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OPTIMIZATION OF DISCHARGE PATTERNS IN PARKINSON CONDITION
IN SUBTHALAMIC NUCLEUS MODEL OF BASAL GANGLIA USING

PARTICLE SWARM OPTIMIZATION ALGORITHM

SHRI DHAR1, SANJAY YADAV, PHOOL SINGH, JYOTSNA SINGH, AND A. K. YADAV

ABSTRACT. Parkinson disease is a well-known movement disorder in which pro-
duction of dopamine in the brain reduces. In this paper, we have considered a
conductance - based model of subthalamic nucleus and globus pallidus (exter-
nal) for a primate suffering from Parkinson disease. Discharge patterns from
the model are first recorded for normal condition primate and with Parkinson
disease. Thereafter, we have applied particle swarm optimization algorithm to
various membrane potentials such as calcium (VCa), feedback neuron to STN
(Vfs), potassium (VK) and sodium (VNa) so that Parkinson primate’s discharge
patterns mimic the discharge patterns of healthy primate. A qualitative com-
parison between the discharge patterns of healthy and optimized Parkinson
primate is made by computing correlation coefficient for different time spans
(up to 750 msec) which turns out to be more than 0.9981 in each case. The
value being very close to 1 indicates a very high-degree of overlap of the two
patterns.

1. INTRODUCTION

Brain disorders are increasingly becoming a serious issue and their study is a
major challenge for the scientific community [1–3]. The lack of proper under-
standing of these disorders is a major hurdle in developing quality diagnostic
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systems for their early detection. A well-known brain disorder which mainly af-
fects the movement of body parts is known as Parkinson Disease (PD). The most
affected part of the brain in Parkinson disease is Substantia Nigra Pars Com-
pacta [4–7]. Neurons present in this area of the brain get affected in Parkinson
disease. These neurons are responsible for production of dopamine, a chemical
which takes care of the messages to control the movement of the primate’s body.
With the passage of time, production of dopamine decreases, resulting in loss of
control of the PD primate over the movement process. When the symptoms are
clearly visible, the treatment of Parkinson disease is available [8–11]. However
the real cause of decrease in production of dopamine is not yet established, thus
hampering the prevention of Parkinson disease in its early stages. Basal ganglia
mainly consists of four nuclei: a) Subthalamic Nucleus (STN), b) Striatum, c)
Substantia Nigra - further classified into two parts i) Pars Compacta, and ii) Pars
Reticulata, d) Globus Pallidus (GP) which is also of two types i) Internal Globus
Pallidus (GPi), and ii) External Globus Pallidus (GPe). Cortex gives input to the
striatum directly which transfers it to GP (internal as well as external). Transfer
from striatum to GP is through direct and indirect pathways. Cortex gives input
to STN as well but this input is given by hyper direct pathways [12–16]. Direct
pathways and indirect pathways control the unconstrained movement as they
affect the network of basal ganglia in opposite manner [17–21].

In the recent past, several researchers have narrow down their study to the
origin of Parkinson disease [22–31], and could identify the possible causes of
its occurrence. However, no success has been achieved in ascertaining specific
cause for a given primate. While studying oscillations and bursting in the circuits
of basal ganglia [32–42], it was established that subthalamic nucleus (STN) is
responsible for motor function and calcium current (ICa) plays a vital role in
the proper functioning of STN neuron. In an attempt to determine the factors
responsible for tremor and bursting, we consider a model shown in Figure 1 (the
dotted lines represents inhibitory synapse while the arrow represents excitatory
synapses and the connections are shown as bold lines for healthy and as dotted
lines for Parkinson disease primate).

During 1970s, Back Propagation (BP) algorithm or its derivative was a major
tool to optimize any model with linear or non-linear functions. But the prob-
lems with this algorithm were related to the selection of initial set of values and
regarding the fluctuation or overflow of calculations instead of attaining the
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FIGURE 1. Modified Basal ganglia-thalamo-cortical circuit [43]

optimum value(s). To overcome these problems, an effective technique known
as particle swarm optimization (PSO) algorithm, was proposed by Eberhart and
Kennedy in 1995 [44]. Particle swarm optimization (PSO) is a well-known tech-
nique used by researchers for optimization purposes. The central idea of PSO
algorithm is drawn from a flock of birds that learn through communication while
searching for food. In this process, the flock identifies the bird which is at the
best position and accordingly the whole flock manages to reach there and this
process is repeated till they reach their ultimate destination.

Over the years, particle swarm optimization is finding extensive implemen-
tation in a variety of models. In 2005, the performance of particle swarm op-
timization algorithm was compared with other evolutionary algorithms (EAs)
[45]. Non-linear problems were optimized by using particle swarm optimiza-
tion algorithm in 2006 [46] with a high degree of accuracy. In another study,
PSO algorithm was successfully implemented to optimize the diameter errors in
a boring machine [47]. Though PSO algorithm has been implemented success-
fully in a large number of models, a few notable ones are [48–51].

In 2007, Feng et al. optimized deep brain simulation patterns using genetic
algorithm (GA) [52] in the STN model. In a recent study by Singh et al., the
sensitivity analysis of subthalamic nucleus in a model taken for basal ganglia has
been carried out [43]. They discussed that the discharge patterns generated for
a Parkinson disease primate depends mainly on four membrane potentials which
are VCa, Vfs, VNa, Vk but are most sensitive for VCa, i.e. for calcium membrane
potential. They have optimized calcium membrane potential in their study and
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suggested that the two discharge patterns (healthy and Parkinson primate) will
have high similarity for VCa=235 mV and the value of correlation coefficient for
this membrane potential obtained by them was 0.92. They have applied linear
search algorithm to optimize the various member potentials by considering one
at a time. Their study for calcium membrane potential motivated us to imple-
ment particle swarm optimization algorithm to determine the optimal solution
by considering all the four membrane potentials simultaneously.

This paper is organized as follows: Section 2 describes the model of basal gan-
glia to optimize membrane potentials for a Parkinson disease primate. Section
3 explains the particle swarm optimization algorithm. Section 4 is dedicated to
the implementation of particle swarm optimization and the results. Finally, the
conclusions of the study are given in section 5.

2. MODEL OF BASAL GANGLIA

This study is based on a single-compartment conductance-based model [18]
in which cortex sends excitatory input through hyper-direct pathway to STN
[20] and STN sends excitatory input to GPe (shown by arrows in Figure 1).
Also striatum sends inhibitory input to GPe and GPe sends inhibitory input to
STN (shown by bars in Fig. 1). In this model, STN receives inputs from cortex
and GPe, which results in an increase in the frequency of discharge patterns in
GPi neurons [53, 54] and this is responsible for the interaction of GP neuron
and STN in direct pathway as well as hyper-direct pathway [18, 55]. Other
than mathematical model, we have to consider conductance and time scale to
analyze the activity patterns in subthalamic nucleus network in a healthy and
PD primate [56]. The simulation and analysis of this model for optimization of
membrane potentials is performed using MATLAB 7.16 (over 4 GB RAM Machine
and i7 Intel processor) with ODE45. Time spam is taken up to 750 msec while
performing the analysis.

The membrane potential (V) in this model includes a leak current (Il), fast
spike producing potassium (Ik) and sodium(INa) currents, low threshold T-type
(IT ) high-threshold Ca2+ currents (ICa), Ca2+ activated voltage independent
after-hyperpolarization K+current (IAHP ), synaptic current(Isyn) and applied
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current (Iapp) and can be written in the form [22]:

(2.1) C
dV

dt
= −Il − Ik − INa − IT − ICa − IAHP − Isyn + Iapp

where the membrane currents are governed by the following equations:

Il = gl.[V − Vl]

Ik = gkn
4[V − Vk]

INa = gNam
3
∞(V ).h.[V − VNa]

IT = gTa
3
∞(V ).r.[V − VCa]

ICa = gCas
3
∞(V ).[V − VCa]

IAHP = gAHP .
[Ca]

[Ca] + k1
[V − VCa]

where k1 is the dissociation constant of IAHP and applied current (Iapp) is to
adjust the resting potential of the values measured during the experiment [57].
The calcium current is determined by the following equation:

d[Ca]

dt
= ε[−ICa − IT − kCa[Ca]])

where the constant ε is the calcium flux, kCa characterizes the pump rate of
calcium and the variables n, h, r,m, s and a can be obtained from the following
equation:

dx

dt
=
φx[x∞(V )− x]

(τx(V )

Here, φx is simply a constant for the gating variables, and τx which is a func-
tion of V represents time constant function represented by the equation:

τx(V ) = τ 0x +
τ 1x

1 + exp(−V−θτx
στx

)

where the values of τ 0x , τ 1x , θτx and στx can be taken from the appendix taken
from [58] (given at the end of the paper) and hence τx will be a function of V
only for x = n, h, r,m, s, a.

Also, x∞(V ) which represents steady-state voltage dependence is given by:

x∞(V ) =
1

1 + exp(− [V−θx]
σx

)
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where θx is half activation or inactivation voltage and σx is slope factor for x
(gating variable). Isyn (synaptic current) is obtained by taking the sum of synap-
tic current from GPe and the other neighboring neuron [56], that is, it is taken
by considering synaptic conductance from GPe to STN denoted by ggs, synaptic
conductance from feedback neuron to STN denoted by gfs, membrane poten-
tials from GPe to STN(Vgs) and from feedback neuron to STN(Vfs), and synaptic
variables sg and sf in the following way:

Isyn = ggs.sg.[V − Vgs] + gfs.sf .[V − Vfs]

As mentioned in [22], Parkinson disease is mainly caused by the degeneration
of dopamine and this dopamine degeneracy can be majorly shown by synaptic
input variables sg and sf which can be obtained by the following equation:

dsi
dt

= α.H∞(V ).(Vpresyn − θg).[1− si]− βsi
for i = g, s, where β, Vpresyn, θg can be taken from [58, 59] (values are given

in the appendix) and H∞(V ) (sigmoid function) is given by the equation:

H∞(V ) =
1

[1 + e
−[V−θHg ]

σHg ]

3. PARTICLE SWARM OPTIMIZATION ALGORITHM

Particle swarm optimization (PSO) [60] is an inhabitant based optimization
method in which a group of elements move in search space to find the best so-
lution for a given problem. The fundamental concept behind the particle swarm
optimization algorithm is taken from the flock of birds that learn through com-
munication while searching for food. In this process, the flock identifies the
bird which is at the best position and accordingly the whole flock manages to
reach there and this process is repeated till they reach their ultimate destina-
tion. While using PSO algorithm, an element of finest ability from the group of
elements that we have taken into consideration is selected. The velocity of each
particle considered in this algorithm depends on two factors: position of that
element with finest ability and the personal best ability of the element. Here
the term finest ability refers to the best performance of a particle. In case of the
horde of birds, finest ability will refer the closeness of the birds from the source
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(which is food in this case). So the bird which is closest to the source will be
taken as the particle with finest ability. In this case, it should be noted that the
birds are learning in both ways: self-experience (called local search) and from
the other’s experience (called global search).

Figure 2 describes the flowchart in which the steps are described to implement
the particle swarm optimization algorithm:

FIGURE 2. Flowchart of particle swarm optimization algorithm

The velocity and the updated position of each element can be calculated by
the following equations:

vi,k(t+ 1) = m× vi,k(t) + c1 × r1 × (Pi,k − xi,k(t)) + c2 × r2 × ((Pg)k − xi,k(t))

xi,k(t+ 1) = xi,k(t) + vi,k(t+ 1)
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where xi,k and vi,k are the position and velocity of i-th particle when it is moving
in k-th dimension, m is the momentum, c1 and c2 are constants, r1 and r2 are
random variables that can take value from the segment [0, 1].

4. RESULTS AND DISCUSSION

In this section, the spiking patterns obtained for a healthy primate are com-
pared with the spiking patterns for a primate with PD in the model that we have
taken into consideration. The values obtained may be different as they may
vary from case to case [20]. We are denoting the spiking patterns generated in
a health and PD primate by (SP )H and (SP )PD respectively. Now the compar-
ison between (SP )H and (SP )PD is done by calculating correlation coefficient
(CC) for these two which will tell us the likeness of two series as a function of lag
of one comparative to the other. CC between {(SP )H}t and {(SP )PD}t+i gives
us the ith order cross-correlation of (SP )H and (SP )PD. CCi (sample estimate
of correlation coefficient) is given by:

CCi =

∑n−i
j=1({(SP )H}j − ¯(SP )H)({(SP )PD}i+j − ¯(SP )PD)√∑n

j=1({(SP )H}j − ¯(SP )H)2
∑n

j=1({(SP )PD}j − ¯(SP )PD)2

Before investigating this model, different activity patterns generated by us-
ing equation (2.1) have been studied and it was found that the simulation for
the patterns have been done for selected parameters for a time span of 250 ms
and 500 ms respectively. The model is considerably sensitive for few param-
eters (VCa, Vfs, VNa, Vk) which we have taken into consideration and optimum
values of these parameters have been identified simultaneously by using PSO
algorithm. The way these parameters (membrane potentials) are attaining the
optimum values is shown in the Figures 3(a)-3(d), 4(a)-4(d), 5(a)-5(d) and
6(a)-6(d) for different time spans up to 750 msec. The validation of the op-
timum values of membrane potential is done by generating the discharge pat-
terns for PD primate after considering these optimized values. The resulting
discharge patterns obtained for PD primate show a near perfect similarity with
those of healthy primate as shown in Figures 3(f), 4(f), 5(f) and 6(f). A qualita-
tive comparison is made by computing correlation coefficient (CC) between the
two discharge patterns which turns out to be more than 0.9981 in each case as
shown in Figures 3(e), 4(e), 5(e) and 6(e).
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(a) For time span of 250 msec

FIGURE 3(a) Variation in the values of FIGURE 3(b) Variation in the values of
VCa for 200 iterations Vfs for 200 iterations
of PSO for 250 msec. of PSO for 250 msec.

FIGURE 3(c) Variation in the values FIGURE 3(d) Variation in the values
of VK for 200 iterations of VNa for 200 iterations

of PSO for 250 msec. of PSO for 250 msec.
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FIGURE 3(e) Discharge pattern for 250 FIGURE 3(f) Correlation Coefficient
msec for optimized values of VCa, for 200 iterations of

Vfs, VNa and Vk. PSO for 250 msec.

From the Figures 3(a)-3(d), the optimum values of four membrane potentials
are VCa=222.8682 mV, Vfs=5.4880 mV, VNa=48.2415 mV, Vk=-82.5063 mV.
Figure 3(e) is validating the optimum values of membrane potentials as the two
patterns are showing a very high degree of overlap. Figure 3(f) is showing that
correlation coefficient is attaining a value 0.9995.

(b) For time span of 500 msec

FIGURE 4(a) Variation in the values FIGURE 4(b) Variation in the values
of VCa for 200 iterations of Vfs for 200 iterations

of PSO for 500 msec. of PSO for 500 msec.
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FIGURE 4(c) Variation in the values of FIGURE 4(d) Variation in the values of
VK for 200 iterations of PSO for 500 VNa for 200 iterations

msec. of PSO for 500 msec. of PSO for 500 msec.

FIGURE 4(e) Discharge pattern for 500 FIGURE 4(f) Correlation Coefficient for
VK for 200 iterations 200 iterations of PSO
of PSO for 500 msec. for 500 msec.

From the Figures 4(a)-4(d), the optimum values of four membrane potentials
are VCa=224.3552 mV, Vfs=5.5832 mV, VNa=48.3602 mV, Vk=-82.4983 mV.
Figure 4(e) is validating the optimum values of membrane potentials as the two
patterns are showing a very high degree of overlap. Figure 4(f) is showing that
correlation coefficient is attaining a value 0.9994.
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(c) For time span of 750 msec

FIGURE 5(a) Variation in the values of FIGURE 5(b) Variation in the values of
VCa for 200 iterations of Vfs for 200 iterations of

PSO for 750 msec. PSO for 750 msec.

FIGURE 5(c) Variation in the values FIGURE 5(d) Variation in the values
of VK for 200 iterations of of VNa for 200 iterations of

PSO for 750 msec. PSO for 750 msec.

From the Figures 5(a)-5(d), the optimum values of four membrane potentials
are VCa=232.2110 mV, Vfs=3.4387 mV, VNa=46.2448 mV, Vk=-83.3110 mV.
Figure 5(e) is validating the optimum values of membrane potentials as the two
patterns are showing a very high degree of overlap. Figure 5(f) is showing that
correlation coefficient is attaining a value 0.9981.
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FIGURE 5(e) Discharge pattern for 750 msec FIGURE 5(f) Correlation Coefficient
for optimized values of VCa, Vfs, for 200 iterations of

VNa and Vk. PSO for 750 msec.

The above results shown in the Figures 3(a)-3(d), 4(a)-4(d), 5(a)-5(d) shows
the performance of the PSO algorithm as we are showing 200 iterations for each
time span but the optimum values are obtained after 12 to 15 iterations only.
It indicates the fast convergence for each of the membrane potential that we
have taken into consideration. The Figures 3(e), 4(e) and 5(e) are validating
the model for the optimum values of membrane potential obtained by using
particle swarm optimization algorithm as the discharge pattern generated for
a prime with Parkinson disease has very high degree of overlap with that of a
healthy primate. Also, the Figures 3(f), 4(f) and 5(f) are representing the corre-
lation coefficient taken for the discharge patterns of Parkinson disease primate
and a healthy primate. The value of correlation coefficient which is close to 1
validates the optimality of the membrane potentials quantitatively. These results
are giving us better results over the time span up to 750 msec as compared to
the results obtained by the study of Singh et al. [43] in which the time span
up to 250 msec was taken into consideration for the optimum value of calcium
membrane potential to generate the discharge patterns for PD primate.

5. CONCLUSION

In this study, particle swarm optimization algorithm has been implemented to
optimize the four membrane potentials in conductance-based model of subtha-
lamic nucleus and globus pallidus for a Parkinson disease primate. This novel
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approach has been used for the first time for parameter (membrane poten-
tials) optimization in such a study on Parkinson disease primate. The results
have been validated by correlation coefficient between the discharge patterns of
healthy and Parkinson disease primate for various time spans up to 750 msec.
The near-perfect results as shown by the overlapping discharge patterns also
validate the model. Results of the present study show a significant improvement
over the corresponding results reported in a recent study by Singh et al. [43].
Our results have been computed for time span of 750 msec, three times the time
span taken (250 msec) by Singh et al. [43].

APPENDIX

Here we will define all the parameters used in the paper along with their units
as follows:

gl = 2.25nS/µm2 gk = 45nS/µm2 gNa = 37.5nS/µm2

gT = 0.5nS/µm2 gCa = 0.5nS/µm2 gAPH = 9nS/µm2

gsyn = 0.9nS/µm2 Vl = −60mV Vk = −80mV

VNa = 55mV VCa = 140mV Vsyn = −100mV

τ 1n = 100msec τ 1h = 500msec τ 1r = 17.5msec

τ 0n = 1msec τ 0h = 1msec τ 0r = 40msec

φn = 0.75 φh = 0.75 φr = 0.2

k1 = 15 kCa = 22.5 θn = −32

θm = −30 θh = −39 θr = −67

θa = −63 θb = 0.4 θs = −39

θτn = −80 θτh = −57 θτr = 68

θHg = −39 θg = 30 σn = 8

σm = 15 σh = −3.1 σr = −2

σa = 7.8 σb = −0.1 σs = 8

στn = −26 στh = −3 στr = −2.2

σHg = 8 ε = 3.5× 10−5m/sec α = 5m/sec

β = 1.0m/sec ggs = 0.695 gfs = 0.215

Vgs = 5 Vfs = 5 C = 1

m = 0.8 c1 = 1.4 c2 = 2
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