
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.5, 3165–3174
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.5.74

SPECIAL ANALYSIS ON A PYTHAGOREAN TRIANGLE WHICH SATISFIES
α ((HYPOTONUSE× PERIMETER)-4(AREA))=(A2 −B2)(PERIMETER)

FOR SOME PARTICULAR DIFFERENT VALUES OF α

S. SRIRAM1 AND P. VEERAMALLAN

ABSTRACT. We obtain non-trivial integer solutions for the sides of the Pythagorean
triangle, for some particular values of αwhich satisfies ((Hypotonuse× Perimeter)-
4(Area))=(a2 − b2)(Perimeter) . A few interesting relations between the sides
of the Pythagorean triangle are presented.

1. INTRODUCTION

One well known set of solutions of the Pythagorean equation x2 + y2 = z2

are x = 2uv, y = u2 − v2 and z = u2 + v2. Many mathematicians has used
this set of solutions to obtain the non-zero integral values for x, y and z [1–3].
As a new approach, in this paper we introduce another set of solutions x =

2U + 1, y = 2U2 + 2U and z = 2U2 + 2U + 1 for the equation x2 + y2 = z2. By
using this solution we obtain three non-zero integers x, y and z under certain
relations satisfying the equation x2 + y2 = z2 [4–6]. In this communication we
present yet another interest Pythagorean triangles, such that in each of them,
α ((Hypotonuse× Perimeter)-4(Area))=(a2 − b2)(Perimeter). A few interesting
relations are also given. In addition, the recurrence relations for the sides of the
triangle are presented.
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2. METHODS OF ANALYSIS

Taking U > 0, to be the generators of the Pythagorean triangle (x, y, z), the
assumption that α ((Hypotonuse× Perimeter)-4(Area))=(a2 − b2) (Perimeter)
becomes:

α(((2U2+2U+1)×(2U+1+2U2+2U+2U2+2U+1))−4(
1

2
(2U+1)(2U2+2U)) =

= (a2 − b2)(2U + 1 + 2U2 + 2U + 2U2 + 2U + 1)

which leads to the equation

(2.1) α(2U2 + 1) = (a2 − b2) .

For the understanding we consider the cases, α = 1 and α = 3.

Choice I:
If we consider α = 1 then the equation (2.1) becomes a2 = 2U2 + b2 + 1, which
leads to the Pellian equation

(2.2) X2 = DY 2 +K

where D = 2, X = a, Y = U and K = b2 + 1. Clearly K is not a Perfect square.
For the sake of clear understanding, we present below forms of integral solutions
and thus the following choice of b:

(i) b=1
(ii) b=4

(iii) b=7

Case (1): Setting b = 1, so that K = 2. The equation (2.2) becomes

(2.3) X2 = 2Y 2 + 2

(X0, Y0) = (10, 7) will be the initial solution of (2.3). Consider the Pellian

(2.4) X2 = 2Y 2 + 1

Let ((x̄0), (ȳ0)) = (3, 2) be the initial solution of (2.4). Using Brah-
magupta lemma, the general solution (x̄n, ȳn) of the equation (2.4) is
given by:

x̄n +
√

2ȳn = (3 + 2
√

2)n+1, n = 0, 1, 2, ...
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Since irrational roots occur in pairs,

x̄n +
√

2ȳn = (3− 2
√

2)n+1, n = 0, 1, 2, ...

From the previous equations, we obtain

(2.5) x̄n =
1

2
[(3 + 2

√
2)n+1 + (3− 2

√
2)n+1], n = 0, 1, 2, 3, ...

(2.6) ȳn =
1

2
√

2
[(3 + 2

√
2)n+1 + (3− 2

√
2)n+1], n = 0, 1, 2, 3, ...

Using the equations (2.5) and (2.6), the solutions of equation (2.3) are
given by:

Xn+1 = X0x̄n +DY0ȳn, n = 0, 1, 2, 3, ...

Yn+1 = X0ȳn + Y0x̄n, n = 0, 1, 2, 3, ...

So that,

Xn+1 = [(3 + 2
√

2)n+1(10 + 7
√

2) + (3− 2
√

2)n+1(10− 7
√

2)], n = −1, 0, 1, 2, 3, ...

Un+1 = Yn+1 =
1√
2

[(3+2
√

2)n+1(10+7
√

2)−(3−2
√

2)n+1(10−7
√

2)], n = −1, 0, 1, 2, 3, ...

n Xn+1 Un+1 = Yn+1 x = 2U + 1 y = 2U2 + 2U z = 2U2 + 2U + 1

-1 10 7 15 112 113
0 58 41 83 3444 3445
1 338 239 479 114720 114721
2 1970 1393 2787 3883684 3883685
3 11482 8119 16239 131852560 131852561
4 66922 47321 94643 4478648724 4478648725

TABLE 1. Numerical examples

Observations

(1) Recurrence relations for X and Y are

Xn+3 − 6Xn+2 +Xn+1 = 0

Yn+3 − 6Yn+2 + Yn+1 = 0

(2) For all values of n, Xn+3 +Xn+1 ≡ 0(mod6)

(3) For all values of n, Yn+3 + Yn+1 ≡ 0(mod6)



3168 S. SRIRAM AND P. VEERAMALLAN

(4) For all values of n, X is even and Y is odd.
(5) For all values of n , X is divisible by 2.

Case (2): Setting b = 4, so that K = 17. The equation X2 = DY 2 +K becomes

(2.7) X2 = 2Y 2 + 17

(X0, Y0) = (5, 2) will be the initial solution of (2.7). Consider the Pellian

(2.8) X2 = 2Y 2 + 1

Let ((x̄0), (ȳ0)) = (3, 2) be the initial solution of (2.8). Using Brah-
magupta lemma, the general solution (x̄n, ȳn) of equation (2.8) is given
by:

(2.9) x̄n +
√

2ȳn = (3 + 2
√

2)n+1, n = 0, 1, 2, ...

Since irrational roots occur in pairs,

(2.10) x̄n −
√

2ȳn = (3− 2
√

2)n+1, n = 0, 1, 2, ...

Using equations (2.9) and (2.10), we obtain:

(2.11) x̄n =
1

2
[(3 + 2

√
2)n+1 + (3− 2

√
2)n+1], n = 0, 1, 2, 3, ...

(2.12) ȳn =
1

2
√

2
[(3 + 2

√
2)n+1 − (3− 2

√
2)n+1], n = 0, 1, 2, 3, ...

Using the equations (2.11) and (2.12), the solutions of the equation
(2.7) is given by:

Xn+1 =
1

2
[(3 + 2

√
2)n+1(5 + 2

√
2) + (3− 2

√
2)n+1(5− 2

√
2)], n = −1, 0, 1, 2, 3, ...

Un+1 = Yn+1 =
1

2
√

2
[(3+2

√
2)n+1(5+2

√
2)−(3−2

√
2)n+1(5−2

√
2)], n = −1, 0, 1, 2, 3, ...

Observations

(1) Recurrence relations for X and Y are:

Xn+3 − 6Xn+2 +Xn+1 = 0

Yn+3 − 6Yn+2 + Yn+1 = 0

(2) For all values of n, Xn+3 +Xn+1 ≡ 0(mod6)

(3) For all values of n, Yn+3 + Yn+1 ≡ 0(mod6)
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n Xn+1 Un+1 = Yn+1 x = 2U + 1 y = 2U2 + 2U z = 2U2 + 2U + 1

-1 5 2 5 12 13
0 23 16 33 544 545
1 133 94 189 17860 17861
2 775 548 1097 601704 601705
3 4517 3194 6389 20409660 20409661

TABLE 2. Numerical examples

(4) For all values of n, X is odd and Y is even.
(5) For all values of n, Y is divisible by 2.

Case (3): Setting b = 7, so that K = 50. The equation X2 = DY 2 +K becomes

(2.13) X2 = 2Y 2 + 50

(X0, Y0) = (10, 5) will be the initial solution of (2.13). Consider the
Pellian

(2.14) X2 = 2Y 2 + 1

Let (x̄0, ȳ0) = (3, 2) be the initial solution of (2.14). Using Brahmagupta
lemma, the general solution (x̄n, ȳn) of equation (2.14) is given by:

(2.15) x̄n +
√

2ȳn = (3 + 2
√

2)n+1, n = 0, 1, 2, ...

Since irrational roots occur in pairs

(2.16) x̄n −
√

2ȳn = (3− 2
√

2)n+1, n = 0, 1, 2, ...

Using equations (2.15) and (2.16), we obtain:

(2.17) x̄n =
1

2
[(3 + 2

√
2)n+1 + (3− 2

√
2)n+1], n = 0, 1, 2, 3, ...

(2.18) ȳn =
1

2
√

2
[(3 + 2

√
2)n+1 − (3− 2

√
2)n+1], n = 0, 1, 2, 3, ...

Using the equations (2.17) and (2.18), the solutions of equation (2.13)
is given by:

Xn+1 =
1

2
[(3 + 2

√
2)n+1(10 + 5

√
2) + (3− 2

√
2)n+1(10− 5

√
2)], n = −1, 0, 1, 2, 3, ...
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Un+1 = Yn+1 =
1

2
√

2
[(3 + 2

√
2)n+1(10 + 5

√
2)− (3− 2

√
2)n+1(10− 5

√
2)],

where n = −1, 0, 1, 2, 3, ...

n Xn+1 Un+1 = Yn+1 x = 2U + 1 y = 2U2 + 2U z = 2U2 + 2U + 1

-1 10 5 11 60 61
0 50 35 71 2520 2521
1 290 205 411 84460 84461
2 1690 1195 2391 2858440 2858441
3 9850 6965 13931 97036380 97036381

TABLE 3. Numerical examples

Observations:

(1) Recurrence relations for X and Y are:

Xn+3 − 6Xn+2 +Xn+1 = 0

Yn+3 − 6Yn+2 + Yn+1 = 0

(2) For all values of n, Xn+3 +Xn+1 ≡ 0(mod6)

(3) For all values of n, Yn+3 + Yn+1 ≡ 0(mod6)

(4) For all values of n, X is even and Y is odd.
(5) For all values of n, X is divisible by 5 and 10, and Y is divisible by 5.

Choice II:
Consider the, α = 3 so that equation (2.1) becomes a2 = 6U2 + b2 + 3, which
leads to the Pellian equation

(2.19) X2 = DY 2 +K

where D = 6, X = a, Y = U and K = b2 + 3. Clearly K is not a Perfect square.
For the sake of clear understanding, we present below forms of integral solutions
of (2.19) and thus the following choices of b:

(i) b = 1

(ii) b = 3
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Case (1): Setting b = 1, so that K = 4 (Perfect Square). The equation X2 =

DY 2 +K becomes

(2.20) X2 = 6Y 2 + 4

(X0, Y0) = (10, 4) will be the initial solution of (2.20). Consider the
Pellian

(2.21) X2 = 6Y 2 + 1

Let (x̄0, ȳ0)=(5,2) be the initial solution of (2.21). Using Brahmagupta
lemma, the general solution (x̄n, ȳn) of equation (2.21) is given by:

(2.22) x̄n +
√

2ȳn = (5 + 2
√

6)n+1, n = 0, 1, 2, ...

Since irrational roots occur in pairs,

(2.23) x̄n −
√

2ȳn = (5− 2
√

6)n+1, n = 0, 1, 2, ...

From equation (2.22) and (2.23), we obtain:

(2.24) x̄n =
1

2
[(5 + 2

√
6)n+1 + (5− 2

√
6)n+1], n = 0, 1, 2, 3, ...

(2.25) ȳn =
1

2
√

6
[(5 + 2

√
6)n+1 − (5− 2

√
6)n+1], n = 0, 1, 2, 3, ...

Using the equations (2.24) and (2.25), the solutions of equation (2.20)
is given by:

Xn =
√
Kx̄n, n = 0, 1, 2, 3, ...

Yn =
√
Kȳn, n = 0, 1, 2, 3, ...

So that,

Xn = [(5 + 2
√

6)n+1 + (5− 2
√

6)n+1], n = 0, 1, 2, 3, ...

Un = Yn =
1√
6

[(5 + 2
√

6)n+1 − (5− 2
√

6)n+1], n = 0, 1, 2, 3, ...

Observations

(1) Recurrence relations for X and Y are

Xn+2 − 10Xn+1 +Xn = 0

Yn+2 − 10Yn+1 + Yn = 0

(2) For all values of n, Xn+2 +Xn ≡ 0(mod10)
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n Xn+1 Un+1 = Yn+1 x = 2U + 1 y = 2U2 + 2U z = 2U2 + 2U + 1

-1 10 4 9 40 41
0 98 40 81 3280 3281
1 970 396 793 314424 314425
2 9602 3920 7841 30740640 30740641
3 95050 38804 77609 3011578440 3011578441

TABLE 4. Numerical examples

(3) For all values of n, Yn+2 + Yn ≡ 0(mod10)

(4) For all values of n, both X and Y are even.
(5) For all values of n, X is divisible by 2, and Y is divisible by 4.

Case (2): Setting b = 3, so that K = 12 (Non Perfect Square). The equation
X2 = DY 2 +K becomes

(2.26) X2 = 6Y 2 + 12

(X0, Y0) = (6, 2) will be the initial solution of (2.26) Consider the Pellian

(2.27) X2 = 6Y 2 + 1

Let (x̄0, ȳ0) = (5, 2) be the initial solution of (2.27). Using Brahmagupta
lemma, the general solution (x̄n, ȳn) of equation (2.27) is given by:

(2.28) x̄n +
√

2ȳn = (5 + 2
√

6)n+1, n = 0, 1, 2, ...

Since irrational roots occur in pairs,

(2.29) x̄n −
√

2ȳn = (5− 2
√

6)n+1, n = 0, 1, 2, ...

From equation (2.28) and (2.29), we obtain:

(2.30) x̄n =
1

2
[(5 + 2

√
6)n+1 + (5− 2

√
6)n+1], n = 0, 1, 2, 3, ...

(2.31) ȳn =
1

2
√

6
[(5 + 2

√
6)n+1 − (5− 26)n+1], n = 0, 1, 2, 3, ...

Using the equations ((2.30) and (2.31), the solutions of equation (2.26)
are given by:

Xn+1 = [(5 + 2
√

6)n+1(3 +
√

6) + (5− 2
√

6)n+1(3−
√

6)], n = −1, 0, 1, 2, 3, ...

Un+1 = Yn+1 =
1

2
√

2
[(3 + 2

√
2)n+1(5 + 2

√
2)− (3− 2

√
2)n+1(5− 2

√
2)],
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where n = −1, 0, 1, 2, 3, ...

n Xn+1 Un+1 = Yn+1 x = 2U + 1 y = 2U2 + 2U z = 2U2 + 2U + 1

-1 6 2 5 12 13
0 54 22 45 1012 1013
1 534 218 437 95484 95485
2 5286 2158 4317 9318244 9318245
3 52326 21362 42725 912712812 912712813

TABLE 5. Numerical examples

Observations

(1) Recurrence relations for Xand Y are:

Xn+3 − 10Xn+2 +Xn+1 = 0

Yn+3 − 10Yn+2 + Yn+1 = 0

(2) For all values of n, Xn+3 +Xn+1 ≡ 0(mod10)

(3) For all values of n, Yn+3 + Yn+1 ≡ 0(mod10)

(4) For all values of n, both X and Y are even.
(5) For all values of n, X is divisible by 2, 3 and 6, and Y is divisible by 2.

3. CONCLUSION

One may search for other patterns of solutions and their corresponding prop-
erties.
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