 = XA.

Since C(C) ⊆ C(D), by Lemma 2.1

(3.6) C = DV forsome V ∈ (IF )n.

From (3.2) and (3.3), we get:

MkZM =

[
Ak 0

(
∑k−1

i=0 D
iCAk−1−i)XA+DkY C Dk

]
.

We claim that Z is a right k-g inverse of M . It is enough to prove that:

(3.7) (
k−1∑
i=0

DiCAk−1−id)XA+DkY C =
k−1∑
i=0

DiCAk−1−i .

Using equations (3.3) and (3.4), we have:

(
k−1∑
i=0

DiCAk−1−i)XA =D0CAk−1XA+ · · ·+Dk−1CA0XA

=D0(X1A
1)Ak−1XA+D1(X2A

2)Ak−2XA+ · · ·

+Dk−1(XkA
k)A0XA

=D0X1A
kXA+D1X2A

k + · · ·+Dk−1XkA
k

=D0CAk−1 +D1CAk−2 + · · ·+Dk−1C

Now by using (3.5) and (3.3), the last term DkY C in the L.H.S of (3.7) can be
written as

DkY C = DkY (DV ) = DkV = Dk−1(DV ) = Dk−1C .

Therefore,

(
k−1∑
i=0

DiCAk−1−i)XA+DkY C =(
k−1∑
i=0

DiCAk−1−i)XA+Dk−1C

=
k−1∑
i=0

DiCAk−1−i .

Thus MkZM =Mk and M is right k-regular. Hence the theorem is proved. �
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Theorem 3.5. Let M be of the form (3.1) with A left k1-regular and D left k2-
regular. If R(C) ⊆ R(A) and C(C) ⊆ C(Dk), then M is left k-regular IFM, where
k = max {k1, k2}.

Proof. This can be proved along the same lines as that of Theorem 3.4 and hence
omitted. �

Remark 3.1. If k1 = k2 = k in Theorem 3.4 and Theorem 3.5, then by using

Lemma 2.3, it can be verified that U =

[
X 0

Y CX Y

]
is a right(left) k-g inverse of

M for each right(left) k-g inverse X of A and Y of D.

Theorem 3.6. Let M be of the form (3.1), M = UL where U =

[
I 0

X I

]
and

L =

[
A 0

0 D

]
satisfying C = XA = DX, then M is k-regular and M has a lower

block triangular k-g inverse⇔ the blocks A and D are k-regular.

Proof.

M = UL =

[
I 0

X I

][
A 0

0 D

]
=

[
A 0

XA D

]
=

[
A 0

C D

]
and

M = LU =

[
A 0

0 D

][
I 0

X I

]
=

[
A 0

DX D

]
=

[
A 0

C D

]
.

Therefore, LU = UL.
Now,

M2 = (UL)2 = ULUL = ULLU = UL2U ,

and

M3 = (UL)3 = ULULUL = UL3U .

Therefore, in general,

Mk = (UL)k = ULkU

U2 =

[
I 0

X I

]
= U and hence U is idempotent. Since A and D are k-regular,

AkY A = Ak for some k-g inverse Y of A and DkZD = Dk for some k-g inverse
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Z of D.

LkL−L =

[
Ak 0

0 Dk

][
Y 0

0 Z

][
A 0

0 D

]

=

[
AkY A 0

0 DkZD

]
=

[
Ak 0

0 Dk

]
= Lk .

Similarly, LL−Lk = Lk. Thus L is k-regular and L− is a k-g inverse of L. We
claim that L−U is a k-g inverse of M .

Mk(L−U)M = (ULkU)(L−U)(UL) .

Since UL = LU , L is k-regular and U is idempotent,

Mk(L−U)M = ULkU =Mk

Similarly, M(L−U)Mk = Mk. Thus M is k-regular and L−U is a lower block
k-g inverse of M .

Conversely, by Theorem 3.4, if M is k-regular and M has a lower block trian-

gular k-g inverse M− =

[
Y 0

ZX Z

]
, then the blocks A and D are k-regular. �

Theorem 3.7. Let M be of the form M =

[
A B

C D

]
with R(C) ⊆ R(Ak), C(C) ⊆

C(Dk), C(B) ⊆ C(Ak) and R(B) ⊆ R(Dk), the Schur complements M/A and
M/D are intuitionistic fuzzy matrices, then M is k-regular and

(3.8) m =

[
X +XBY CX XBY

Y CX Y

]
is a k-g inverse of M for some k-g inverse X of A and Y of D, respectively.

Proof. Since A is k-regular with R(C) ⊆ R(Ak) and C(B) ⊆ C(Ak) by Lemma
2.3, C = CXA,B = AXB for each k-g inverse X of A. Since M/A is a IFM,
it follows that CXB is invariant for all choices of k-g inverses of A and D =

D + CXB. Now, under the given conditions, M can be expressed as M = ULV

where

U =

[
I 0

CX I

]
, L =

[
A 0

0 D

]
, V =

[
I XB

0 I

]
.
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Let us define L− =

[
X 0

0 Y

]
where X is a k-g inverse of A and Y is a k-g in-

verse of D. On computation, we see that V L−U = V

[
X 0

0 Y

]
U = m defined

in (3.7). By using induction on k, let us prove that M is k-regular.

For k = 1, the result is directly follows from Theorem 2.3.

For k = 2, M2mM = (ULV )2(V L−U)(ULV ). Since U and V are idempotent
matrices, M2mM = (ULV )2L−(ULV ) =M2L−M.

Let M2 =

[
P Q

R S

]
then

[
P Q

R S

]
=

[
A2 +BC AB +BD

CA+DC CB +D2

]
. Hence

(3.9) P = A2 +BC and Q = AB +BD.

M2mM =M2L−M =

[
P Q

R S

][
X 0

0 Y

][
A B

C D

]

=

[
PXA+QY C PXB +QYD

RXA+ SY C RXB + SY D

]
.

Now, we prove that M2mM = M2L−M = M2. First we prove that the (1, 1)th

block of M2L−M and that of M2 are equal. For this, it is enough to prove that
A2 +BC = PXA+QY C. By induction hypothesis, the given conditions reduce
to the following:

A is 2-regular⇒ A2XA = A2.

By Lemma 2.1,

(3.10) C(C) ⊆ C(D2)⇒ C = DY C,

(3.11) R(C) ⊆ R(A2)⇒ C = CXA,

(3.12) M/D is an IFM ⇒ A = A+BY C.
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Using equations (3.8) to (3.12) yields:

PXA+QY C =A2XA+BCXA+ ABY C +BDY C

=A2 +BC + ABY C +BC

=A2 +BC + ABY C

=A(A+BY C) +BC

=AA+BC = A2 +BC .

Thus, the (1, 1)th block of M2L−M and the (1, 1)th block of M2 are equal. Simi-
larly, it can be verified that the remaining blocks of M2L−M and M2 are equal.
Hence M is 2-regular.

Assume that Mk−1L−M =Mk−1, then:

MkL−M =M(Mk−1L−M) =MMk−1 =Mk .

Hence,
MkmM =MkL−M =Mk .

Thus M is k-regular and m is a k-g inverse of M .
Thus the Theorem is proved. �

Example 2. Let M =



〈0.3, 0〉 〈0, 1〉 ... 〈0.2, 0.4〉 〈0.1, 0.4〉
〈0.5, 0〉 〈0.2, 0〉 ... 〈0.2, 0.3〉 〈0.2, 0.3〉
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

〈0.2, 0.2〉 〈0, 1〉 ... 〈0.2, 0.3〉 〈0.1, 0〉
〈0.2, 0.2〉 〈0, 1〉 ... 〈0.4, 0〉 〈0.2, 0〉


,

where A =

[
〈0.3, 0〉 〈0, 1〉
〈0.5, 0〉 〈0.2, 0〉

]
, B =

[
〈0.2, 0.4〉 〈0.1, 0.4〉
〈0.2, 0.3〉 〈0.2, 0.3〉

]
,

C =

[
〈0.2, 0.2〉 〈0, 1〉
〈0.2, 0.2〉 〈0, 1〉

]
and D =

[
〈0.2, 0.3〉 〈0.1, 0〉
〈0.4, 0〉 〈0.2, 0〉

]
.

A = 〈Aµ, Aϑ〉 , B = 〈Bµ, Bϑ〉 , C = 〈Cµ, Cϑ〉 and D = 〈Dµ, Dϑ〉.

A =

[
〈0.3, 0〉 〈0, 1〉
〈0.5, 0〉 〈0.2, 0〉

]
∈ (IF )2, where Aµ =

[
0.3 0

0.5 0.2

]
∈ FM

2 and Aϑ =[
0 1

0 0

]
∈ FN

2 . Since each row of Aµ cannot be expressed as linear combination
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of the other row, by Definition 2.8 the rows are linearly independent. By Definition
2.8, they form a standard basis for the row space of Aµ. For both permutation

matrices P1 =

[
1 0

0 1

]
and P2 =

[
0 1

1 0

]

AµP1Aµ =

[
0.3 0

0.3 0.2

]
6= Aµ

and

AµP2Aµ =

[
0.3 0.2

0.5 0.2

]
6= Aµ .

Hence Aµ is not regular. Namely, Aµ is regular iff AµPAµ = Aµ for some permu-
tation matrix P. Since Aϑ is idempotent, Aϑ itself is a g-inverse of Aϑ, therefore Aϑ
is regular under min max composition. Hence by Theorem 2.1, A is not regular.

For this A, A2 =

[
〈0.3, 0〉 〈0, 1〉
〈0.3, 0〉 〈0.2, 0〉

]
. For X =

[
〈1, 0〉 〈0, 1〉
〈0, 0〉 〈0.2, 0〉

]
, A2XA =

A2 = AXA2 holds. Hence A is 2-regular.
Similarly we can prove that D is not regular.

For D =

[
〈0.2, 0.3〉 〈0.1, 0〉
〈0.4, 0〉 〈0.2, 0〉

]
, D2 =

[
〈0.2, 0.3〉 〈0.1, 0〉
〈0.2, 0〉 〈0.2, 0〉

]
.

For Y =

[
〈0.2, 0.3〉 〈0.1, 0〉
〈0, 0〉 〈0.2, 0〉

]
, D2Y D = D2 = DYD2 holds.

Hence D is 2-regular.
Since A and D are 2-regular with R(C) ⊆ R(A2), C(C) ⊆ C(D2), C(B) ⊆

C(A2) and R(B) ⊆ R(D2), by Lemma 2.3,

(3.13) C = CXA,C = DY C,B = AXB and B = BYD.

For the above A,B,C,D,X and Y , the set of equations (3.12) hold. Also, D =

D + CXB and A = A+BY C.

Now,

X +XBY CX =

[
〈1, 0〉 〈0, 1〉
〈0.2, 0〉 〈0.2, 0〉

]

XBY =

[
〈0.2, 0.4〉 〈0.1, 0.4〉
〈0.2, 0.3〉 〈0.2, 0.3〉

]
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Y CX =

[
〈0.2, 0.2〉 〈0, 1〉
〈0.2, 0.2〉 〈0, 1〉

]

Y =

[
〈0.2, 0.3〉 〈0.1, 0〉
〈0, 0〉 〈0.2, 0〉

]
Take,

m =

[
X +XBY CX XBY

Y CX Y

]
=



〈1, 0〉 〈0, 1〉 ... 〈0.2, 0.4〉 〈0.1, 0.4〉
〈0.2, 0〉 〈0.2, 0〉 ... 〈0.2, 0.3〉 〈0.2, 0.3〉
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

〈0.2, 0.2〉 〈0, 1〉 ... 〈0.2, 0.3〉 〈0.1, 0〉
〈0.2, 0.2〉 〈0, 1〉 ... 〈0, 0〉 〈0.2, 0〉


.

Here, M2mM =



〈0.3, 0〉 〈0, 0.4〉 ... 〈0.2, 0.4〉 〈0.1, 0.4〉
〈0.3, 0〉 〈0.2, 0〉 ... 〈0.2, 0.3〉 〈0.2, 0.3〉
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

〈0.2, 0.2〉 〈0, 0.2〉 ... 〈0.2, 0〉 〈0.1, 0〉
〈0.2, 0.2〉 〈0, 0.2〉 ... 〈0.2, 0〉 〈0.2, 0〉


=M2.

Hence M is 2-regular and m is a 2-g inverse of M .

Theorem 3.8. Let M =

[
A B

C D

]
be a block intuitionistic fuzzy matrix with

R(C) ⊆ R(A), C(Bk) ⊆ C(Ak), R(B) ⊆ R(D) and C(Ck) ⊆ C(Dk). If M is right

k-regular BIFM then A and D are right k-regular IFM, where Mk =

[
Ak Bk

Ck Dk

]
.

Proof. LetMk =

[
Ak Bk

Ck Dk

]
. LetM be right k-regular BIFM andX =

[
P Q

R S

]
be a right k-g inverse of M . Hence MkXM =Mk.

MkXM =Mk

⇒

[
Ak Bk

Ck Dk

][
P Q

R S

][
A B

C D

]
=

[
Ak Bk

Ck Dk

]

⇒

[
AkP +BkR AkQ+BkS

CkP +DkR CkQ+DkS

][
A B

C D

]
=

[
Ak Bk

Ck Dk

]
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⇒

[
AkPA+BkRA+ AkQC +BkSC AkPB +BkRB + AkQD +BkSD

CkPA+DkRA+ CkQC +DkSC CkPB +DkRB + CkQD +DkSD

]
=[

Ak Bk

Ck Dk

]
.

By comparing the corresponding diagonal blocks, we get

(3.14) AkPA+BkRA+ AkQC +BkSC = Ak ,

and

(3.15) CkPB +DkRB + CkQD +DkSD = Dk .

By Lemma 2.1,

R(C) ⊆ R(A)⇒ C = UA for some U ∈ (IF )n

C(Bk) ⊆ C(Ak)⇒ Bk = AkV for some V ∈ (IF )n

R(B) ⊆ R(D)⇒ B = V1D for some V1 ∈ (IF )n

C(Ck) ⊆ C(Dk)⇒ Ck = DkU1 for some U1 ∈ (IF )n .

By substituing Bk = AkV and C = UA in (3.14), we get

Ak[P + V R +QU + V SU ]A = Ak .

Hence A is right k-regular.
Similarly, by substituting B = V1D and Ck = DkU1 in (3.15), we can prove

that D is right k-regular. �

Theorem 3.9. Let M =

[
A B

C D

]
be a block intuitionistic fuzzy matrix with

R(Ck) ⊆ R(Ak), C(B) ⊆ C(A), R(Bk) ⊆ R(Dk) and C(C) ⊆ C(D). If M is left

k-regular BIFM then A and D are left k-regular IFM, where Mk =

[
Ak Bk

Ck Dk

]
.

Proof. This is similar to that of Theorem 3.8 and hence omitted. �

Remark 3.2. For k = 1, Theorem 3.8 and Theorem 3.9 reduces to the following
Theorem.

Theorem 3.10. [14] Let X =

[
A B

C D

]
be a BIFM with R(C) ⊆ R(A), C(B) ⊆

C(A), R(B) ⊆ R(D) and C(C) ⊆ C(D). If X is regular then A and D are regular.
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Lemma 3.1. For A,B,C ∈ (IF )n, the following statements hold:

(i) If R(C) ⊆ R(Ak), then A is right k-regular⇔

[
A 0

C 0

]
is right k-regular.

(ii) If C(B) ⊆ C(Ak), then A is left k-regular⇔

[
A B

0 0

]
is left k-regular.

Proof.

(i) LetM =

[
A 0

C 0

]
, then it can be easily verified thatMk =

[
Ak 0

CAk−1 0

]
.

From Lemma 2.3, if R(C) ⊆ R(Ak) and A is right k-regular, then C =

CXA, for each right k-g inverse X of A. We claim that m =

[
X 0

0 0

]
is

a right k-g inverse of M .

MkmM =

[
Ak 0

CAk−1 0

][
X 0

0 0

][
A 0

C 0

]
=

[
AkXA 0

CAk−1XA 0

]
.

Since A is right k-regular, we have, AkXA = Ak. Furthermore, C =

CXA. Therefore,

MkmM =

[
AkXA 0

CAk−1XA 0

]
=

[
AkXA 0

CXAAk−1XA 0

]

=

[
AkXA 0

CXAkXA 0

]
=

[
Ak 0

CXAk 0

]

=

[
Ak 0

CXAAk−1 0

]
=

[
Ak 0

CAk−1 0

]
=Mk .

Hence M is right k-regular.

Conversely,M =

[
A 0

C 0

]
is right k-regular and by Lemma 2.1R(C) ⊆

R(Ak)⇒ C = XAk for some X ∈ (IF )n.

Hence

M =

[
A 0

C 0

]
=

[
A 0

XAk 0

]
=

[
I 0

XAk−1 0

][
A 0

0 0

]
= UA

′
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where U =

[
I 0

XAk−1 0

]
and A′

=

[
A 0

0 0

]
.

SinceM is right k-regular, UA is right k-regular. Hence (UA
′
)kM−UA

′
=

(UA
′
)k where M− is a right k-g inverse of (UA′

). Since

(3.16) (UA
′
)k = U(A

′
)k, U(A

′
)kM−UA

′
= U(A

′
)k ,

for U− =

[
I 0

0 0

]
, U−U = I and U− is a right k-g inverse of U , pre

multiplying (3.16) by U−, we obtain

U−U(A
′
)kM−UA

′
= U−U(A

′
)k ⇒ (A

′
)kM−UA

′
= (A

′
)k .

Thus A′ is right k-regular. Hence A is right k-regular.
(ii) Can be Proved in the same manner.

�

Remark 3.3. For k = 1, the above Lemma reduces to the following result.

Lemma 3.2. [11] For the IFMs, A,B,C of order m × n the following statement
hold:

(i) If R(C) ⊆ R(A), then A is regular⇔
[
A C

]T
is regular.

(ii) If C(B) ⊆ C(A), then A is regular⇔
[
A B

]
is regular.

Theorem 3.11. Let A ∈ (IF )n and k be a positive integer, then the following
statement are equivalent:

(i) A is k-regular.
(ii) λA is k-regular for λ 6= 0 ∈ F .

(iii) PAP T is k-regular for some permutation matrix P ∈ (IF )n.

Proof.

(i)⇔ (ii) Let A = 〈Aµ, Aϑ〉 = 〈(aijµ), (aijϑ)〉. Then

λA = λ 〈Aµ, Aϑ〉 = 〈min(λ, aijµ),max(λ, aijϑ)〉 = Aλ

and λ.λ = λ. A is k-regular⇒ AkXA = Ak ⇒ (λA)kX(λA) = (λA)k for
λ 6= 0 ∈ F ⇒ λA is k-regular. If λA is k-regular, then for λ = 1, A is
k-regular.
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(i)⇔ (iii) A is k-regular ⇔ (PAkP T )(PXP T )(PAP T ) = PAkP T for some per-
mutation matrix P and X ∈ (IF )n ⇔ (PAP T )k(PXP T )(PAP T ) =

(PAP T )k ⇔ PAP T is k-regular.

Hence the proof. �

Lemma 3.3. For A,B ∈ (IF )n, the following statements hold:

(i)
[
A B

]
is k-regular ⇔

[
A B

0 0

]
is k-regular, where

[
A B

]k
=[

Ak Bk
]
.

(ii)

[
A

B

]
is k-regular⇔

[
A 0

B 0

]
is k-regular, where

[
A

B

]k
=

[
Ak

Bk

]
.

Proof. (i) Let
[
A B

]
be right k-regular and

[
X

Y

]
be a right k-g inverse.

Therefore,[
A B

]k [ X

Y

] [
A B

]
=
[
A B

]k
⇒
[
Ak Bk

] [ X

Y

] [
A B

]
=
[
Ak Bk

]
.

By equating the corresponding blocks on both sides, (AkX+BkY )A = Ak

and (AkX +BkY )B = Bk.[
A B

0 0

]k [
X 0

Y 0

][
A B

B 0

]
=

[
Ak Bk

0 0

][
X 0

Y 0

][
A B

0 0

]

=

[
AkX +BkY 0

0 0

][
A B

0 0

]

=

[
(AkX +BkY )A (AkX +BkY )B

0 0

]

=

[
Ak Bk

0 0

]

=

[
A B

0 0

]k
.
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Hence

[
A B

0 0

]
is right k-regular.

Conversely, if

[
A B

0 0

]
is right k-regular, let

[
X U

Y V

]
be a right k-g

inverse of

[
A B

0 0

]
. Hence,

[
A B

0 0

]k [
X U

Y V

][
A B

0 0

]
=

[
A B

0 0

]k
.

Take

[
A B

0 0

]k
=

[
Ak Bk

0 0

]
. On computation we get, (AkX+BkY )A =

Ak and (AkX +BkY )B = Bk. This can be written as:[
A B

]k [ X

Y

] [
A B

]
=
[
A B

]k
.

Thus A is right k-regular.

Similarly, we can prove that
[
A B

]
is left k-regular⇔

[
A B

0 0

]
is

left k-regular.
Hence the proof follows.

(ii) This can be proved in the same manner.
�

Lemma 3.4. For A,B ∈ (IF )n, the following statements hold:

(i)

[
A B

0 0

]
is k-regular⇔

[
0 0

B A

]
is k-regular.

(ii)

[
A 0

C 0

]
is k-regular⇔

[
0 C

0 A

]
is k-regular.

Proof. From Theorem 3.11, M is k-regular⇔ PMP T is k-regular for some per-
mutation matrix P ∈ (IF )n.

(i)

[
A B

0 0

]
is k-regular ⇔ P

[
A B

0 0

]
P T is k-regular for some permu-

tation matrix P ⇔

[
0 0

B A

]
is k-regular.
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(ii) Can be proved in the same manner.

�

Example 3. P

[
A B

0 0

]
P T =

[
0 0

B A

]
for some permutation matrix P ∈

(IF )n. It is shown in this example.

Let P = 〈Pµ, Pϑ〉 =

[
〈0, 1〉 〈1, 0〉
〈1, 0〉 〈0, 1〉

]
∈ (IF )2. LetM = 〈Mµ,Mϑ〉 =

[
A B

0 0

]
=[

〈aijµ, aijϑ〉 〈bijµ, bijϑ〉
〈0, 0〉 〈0, 0〉

]
∈ (IF )2, satisfying the condition 0 ≤ aijµ + aijϑ ≤ 1

and 0 ≤ bijµ + bijϑ ≤ 1.

Now,

PµMµP
T
µ =

[
0 1

1 0

][
aijµ bijµ

0 0

][
0 1

1 0

]
=

[
0 0

bijµ aijµ

]
and

PϑMϑP
T
ϑ =

[
1 0

0 1

][
aijϑ bijϑ

0 0

][
1 0

0 1

]
=

[
0 0

bijϑ aijϑ

]

P

[
A B

0 0

]
P T =PMP T = 〈Pµ, Pϑ〉 〈Mµ,Mϑ〉

〈
P T
µ , P

T
ϑ

〉
=
〈
PµMµP

T
µ , PϑMϑP

T
ϑ

〉
=

[
〈0, 0〉 〈0, 0〉

〈bijµ, bijϑ〉 〈aijµ, aijϑ〉

]

=

[
0 0

B A

]
.

4. CONCLUSION

In this work, we introduce the concept of generalized regular block intuition-
istic fuzzy matrices as a generalization of regular block intuitionistic fuzzy ma-
trices. A formula for k-g inverse of a block and triangular block intuitionistic
fuzzy matrices are obtained.
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