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IMPLEMENTATION OF GREEDY ROUTING ALGORITHM FOR
HAMILTONIAN CYCLE FROM QUASI SPANNING TREE OF FACES
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ABSTRACT. In this paper the implementation of greedy routing algorithm is
proposed for spanning of tree for faces. Here this algorithm will provide rout-
ing for Hamiltonian Cycle from Quasi Spanning Tree of Faces. In this Hamil-
tonian cycle two lemma theorems are introduced. These lemma theorems will
describe only the expansion of tree for faces. Hence the routing procedure
is introduced in these theorems for better result. Generally, there are 4 to 6
sides of faces in the graph that are hold conjunctively and this is introduced by
Goodey. In the same way, the 3 connected cubic planar graphs will show that
if 2 coloured faces are used then the vertex is incident to the two red faces and
one blue face. Hence all the red coloured faces will have 4 to 6 sides and in the
same way all blue coloured faces will have 3 to 5 sides. The proposed routing
algorithm will reduce the contracting of each colour based on vertex and in
the same way proper quasis panning tree of faces. In proposed algorithm, the
parity of spanning tree will decided the arbitrary face based on even degree.
Hence the greedy routing algorithm for Hamiltonian cycle from quasi spanning
tree of faces will produce effective output compared to lemma 1 and lemma 2
theorems.
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1. INTRODUCTION

Greedy routing algorithm consists of finite integral multipliers. Here sub
graphs are used in the maximal tree and this sub graph is represented as G [1].
Here the both trees are distributed with each other, if the edges are labelled suit-
ably. Here the distinction of maximum number of trees is based on the vertices
and this is introduced by the cayley. Generally, a graph G is constructed based
on the vertices of spanning tree. By using single edge G the spanning tree is
evaluated. Here diagonal matrix is introduced to define the vertex of system.
The spanning tree determines the difference between the both incidence matrix
and adjacency matrix [2]. Hence all the vertices are included in the sub graph
G. for any single tree graph the diameter D is represented as

diam(T (G)) ≤ min{n− 1,m− n + 1} .

The diameter of spinning graph depends on the two trees either T1 or T2 and it
is represented as:

d(T1, T2) = n− 1− |E(T1) ∩ E(T2)| = |E(T1)∆E(T2)|/2 .

The operation of tree for graph is represented as

T : G→ G ,

and the resultant matrix is the combination of rows and columns. This will
determine the value of sub graph and vertex in effective way. The product
value is obtained after determining the spanning tree calculation. The product
value calculation is introduced by Cauchy-Binet. All this calculation is based
on the calculation of both vertices and adjacency. Here the cycle that is used
to formulate the process is very natural. An intersection form appears by using
set of cycles. This will count the edges of cycle in the sign. Here, the edge is
connected to the spanning of tree to identify the sub graphs and determine the
paths from sub graphs.

Here, the value of sub graph is not equal to the geometric cycle. The spanning
tree graph will use the iterated tree graph sequence which is given as G, T (G)

[3]. Basically, a graph is planar which has no edge crossings. In plane graph,
a face is connected to a region with three edges. By keeping vertex for every
face a graph is constructed generally. Here multiple graphs are connected to
regions in a particular sequence. In multi graph, the trees has no disconnecting
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edges and each edge will have a cycle to perform its operation. Therefore, the
spanning tree counting procedure is performed based on the number of cycles.
Here the value of determinant of a cycle is equal to the incidence matrix. Based
on the integer, the algebraic cycles perform its operations.

2. HAMILTONIAN CYCLE FROM QUASI SPANNING TREE OF FACES

Let G be a graph in the class of 3-connected cubic planar graphs that has a
set C of faces such that every vertex in G is incident to one face in C and to two
faces not in C. We refer to the faces in C as blue faces and to the faces not in C as
red faces. Let H be the corresponding reduced graph obtained by contacting the
faces in C to single vertices. A spanning tree of faces in H is a set D of faces of
H such that no two faces in D share an edge, and such that if the T be the graph
with vertices corresponding to vertices in H and faces in D, and edges joining
the vertices corresponding to faces d in D to the vertices in H incident to d, then
T is a tree [4].

A quasi spanning tree of faces in H is a set D of faces of H and a set V of
vertices in H such that no two faces in D share an edge, every vertex of H not
in V has even degree, say 2r, and is surrounded by r faces in D, and such that if
we let T be the graph with vertices corresponding to vertices in V and faces in
D, and edges joining the vertices corresponding to faces d in D to the vertices
in V incident to d, then T is a tree. The vertices of H not in V are called quasi
vertices, and a proper quasi vertex is a quasi vertex of degree 4 such that none
of the 4 faces surrounding it is a digon (i.e., has only two sides). A proper quasi
spanning tree of faces is a quasi spanning tree of faces such that all of its quasi
vertices are proper quasi vertices.

Given a spanning tree of faces in H, it may assume the external face is not in D,
and traverse the perimeter of the spanning tree of faces, to obtain a Hamiltonian
cycle in G that has all faces of the collapsed set C inside. Given a quasi spanning
tree of faces in H, it may assume the external face is not in D, and traverse the
perimeter of the quasi spanning tree of faces, to obtain a Hamiltonian cycle in
G such that the faces of the collapsed C are inside the cycle for vertices in V
and outside the cycle for vertices not in V (quasi vertices) [5]. This gives the
following.
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Proposition 2.1. The reduced graph H has a spanning tree of faces with the exter-
nal face not in D if and only if G has a Hamiltonian cycle with the external red face
outside, with all blue faces inside and such that no two red faces sharing an edge
are both inside.

Proof. The reduced graph H has a quasi spanning tree of faces with the external
face not in D if and only if G has a Hamiltonian cycle with the external red face
outside, with all blue faces corresponding to vertices in V inside, with all blue
faces corresponding to vertices not in V (quasi vertices) outside, and such that
no two red faces sharing an edge are both inside. �

Lemma 2.1. If T has at least two vertices inside and satisfies the invariant property,
then it is possible to select a triangle T that is a face inside of T and collapse T to a
single vertex in such a way that T still satisfies the invariant property.

Proof. Suppose triangle T1 inside of T contains at least two vertices inside, and
there is no triangle inside of T1 that is not a face. Writing T1 = v1v2v3, it claim
that v1 has at least two distinct neighbours v4 and v5 inside of T1. Otherwise,
if v1 has no such neighbours, then v1 belongs to a triangle inside of T1 that has
an edge v2v3 parallel to the side of T1, contrary to the assumption that there is
no digon inside of T that is not a face; and if v1 has only one such neighbour
v4 inside of T1, then v2v3v4 is a triangle inside of T1 that is not face, contrary
to assumption. Then after choose v4 and v5 so that v2, v4, v5 are consecutive
neighbours of v1, and collapse the triangle v1v4v5.

This will produce no digons that are not faces, since such a digon would come
before the collapsing from a triangle that is not a face inside of T1, contrary to
assumption. There may however appear triangles that are not faces inside of T1.
Such triangles come from quadrilaterals v1v4v6v7, v1v5v8v9, and v4v5v10v11. The
quadrilaterals v1v5v8v9 are of two kinds, either containing v4 or not containing
v4, but may not have diagonal edges v1v8 or v5v9, otherwise either there was a
triangle that is not a face inside of the quadrilateral, or collapsing the side v1v5
does not give for the quadrilateral a triangle that is not a face.

This implies that all such quadrilaterals containing v4 are pair wise contained
in each other, and all such quadrilaterals not containing v4 are pair wise con-
tained in each other. The analogous properties hold for the quadrilaterals v1v4v6v7,
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but these are of only one kind, namely containing v5, otherwise v6 = v2 and hav-
ing the diagonal edge v2v4. The analogous properties also hold for the quadri-
laterals v4v5v10v11, but these are again of only one kind, namely not containing
v1, since they are contained in the triangle T1 = v1v2v3. Furthermore, a quadri-
lateral v1v4v6v7 containing v5 must contain any quadrilateral v1v5v8v9 not con-
taining v4 and must also contain any quadrilateral v4v5v10v11 not containing v1,
and a quadrilateral v1v5v8v9 containing v4 must also contain any quadrilateral
v4v5v10v11 not containing v1. This guarantees that these quadrilaterals will not
lead, after collapsing v1v4v5, to three triangles that are not faces that do not
contain each other inside T1, thus preserving the property that no triangle has
three children.

In the remaining case for collapsing a triangle, there is a triangle T1 that
has either one child T2 or two children T2 and T3, where both T2 and T3 have
exactly one vertex inside. Suppose T2 shares no sides with either T1 or T3.
Writing T2 = v1v2v3, it must again consider quadrilaterals v1v2v4v5, v1v3v6v7, and
v2v3v8v9. There may not simultaneously exist quadrilaterals v1v2v4v5 containing
v3, v1v3v6v7 containing v2, v2v3v8v9 containing v1, and v1v2v

′
4v

′
5 not containing v3.

For if v6 = v5, then v1v5v7 is not a face and thus equals T1, so v1 is a vertex of T1

and the quadrilateral v2v3v8v9 cannot contain v1; if v7 = v4 then v1v5v4 is again
T1 and the same argument holds; and if v6 = v4, then v8 = v5 and v9 = v7,so the
triangle v5v4v7 is T1, and the quadrilateral v1v2v

′
4v

′
5 would be inside the triangle

v1v2v7 which is a face, and this is not possible.
Therefore, by symmetry, it may assume that either there is no quadrilateral

v1v2v4v5 containing v3 or no quadrilateral v1v2v4v5 not containing v3 that will
give rise to a new triangle that is not a face after identifying v1 and v2. Thus
if v1v2v3 contains the single vertex v0, collapsing the triangle v1v2v0 identifies
v1 and v2 and creates only triangles with pair wise containment involving the
new vertex v1 = v2, besides the triangle T3, thus preserving the property that
no triangle has three children. If T2 = v1v2v3 shares one side with T1, say
the side v2v3, then one of the other two sides is not shared with T3, say the
side v1v2, and the quadrilaterals v1v2v4v5 cannot contain v3, so again it may
collapse the triangle v1v2v0 with v0 inside T2, creating only triangles with pair
wise containment involving the new vertex v1 = v2, besides the triangle T3, thus
preserving the property that no triangle has three children. And if T2 shares a
side v1v3 with T3, then every quadrilateral v1v2v4v5 containing v3 also contains
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T3, so collapsing v1v2v0 with v0 inside T2 gives two families of triangles with
pair wise containments involving v1 = v2, one family containing v3 and the
other family not containing v3, again preserving the property that no triangle
has three children. �

The following proposition generalizes a result of Herbert Fleischer.

Proposition 2.2. Suppose all red faces of G have either 4 or 6 sides, while the blue
faces are arbitrary. Suppose the reduced graph H has no triangle that is not a face
other than the outer triangle, and H has no digon that is not a face either. Suppose
H has an odd number of vertices. Then H has a spanning tree of faces that are
triangles, and so G is Hamiltonian.

Proof. Apply Lemma 2.1 repeatedly to collapse triangle faces to single vertices
while preserving the invariant property. Each step reduces the number of ver-
tices by two, so this number remains odd until it to be left with just the outer
face. The collapsed triangles form a spanning tree of faces.

This result follows from the following main observation. �

Lemma 2.2. Let G be as in Lemma 2.1. Suppose the reduced graph H has a triangle
T that contains at least one vertex inside, such that no triangle inside of T is not a
face (i.e., contains at least one vertex inside), and no digon inside of T is not a face
(i.e., contains at least one vertex inside). Then finding a proper quasi spanning
tree of faces for H reduces to finding a proper quasi spanning tree of faces for H’
obtained from H by removing all vertices inside of T and their incident edges, and
adding a parallel edge inside of T to each edge of T.

Proof. It may proceed with a triangle T as in the preceding Lemma, and end
up with either single vertex v inside of T or no vertex inside of T by repeatedly
collapsing triangle faces. In the case of a single vertex v inside of T, selecting
one of the three triangles involving v corresponds to selecting one of the three
digons added for the sides of T in H for a quasi spanning tree of faces, and in
the case of no vertex v inside of T, it may either select or not select the triangle
T in H

′ for a quasi spanning tree of faces. The case of single vertex v inside of T
is reached when T initially contains an odd number of vertices inside of T, and
the case of no vertex v inside of T is reached when T initially contains an even
number of vertices inside of T.
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It remains to show the two cases that are used to change the parity inside of T.
If there is initially a digon v1v2 with at least one end point inside of T, then it may
select and collapse v1v2, creating triangles that are not faces from quadrilaterals
v1v2v4v5, and there are again two families of such quadrilaterals, given by the
two triangle faces v1v2v3 and v1v2v

′
3, namely quadrilaterals containing v3 and

quadrilaterals containing v
′
3. Each of the two families of quadrilaterals creates

triangles with pair wise containment, thus giving the property that no triangle
T1 either equal to T or inside of T has three children, satisfying the invariant
property. �

Theorem 2.1. Let G be a 3-connected cubic planar bi partite graph. Let H be the
reduced graph for G, and let H ′ be the sub graph of H obtained by removing all
edges that do not have consecutive parallel edges. If H

′ has one, two, or three
connected components, then H has spanning tree of faces, and thus G has a Hamil-
tonian cycle. The case of a single component for H ′ includes the case where all faces
in one of the three color classes are squares.

Proof. If H ′ is a single connected component, then it can choose a spanning tree
of H ′, corresponding to a spanning tree of digons in H.

If H ′ has two connected components, then it may choose a face f of H that has
vertices from both components. Starting with this face f, we also consider two
spanning trees of digons for the two components of H ′, and add these digons
one at a time as long as they do not form a cycle containing f. Eventually,
the single face f and the added digons will span H. If H ′ has three connected
components, then it may be that H has a face f touching all three components,
then proceed from f as for the case for two components, by considering the three
spanning trees of digons for the two components. Otherwise some component,
say the first, has faces touching it and the second component and also faces
touching it and the third component. Both sets of faces have at least four faces,
since a cut of H has at least four edges by 3-connectivity and the fact that any
cut has an even number of edges, so it may choose a face f touching the first and
second component, and a face f

′touching the first and third component, so that
these two faces do not share any vertices. Starting with these two faces, then
it again add digons from the three spanning trees for the three components so
long as they do not form a cycle, until a spanning tree of faces for H is obtained.
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The proof for three connected components extends to the case of four con-
nected components, but the result does not hold in the case of five connected
components.

It show next that one can decide whether the reduced graph H has a spanning
tree of faces that are either digons or triangles in polynomial time. The result
easily extends to the case of a spanning tree of faces where all but a constant
number of faces are either digons or triangles. �

3. GREEDY ROUTING ALGORITHM FOR SPANNING TREE OF FACES

GREEDYs sending’s extraordinary bit of leeway is its dependence just on infor-
mation of the sending hub’s quick neighbours. The state required is unimportant
and reliant on the thickness of hubs in the remote system, not the complete num-
ber of goals in the system. On systems where multi-bounce steering is valuable,
the quantity of neighbours inside a hub’s radio range must be generously not
exactly the all out number of hubs in the system. The position a hub partners
with a neighbour turns out to be less current between reference points as that
neighbour moves. The precision of the arrangement of neighbours addition-
ally diminishes; old neighbours may leave and new neighbours may enter radio
range.

Consequently, the right decision of beaconing interim to keep hubs’ neighbour
tables current relies upon the pace of portability in the system and scope of hubs’
radios. It demonstrates the impact of this interim on GPSR’s presentation in
our reproduction results. By keeping current topological state for a one-bounce
range about a switch is the base required to do any directing, no helpful sending
choice can be made without learning of the topology at least one jumps away.

Negligible Depth Spanning Tree calculation frame tree is a spreading over tree
where every hub has a related curved structure that contains the areas of all its
relative hubs. Structure trees give a method for conglomerating area data and
they are worked by amassing curved frame data up the tree. Data is utilized
in steering to keep away from ways that are not gainful; rather than cross a
fundamentally diminished sub tree, comprising of just the hubs with arched
bodies containing the goal point. Every hub in fundamental structure tree stores
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data about the curved frames that contain the directions of the considerable
number of hubs in sub trees related with every one of its youngster hubs.

The information of the convex hull is based on the aggregation of the tree.
Here the convex hull will be computed for coordinating and communicating the
nodes. In entire network the root node is associated with all the nodes in convex
hull. This convex hull consists of polygon where minimum points are obtained.
the explanation of minimum depth spanning tree is given below:

(1) Minimal depth spanning tree: this will determine the neighbour nodes
using the smallest number of hop in the root. Here one root is present in
entire system, then that node is known as parent node. Similarly, more
than one node is present in the tree then the node is selected based on
distance of node n. the minimal depth spanning tree is closely related
to the path of minimal spanning tree. The below shows the explanation
of minimal path spanning tree.

(2) Set of neighbour nodes are obtained by determining the path of minimal
spanning tree. The length of the root also obtained while determining
the path. Below are some relations for determine the path of spanning
tree:
• Here geometric distance is calculated if there is more than one node

in the entire set.
• Extreme nodes will produce minimum length of the spanning tree.

Here a packet is used to transverse the expected value of tree. Here the both
length and number of hop is calculated. Based on the diameter of network
the routing performance is calculated. The proposed routing algorithm gives
low density but in lemma and lemma 2, the density will be high. Hence this
algorithm gives effective output.

Basically, the local spanning trees will give effective output compared to global
spanning tree.

4. IMPLEMENTATION OF ALGORITHM

The below Figure 1 shows the block diagram of proposed algorithm. Here
first greedy mode is implemented. Next spanning tree provides operation in
effective way. Here tree mode is implemented to provide proper routing. Proper
routing is maintained by introducing the greedy routing. The spanning tree will
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perform the operation in effective way. At last target is set for the operation that
is performed.

FIGURE 1. Flow chart of greedy routing algorithm

(1) Step 1: Check for Greedy Mode: If p: mode = Polynomial Spanning,
follow step 6.

(2) Step 2: Check Reached spanning Tree: If the root has a node with a
convex hull which intersects with R, follow step 5. Otherwise, follow
step 3.

(3) Step 3: Find Tree Mode: If p: mode = Find Tree: If v is the root node for
p: Tree, algorithm terminates here. Otherwise, forward p to the parent
node in p: Tree.

(4) Step 4: GREEDY Routing: Route packet to destination t according to
Algorithm. If packet is undeliverable, set p: mode: = Find Tree and
follow step 3.

(5) Step 5: Pick spanning Tree for providing routing for faces: If R is con-
tained in either of the grid squares of the local hull trees, set p: Tree as
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the local tree (in a grid square that contains R) with a root that is clos-
est to the t. If the grid squares of the local hull trees do not completely
contain R, set p: Tree as the global tree with a convex hull that contains
R; if such a global tree does not exist, pick the global tree with a root
that is closest to t. Follow step 6.

(6) Step 6: Greedy routing to Target Set: Determine target set B for message
broadcast with respect to p: Tree according to the following rules: If
p: mode =greedy, the node from which greedy message was originally
received is not to be included in set of targets. If p: Tree is a local tree,
each neighbouring node that has an associated convex hull (from v’s
perspective) that intersects R is added to the target set.

5. CONCLUSION

In this paper, the greedy routing algorithm for Hamiltonian cycle from quasi
spanning tree of faces is implemented. Here issues routing is applied to the
spanning tree. The proposed algorithm is used in various practical applications.
The proposed algorithm is suited to both minimum face spanning sub graph and
maximum space spanning sub graph. The entire tree structure is based on the
sub graph. A lower bound for both the problems based on the number of vertices
which is tight. A tight upper bound of the number of vertices of a minimal
face-spanning sub graph. However, to design Routing algorithms with better
approximation ratio for the face-spanning sub graph problem and the minimum-
vertex face-spanning sub graph problem are left as open problems. Hence the
proposed algorithm provide routing to detect the problems and analyse it.
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