Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2427–2436 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.6

LOCAL δ -CLOSURE FUNCTIONS IN IDEAL TOPOLOGICAL SPACES

P. PERIYASAMY¹ AND P. ROCK RAMESH

ABSTRACT. In this paper we introduce and investigate a local function called local δ -closure function in an ideal topological space (X, \mathscr{J}, τ) denoted by $A_{\delta*}(\mathscr{J}, \tau)$ for any subset A of X with respect to the ideal \mathscr{J} and topology τ which is defined by: $A_{\delta*}(\mathscr{J}, \tau) = \{x \in X : Int(cl_{\delta}(U)) \cap A \notin \mathscr{J} \text{ for every} U \in \tau(x)\}$. Also we investigate the basic properties and characterizations of $A_{\delta*}(\mathscr{J}, \tau)$. Also we discuss δ *-local compatibility of τ with \mathscr{J} . Moreover, we introduce and investigate an operator $\Upsilon : P(X) \to \tau$ defined by $\Upsilon(A) = \{x \in X : Int(cl_{\delta}(U)) - A \in \mathscr{J} \text{ for every } U \in \tau(x)\}$, for each $A \in P(X)$. Also we proved the closure operator defined by $cl_{\delta*}(A) = A_{\delta*} \cup A$ is a Kuratowski closure operator and the topology obtained is $\tau_{\delta*} = \{U \subseteq X/cl_{\delta*}(X - U) = X - U\}$.

1. INTRODUCTION AND PRELEMINARIES

Kuratowski in [3] and Vaidhyanathaswamy in [8] was studied the notion of ideal topological spaces. Dontchev and Ganster in [1], Navaneethakrishnan and Joseph in [6], Jankovic and Hamlett in [2], Mukherjee, et al. in [4], Nasef and Mahmond in [5] were investigated applications of the ideal topology in various fields.

In a topological space (X, τ) with no separation properties assumed, for a subset A of X, cl(A) the closure of A denotes intersection of all closed set containing A and Int(A) denotes the union of all open set contained in A of (X, τ) . An ideal \mathscr{J} is a non empty collection of subsets of X which satisfies:

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54E18.

Key words and phrases. local δ -closure function, local function, ideal topology.

- (1) $A \in \mathscr{J}$ and $B \subseteq A$ implies $B \in \mathscr{J}$, and
- (2) $A \in \mathscr{J}$ and $B \in \mathscr{J}$ implies $A \cup B \in \mathscr{J}$.

Given a topological space (X, τ) with an ideal \mathscr{J} on X called ideal topological space denoted by (X, τ, \mathscr{J}) and if P(X) is the collection of all subsets of X a set operator $(.)^* : P(X) \to P(X)$ called a local function, [2,3], for any subset A of X with respect to \mathscr{J} and τ is defined as:

A Kuratowski closure operator $cl^*(A)$ for a topology $\tau^*(\mathscr{J}, \tau)$ called *-topology finer than τ is defined by $cl^*(A) = A \cup (A)^*(\mathscr{J}, \tau)$. A subset A of X is said to be δ -closed set if $cl_{\delta}(A) = A$, where $cl_{\delta}(A) = \{x \in X : Int(cl(U)) \cap A \neq \phi, \text{ for every } U \in \tau(x)\}$, [9]. The complement of δ -closed set is δ -open set.

In this paper we introduce and investigate an operator $A_{\delta*}(\mathcal{J}, \tau)$ called local δ -closure function of A with respect to \mathcal{J} and τ . Also, investigate a Kuratowski closure operator $cl_{\delta*}(A)$ and an operator $\Upsilon : P(X) \to \tau$ using $A_{\delta*}(\mathcal{J}, \tau)$.

2. Local δ -Closure Functions

Definition 2.1. Let (X, τ, \mathscr{J}) be an ideal topological space and A a subset of X. Then $A_{\delta*}(\mathscr{J}, \tau) = \{x \in X : Int(cl_{\delta}(U)) \cap A \notin \mathscr{J} \text{ for every } U \in \tau(x)\}$ is called local δ -closure function of A with respect to the ideal \mathscr{J} and topology τ , where $\tau(x) = \{U \in \tau/x \in U\}.$

 $A_{\delta*}(\mathcal{J}, \tau)$ is simply denoted by $A_{\delta*}$.

Remark 2.1. The following Example 1 shows that, in general neither $A \subseteq A_{\delta*}$ nor $A_{\delta*} \subseteq A$.

Example 1. Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\mathscr{J} = \{\phi, \{b\}\}$. Then $\{a, b\}_{\delta*} = \{a, d\}$.

Theorem 2.1. Let (X, τ, \mathscr{J}) be an ideal topological space and A, B subsets of X. Then for local δ -closure functions the following properties hold.

- (i) $\phi_{\delta*} = \phi$.
- (ii) If $A \in \mathscr{J}$ then $A_{\delta *} = \phi$.
- (iii) $A \subseteq B$ then $A_{\delta*} \subseteq B_{\delta*}$.
- (iv) $A_{\delta*} = cl(A_{\delta*})$, $A_{\delta*}$ is closed.

(v) $(A_{\delta*})_{\delta*} \subseteq A_{\delta*}$.

Proof. (i) is obvious.

- (ii) is obvious.
- (iii) Let $A \subseteq B$ and $x \notin B_{\delta*}$. Then there exists $U \in \tau(x)$ such that $Int(cl_{\delta}(U)) \cap B \in \mathscr{J}$. Since $A \subseteq B$, $Int(cl_{\delta}(U)) \cap A \in \mathscr{J}$ and hence $x \notin A_{\delta*}$.
- (iv) We have $A_{\delta*} \subseteq cl(A_{\delta*})$. Let $x \in cl(A_{\delta*})$. Then $U \cap A_{\delta*} \neq \phi$ for every $U \in \tau(x)$ and hence $A_{\delta*} \cap Int(cl_{\delta}(U)) \neq \phi$. Therefore, there exists $y \in A_{\delta*} \cap Int(cl_{\delta}(U))$. Since $y \in A_{\delta*}$, $A \cap Int(cl_{\delta}(U)) \notin \mathscr{J}$ and hence $x \in A_{\delta*}$.
- (v) Let $x \in (A_{\delta*})_{\delta*}$. Then for every $U \in \tau(x)$, $Int(cl_{\delta}(U)) \cap A_{\delta*} \notin \mathscr{J}$ and hence $Int(cl_{\delta}(U)) \cap A_{\delta*} \neq \phi$. Let $y \in Int(cl_{\delta}(U)) \cap A_{\delta*}$. Then $y \in Int(cl_{\delta}(U))$ and $y \in A_{\delta*}$. Therefore, $Int(cl_{\delta}(U)) \notin \mathscr{J}$ and hence $x \in A_{\delta*}$.

Theorem 2.2. Let (X, τ, \mathscr{J}) be an ideal topological space and A, B subsets of X. Then,

- (i) $(A \cup B)_{\delta*} = A_{\delta*} \cup B_{\delta*}$.
- (ii) $(A \cap B)_{\delta*} \subseteq A_{\delta*} \cap B_{\delta*}$.
- Proof. (i) By Theorem 2.1 (iii), $A_{\delta*} \cup B_{\delta*} \subseteq (A \cup B)_{\delta*}$. Now, let $x \in (A \cup B)_{\delta*}$. Then for every $U \in \tau(x)$, $(Int(cl_{\delta}(U)) \cap A) \cup (Int(cl_{\delta}(U)) \cap B) = Int(cl_{\delta}(U)) \cap (A \cup B) \notin \mathscr{J}$. Therefore, $Int(cl_{\delta}(U)) \cap A \notin \mathscr{J}$ or $Int(cl_{\delta}(U)) \cap B \notin \mathscr{J}$. Hence, $x \in A_{\delta*} \cup B_{\delta*}$.
 - (ii) Proof is clear by Theorem 2.1 (iii).

Remark 2.2. The following Example 2 shows that the reverse inclusion of Theorem 2.2 (ii) is not always hold.

Example 2. In Example 1, $\{c\}_{\delta*} = \{b, c, d\}$ and $\{d\}_{\delta*} = \{d\}$.

Theorem 2.3. Let (X, τ, \mathscr{J}) be an ideal topological space and A, B subsets of X. Then,

- (i) $A_{\delta*} B_{\delta*} = (A B)_{\delta*} B_{\delta*} \subseteq (A B)_{\delta*}$.
- (ii) If $U \in \tau$ then $U \cap A_{\delta*} = U \cap (Int(cl_{\delta}(U) \cap A)_{\delta*} \subseteq (Int(cl_{\delta}(U) \cap A)_{\delta*})$.
- (iii) If $U \in \mathcal{J}$, then $(A U)_{\delta*} = A_{\delta*}$.

- Proof. (i) Since $A = (A B) \cup (B \cap A)$, then by Theorem 2.2 (i), $A_{\delta*} = (A B)_{\delta*} \cup (B \cap A)_{\delta*}$. Therefore, $A_{\delta*} - B_{\delta*} = A_{\delta*} \cap (X - B_{\delta*}) = (((A - B)_{\delta*} \cup (B \cap A)_{\delta*}) \cap (X - B_{\delta*})) = ((A - B)_{\delta*} \cap (X - B_{\delta*})) \cup ((B \cap A)_{\delta*} \cap (X - B_{\delta*})) = ((A - B)_{\delta*} - B_{\delta*}) \cup \phi \subseteq (A - B)_{\delta*}$.
 - (ii) Let $U \in \tau$ and $x \in U \cap A_{\delta^*}$. Then $x \in U$ and $x \in A_{\delta^*}$. Since for every $V \in \tau(x), U \cap V = G \in \tau(x)$ and thus $Int(cl_{\delta}(V)) \cap (Int(cl_{\delta}(U) \cap A) \supset Int(cl_{\delta}(G)) \cap A \notin \mathscr{J}$. Hence $x \in (Int(cl_{\delta}(U) \cap A)_{\delta^*}$. Also $U \cap A_{\delta^*} \subseteq U \cap (Int(cl_{\delta}(U) \cap A)_{\delta^*}$ and by Theorem 2.1 (iii) $(Int(cl_{\delta}(U) \cap A)_{\delta^*} \subseteq A_{\delta^*}$ and $U \cap (Int(cl_{\delta}(U) \cap A)_{\delta^*} \subseteq U \cap A_{\delta^*}$.
 - (iii) Since $A \cap U \subseteq U \in \mathscr{J}$, $A \cap U \in \mathscr{J}$ by heredity of \mathscr{J} and by (ii) $(A \cap U)_{\delta*} = \phi$. Since $A = (A - U) \cup (A \cap U)$, $A_{\delta*} = (A - U)_{\delta*} \cup (A \cap U)_{\delta*} = (A - U)_{\delta*}$ by Theorem 2.1 (vi).

Theorem 2.4. Let (X, τ, \mathscr{J}) be a topological space with ideals \mathscr{J}_1 and \mathscr{J}_2 of X and A a subset of X. Then the following properties hold.

- (i) If $\mathscr{J}_1 \subseteq \mathscr{J}_2$ then $A_{\delta*}(\mathscr{J}_2) \subseteq A_{\delta*}(\mathscr{J}_1)$ (ii) $A_{\delta*}(\mathscr{J}_1 \cap \mathscr{J}_2) \subseteq A_{\delta*}(\mathscr{J}_1) \cup A_{\delta*}(\mathscr{J}_2)$.
- *Proof.* (i) Let $\mathscr{J}_1 \subseteq \mathscr{J}_2$ and $x \notin A_{\delta*}(\mathscr{J}_1)$. Then $A \cap Int(cl_{\delta}(U)) \in \mathscr{J}_1$ for every $U \in \tau(x)$ and hence $A \cap Int(cl_{\delta}(U)) \in \mathscr{J}_2$. That is, $x \notin A_{\delta*}(\mathscr{J}_2)$.
 - (ii) We have $A_{\delta*}(\mathscr{J}_1) \subseteq A_{\delta*}(\mathscr{J}_1 \cap \mathscr{J}_2)$ and $A_{\delta*}(\mathscr{J}_2) \subseteq A_{\delta*}(\mathscr{J}_1 \cap \mathscr{J}_2)$ by (i). Therefore, $A_{\delta*}(\mathscr{J}_1) \cup A_{\delta*}(\mathscr{J}_2) \subseteq A_{\delta*}(\mathscr{J}_1 \cap \mathscr{J}_2)$. Let $x \in A_{\delta*}(\mathscr{J}_1 \cap \mathscr{J}_2)$ then for each $U \in \tau(x)$, $Int(cl_{\delta}(U)) \cap A \notin \mathscr{J}_1 \cap \mathscr{J}_2$ and hence $Int(cl_{\delta}(U)) \cap A \notin \mathscr{J}_1$ and $Int(cl_{\delta}(U)) \cap A \notin \mathscr{J}_2$. Therefore, $x \in A_{\delta*}(\mathscr{J}_1) \cup A_{\delta*}(\mathscr{J}_2)$.

Theorem 2.5. $A^* \subseteq A_{\delta^*}$.

Proof. The proof is clear by Definition 2.1.

Remark 2.3. The following Example 3 shows that Theorem 2.5 is true and the reverse direction is not always hold.

Example 3. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$ and $\mathscr{J} = \{\phi, \{a\}\}$. Then $\{b\}^* = \{b, c\}$ and $\{b\}_{\delta*} = X$.

2430

3.
$$\tau_{\delta*}$$
- Open sets

In this section we defined a closure operator $cl_{\delta*}(A) = A \cup A_{\delta*}$ and proved that it is a Kuratowski closure operator.

Theorem 3.1. Let (X, τ, \mathscr{J}) be an ideal topological space, $cl_{\delta*}(A) = A \cup A_{\delta*}$ and A, B subsets of X. Then

- (i) If $A \subseteq B$ then $cl_{\delta*}(A) \subseteq cl_{\delta*}(B)$.
- (ii) $cl_{\delta*}(A \cap B) \subseteq cl_{\delta*}(A) \cap cl_{\delta*}(B)$.
- (iii) If $U \in \tau(x)$ then $U \cap cl_{\delta*}(A) \subseteq cl_{\delta*}(Int(cl_{\delta}(U) \cap A))$.
- (iv) $cl * (A) \subseteq cl_{\delta*}(A)$.
- *Proof.* (i) Let $A \subseteq B$, $cl_{\delta*}(A) = A \cup A_{\delta*} \subseteq B \cup B_{\delta*} = cl_{\delta*}(B)$ by Theorem 2.1 (iii).
 - (ii) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$ then by (i), $cl_{\delta*}(A \cap B) \subseteq cl_{\delta*}(A)$ and $cl_{\delta*}(A \cap B) \subseteq cl_{\delta*}(B)$ and hence $cl_{\delta*}(A \cap B) \subseteq cl_{\delta*}(A) \cap cl_{\delta*}(B)$.
 - (iii) Since $U \in \tau(x)$. By Theorem 2.3 (ii) we have, $U \cap cl_{\delta*}(A) = U \cap (A_{\delta*} \cup A) = (U \cap A_{\delta*}) \cup (U \cap A) \subseteq (Int(cl_{\delta}(U) \cap A)_{\delta*} \cup (Int(cl_{\delta}(U) \cap A) = cl_{\delta*}(Int(cl_{\delta}(U) \cap A)).$
 - (iv) Proof is clear by Theorem 2.5 and Definition of $cl_{\delta*}(A)$.

Remark 3.1. The following Examples shows that the reverse inclusion of Theorem 3.1 (ii) and (iv) are not always hold.

Example 4. In Example 3, $cl_{\delta*}(\{b\}) = cl_{\delta*}(\{c\}) = X$ and $cl^*(\{b\}) = \{b, c\}$.

Theorem 3.2. Let (X, τ, \mathscr{J}) be an ideal topological space, $cl_{\delta*}(A) = A \cup A_{\delta*}$ and A, B subsets of X. Then

- (i) $cl_{\delta*}(\phi) = \phi$ and $cl_{\delta*}(X) = X$.
- (ii) $A \subseteq cl_{\delta*}(A)$.
- (iii) $cl_{\delta*}(A \cup B) = cl_{\delta*}(A) \cup cl_{\delta*}(B).$
- (iv) $cl_{\delta*}(cl_{\delta*}(A)) = cl_{\delta*}(A)$.

Proof. (i) $cl_{\delta*}(\phi) = \phi\delta * \cup \phi = \phi$ and $cl_{\delta*}(X) = X\delta * \cup X = X$.

- (ii) $A \subseteq A \cup A_{\delta*} = cl_{\delta*}(A)$.
- (iii) By Theorem 2.1 (iii), $cl_{\delta*}(A \cup B) = (A \cup B)_{\delta*} \cup (A \cup B) = (A_{\delta*} \cup B_{\delta*}) \cup (A \cup B) = (A_{\delta*} \cup A) \cup (B_{\delta*} \cup B) = cl_{\delta*}(A) \cup cl_{\delta*}(B).$

(iv) $cl_{\delta*}(cl_{\delta*}(A)) = cl_{\delta*}(A_{\delta*} \cup A) = ((A_{\delta*} \cup A)_{\delta*} \cup (A_{\delta*} \cup A)) = ((A_{\delta*})_{\delta*} \cup A_{\delta*}) \cup (A_{\delta*} \cup A) = A_{\delta*} \cup (A_{\delta*} \cup A) = A_{\delta*} \cup A = cl_{\delta*}(A)$ by Theorem 2.2 (i) and Theorem 2.1 (v).

Remark 3.2. By Theorem 3.2, $cl_{\delta*}(A) = A \cup A_{\delta*}$ is a Kuratowski closure operator. The topology generated by $cl_{\delta*}(A)$ is denoted and defined by $\tau \delta* = \{U \subseteq X : cl_{\delta*}(X-U) = X-U\}$ the open sets in $\tau_{\delta*}$ is called $\tau_{\delta*}$ -open sets and its complement is called $\tau_{\delta*}$ - closed sets.

Lemma 3.1. Let (X, τ, \mathscr{J}) be an ideal topological space and A, B subsets of X. Then $A_{\delta*} - B_{\delta*} = (A - B)_{\delta*} - B_{\delta*}$.

Proof. By Theorem 2.2, $A_{\delta*} = ((A - B) \cup (B \cap A))_{\delta*} = (A - B)_{\delta*} \cup (A \cap B)_{\delta*} \subseteq (A - B)_{\delta*} \cup B_{\delta*}$. Thus $A_{\delta*} - B_{\delta*} \subseteq (A - B)_{\delta*} - B_{\delta*}$. Also by Theorem 2.1, $(A - B)_{\delta*} \subseteq A_{\delta*}$ and hence $(A - B)_{\delta*} - B_{\delta*} \subseteq A_{\delta*} - B_{\delta*}$.

Corollary 3.1. (X, τ, \mathscr{J}) be an ideal topological space and A, B subsets of X with $B \in \mathscr{J}$. Then $(A \cup B)_{\delta_*} = A_{\delta_*} = (A - B)_{\delta_*}$.

Proof. Since $B \in \mathscr{J}$, by Theorem 2.1 (ii), $B_{\delta*} = \phi$. By Lemma 3.1 and by Theorem 2.2, $(A \cup B)_{\delta*} = A_{\delta*} = (A - B)_{\delta*}$.

4. δ^* -Local Compatibility with Ideal

Definition 4.1. Let (X, τ, \mathscr{J}) be an ideal topological space. We say that the topology τ is δ^* -local compatible with the ideal \mathscr{J} , denoted by $\tau \sim \mathscr{J}|_{\delta^*}$, if the following condition holds for every subset A of X, if for every $x \in A$ there exists a $U \in \tau(x)$ such that $Int(cl_{\delta}(U)) \cap A \in \mathscr{J}$, then $A \in \mathscr{J}$.

Theorem 4.1. Let (X, τ, \mathscr{J}) be an ideal topological space then the following properties are equivalent:

- (i) $\tau \sim \mathscr{J}|_{\delta^*}$.
- (ii) If a subset A of X has a cover of open sets each of whose interior δ-closure intersection with A is in 𝓕, then A ∈ 𝓕.
- (iii) For every $A \subseteq X$, $A \cap A_{\delta*} = \phi$ implies that $A \in \mathscr{J}$.
- (iv) For every $A \subseteq X$, $A A_{\delta *} \in \mathscr{J}$.

(v) For every $A \subseteq X$, if A contains no nonempty set B with $B \subset B_{\delta*}$ then $A \in \mathscr{J}$.

Proof. (i) \Rightarrow (ii).

The proof is obvious by Definition.

(ii) \Rightarrow (iii).

Let $A \subseteq X$ and $x \in A$. Then $x \notin A_{\delta*}$ and there exist $G \in \tau(x)$ such that $Int(cl_{\delta}(G)) \cap A \in \mathscr{J}$. Therefore we have, $A \subseteq \bigcup \{G : x \in A\}$ and $G \in \tau(x)$ and by (ii), $A \in \mathscr{J}$.

(iii) \Rightarrow (iv).

For any $A \subseteq X$, $A - A_{\delta *} \subseteq A$. Then $((A - A_{\delta *}) \cap (A - A_{\delta *})_{\delta *} \subseteq (A - A_{\delta *}) \cap A_{\delta *} = \phi$. Therefore by (iii), $A - A_{\delta *} \in \mathscr{J}$.

(iv) \Rightarrow (v).

By (iv), for every $A \subseteq X$, $A - A_{\delta*} \in \mathscr{J}$. Let $A - A_{\delta*} = \mathscr{J}_1 \in \mathscr{J}$. Then $A = \mathscr{J}_1 \cup (A \cap A_{\delta*})$, by Theorem 2.2 (i) and by Theorem 2.1 (ii), $A_{\delta*} = \mathscr{J}_{1\delta*} \cup (A \cap A_{\delta*})_{\delta*} = (A \cap A_{\delta*})_{\delta*}$. Therefore, $A \cap A_{\delta*} = A \cap (A \cap A_{\delta*})_{\delta*} \subseteq (A \cap A_{\delta*})_{\delta*}$ and $A \cap A_{\delta*} \subseteq A$. By the assumption, $A \cap A_{\delta*} = \phi$ and hence $A = A - A_{\delta*} \in \mathscr{J}$. (v) \Rightarrow (i).

Let $A \subseteq X$ and assume that for every $x \in A$, there exist $G \in \tau(x)$ such that $Int(cl_{\delta}(G)) \cap A \in \mathscr{J}$. Then $A \cap A_{\delta*} = \phi$. Suppose that $B \subseteq A$ such that $B \subseteq B_{\delta*}$. Then $B = B \cap B_{\delta*} \subseteq A \cap A_{\delta*} = \phi$. Therefore, A contains no nonempty set B such that $B \subseteq B_{\delta*}$. Hence $A \in \mathscr{J}$.

Theorem 4.2. Let (X, τ, \mathscr{J}) be an ideal topological space. If τ is δ^* -local compatible with \mathscr{J} , then the following equivalent properties hold:

- (i) For every $A \subseteq X$, $A \cap A_{\delta*} = \phi$ implies that $A_{\delta*} = \phi$.
- (ii) For every $A \subseteq X$, $(A A_{\delta*})_{\delta*} = \phi$.
- (iii) For every $A \subseteq X$, $(A \cap A_{\delta*})_{\delta*} = A_{\delta*}$.

Proof. First we prove that (i) holds if τ is δ^* -local compatible with \mathscr{J} . Let A be any subset of X and $A \cap A_{\delta^*} = \phi$, Then by Theorem 4.1, $A \in \mathscr{J}$ and hence by Theorem 2.1, $A_{\delta^*} = \phi$.

(i) \Rightarrow (ii).

Assume that for every $A \subseteq X$, $A \cap A_{\delta^*} = \phi$ implies that $A_{\delta^*} = \phi$. Let $B = A - A_{\delta^*}B \cap B_{\delta^*} = (A - A_{\delta^*}) \cap (A - A_{\delta^*})_{\delta^*}$. Now $B \cap B_{\delta^*} = (A \cap (X - A_{\delta^*})) \cap (A - A_{\delta^*})_{\delta^*}$.

 $(A \cap (X - A_{\delta*}))_{\delta*} \subseteq (A \cap (X - A_{\delta*})) \cap (A_{\delta*} \cap (X - A_{\delta*})_{\delta*}) = \phi.$ Therefore by (i), $B_{\delta*} = \phi.$ (ii) \Rightarrow (iii). Assume that for every $A \subseteq X$, $(A - A_{\delta*})_{\delta*} = \phi$. $A = (A - A_{\delta*}) \cup (A \cap A_{\delta*})$. Therefore, $A_{\delta*} = (A - A_{\delta*})_{\delta*} \cup (A \cap A_{\delta*})_{\delta*} = (A \cap A_{\delta*})_{\delta*}$. (iii) \Rightarrow (i). Assume that for every $A \subseteq X$, $A \cap A_{\delta*} = \phi$ and $(A \cap A_{\delta*})_{\delta*} = A_{\delta*}$. Hence, $A_{\delta*} = \phi.$

Corollary 4.1. Let (X, τ, \mathscr{J}) be an ideal topological space and $A \subseteq X$. If τ is δ^* -local compatible with \mathscr{J} , then $A_{\delta*} = (A_{\delta*})_{\delta*}$.

Proof. Let $A \subseteq X$, $A_{\delta*} = (A \cap A_{\delta*})_{\delta*} \subseteq A_{\delta*} \cap (A_{\delta*})_{\delta*} = (A_{\delta*})_{\delta*}$ by Theorem 4.2 and by Theorem 2.1. Therefore, $A_{\delta*} = (A_{\delta*})_{\delta*}$ again by Theorem 2.1.

Theorem 4.3. Let (X, τ, \mathscr{J}) be an ideal topological space and τ is δ^* -local compatible with \mathscr{J} , A a $\tau_{\delta*}$ -closed subset of X. Then $A = B \cup \mathscr{J}_1$, where B is closed and $\mathscr{J}_1 \in \mathscr{J}$.

Proof. Let $A \subseteq X$ and A is $\tau_{\delta*}$ -closed. Then $A_{\delta*} \subseteq A$ implies $A = (A - A_{\delta*}) \cup A_{\delta*}$ and hence by Theorem 4.1 and by Theorem 2.1, proof completes.

Theorem 4.4. Let (X, τ, \mathscr{J}) be an ideal topological space then the following properties are equivalent:

- (i) $\tau \sim \mathscr{J}|_{\delta*}$,
- (ii) For every $\tau_{\delta*}$ -closed subset $A, A A_{\delta*} \in \mathscr{J}$.

Proof. (i) \Rightarrow (ii).

The proof is clear by Theorem 4.1

(ii) \Rightarrow (i)

Let $A \subseteq X$ and assume that for every $x \in A$, there exists an open set $U \in \tau(x)$ such that, $A \cap Int(cl_{\delta}(U)) \in \mathscr{J}$, then $A \cap A_{\delta*} = \phi$. Since $cl_{\delta*}(A)$ is $\tau_{\delta*}$ -closed, $(A \cup A_{\delta*}) - (A \cup A_{\delta*})_{\delta*} \in \mathscr{J}$ and $(A \cup A_{\delta*}) - (A \cup A_{\delta*})_{\delta*} = (A \cup A_{\delta*}) - (A_{\delta*} \cup ((A_{\delta*})_{\delta*}) = (A \cup A_{\delta*}) - A_{\delta*} = A$.

5. Υ -Operator

Definition 5.1. Let (X, τ, \mathscr{J}) be an ideal topological space. An operator $\Upsilon(A)$: $P(X) \to \tau$ is defined as follows: for every subset A of X, $\Upsilon(A) = \{x \in X : \text{there} exist G \in \tau(x) \text{ such that } Int(cl_{\delta}(G)) - A \in \mathscr{J}\}.$ Clearly, $\Upsilon(A) = X - (X - A)_{\delta*}$.

Theorem 5.1. Let (X, τ, \mathscr{J}) be an ideal topological space. Then the following properties hold:

- (i) For every $A \subseteq X$, $\Upsilon(A)$ is open.
- (ii) If $A \subseteq B$ then $\Upsilon(A) \subseteq \Upsilon(B)$.
- (iii) If $A, B \in P(X)$, then $\Upsilon(A \cap B) = \Upsilon(A) \cap \Upsilon(B)$.
- (iv) If $A \subseteq X$, then $\Upsilon(A) = \Upsilon(\Upsilon(A))$ iff $(X A)_{\delta_*} = ((X A)_{\delta_*})_{\delta_*}$.
- (v) If $A \in \mathcal{J}$, then $\Upsilon(A) = X X_{\delta*}$.
- (vi) If $A \subseteq X$, $\mathscr{J}_1 \in \mathscr{J}$, then $\Upsilon(A \mathscr{J}_1) = \Upsilon(A)$.
- (vii) If $A \subseteq X$, $\mathscr{J}_1 \in \mathscr{J}$, then $\Upsilon(A \cup \mathscr{J}_1) = \Upsilon(A)$.

(viii) If $(A - B) \cup (B - A) \in \mathcal{J}$, then $\Upsilon(A) = \Upsilon(B)$.

Proof. (i) Proof is clear from Theorem 2.1 (iv).

- (ii) Proof follows from Theorem 2.1 (iii).
- (iii) $\Upsilon(A \cap B) = X (X (A \cap B))_{\delta*} = X ((X A) \cup (X B))_{\delta*} = X ((X A)_{\delta*} \cup (X B)_{\delta*}) = (X (X A)_{\delta*}) \cap (X (X B)_{\delta*}) = \Upsilon(A) \cap \Upsilon(B).$
- (iv) Let $A \subseteq X$. Since $\Upsilon(A) = X (X A)_{\delta*}$ and $\Upsilon(\Upsilon(A)) = X (X \Upsilon(A))_{\delta*} = X (X (X (X A)_{\delta*}))_{\delta*} = X ((X A)_{\delta*})_{\delta*}$ proof follows.
- (v) By Corollary 3.1, if $A \in \mathscr{J}$, $(X A)_{\delta *} = (X)_{\delta *}$.
- (vi) By Corollary 3.1, $\Upsilon(A \mathscr{J}_1) = X (X (A \mathscr{J}_1))_{\delta_*} = X ((X A) \cup \mathscr{J}_1)_{\delta_*} = X (X A)_{\delta_*} = \Upsilon(A).$
- (vii) $\Upsilon(A \cup \mathscr{J}_1) = X (X (A \cup \mathscr{J}_1))_{\delta*} = X ((X A) \mathscr{J}_1)_{\delta*} = X (X A)_{\delta*} = \Upsilon(A).$
- (viii) Assume that, $(A-B) \cup (B-A) \in \mathcal{J}$. Let $A-B = \mathcal{J}_1$ and $B-A = \mathcal{J}_2$. Therefore, $\mathcal{J}_1, \mathcal{J}_2 \in \mathcal{J}$ by heredity. Also observe that $B = (A - \mathcal{J}_1) \cup \mathcal{J}_2$. Thus $\Upsilon(A) = \Upsilon(A - \mathcal{J}_1) = \Upsilon((A - \mathcal{J}_1) \cup \mathcal{J}_2] = \Upsilon(B)$, by (vi) and (vii).

References

- J. DONTCHEV, M. GANSTER, D. ROSE: *Ideal Resolvability*, Topology and its Appl., 93 (1999), 1–16.
- [2] D. JONKOVIC, T. R. HAMLETT: New Topologies from old via Ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- [3] K. KURATOWSKI: Topology, Vol. I, Academic Press, New York, 1996.
- [4] M. N. MUKHERJEE, R. BISHWAMBHAR, R. SEN: On Extension of Topological Spaces in terms of Ideals, Topology and its Appl., **154** (2007), 3167–3172.
- [5] A. A. NASEF, R. A. MAHMOND: *Some Applications via Fuzzy ideals*, Chaos, Solitons and Fractals, **13** (2002), 825–831.
- [6] M. NAVANEETHAKRISHNAN, J. PAULRAJ JOSEPH: *g*-closed sets in ideal Topological Spaces, Acta. Math. Hungar., **119**(4) (2008), 365–371.
- [7] O. NJASTAD: On Some Classes of Nearly Open Sets, Pacific J. Math., 15(3) (1965), 961– 970.
- [8] V. VAIDYANATHASWAMY: The Localization Theory in set Topology, Proc. Indian. Acad. Sci., 20 (1945).
- [9] N. V. VELICKO: *H-Closed Topological Spaces*, Math. Sb., **70** (1996), 98–112.

Department of Mathematics

Kamaraj College, Thoothukudi-3,

E-mail address: periyasamyvpp@gmail.com

Department of Mathematics

Kamaraj College, Thoothukudi-3,

Affiliated to Manonmaniam Sundaranar University,

Abishekapatti, Tirunelveli-12

E-mail address: rockramesh83@gmail.com