ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.5, 3165–3174 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.74

SPECIAL ANALYSIS ON A PYTHAGOREAN TRIANGLE WHICH SATISFIES α ((HYPOTONUSE× PERIMETER)-4(AREA))=($A^2 - B^2$)(PERIMETER) FOR SOME PARTICULAR DIFFERENT VALUES OF α

S. SRIRAM¹ AND P. VEERAMALLAN

ABSTRACT. We obtain non-trivial integer solutions for the sides of the Pythagorean triangle, for some particular values of α which satisfies ((Hypotonuse× Perimeter)-4(Area))= $(a^2 - b^2)$ (Perimeter) . A few interesting relations between the sides of the Pythagorean triangle are presented.

1. INTRODUCTION

One well known set of solutions of the Pythagorean equation $x^2 + y^2 = z^2$ are x = 2uv, $y = u^2 - v^2$ and $z = u^2 + v^2$. Many mathematicians has used this set of solutions to obtain the non-zero integral values for x, y and z [1–3]. As a new approach, in this paper we introduce another set of solutions x = 2U + 1, $y = 2U^2 + 2U$ and $z = 2U^2 + 2U + 1$ for the equation $x^2 + y^2 = z^2$. By using this solution we obtain three non-zero integers x, y and z under certain relations satisfying the equation $x^2 + y^2 = z^2$ [4–6]. In this communication we present yet another interest Pythagorean triangles, such that in each of them, α ((Hypotonuse× Perimeter)-4(Area))= $(a^2 - b^2)$ (Perimeter). A few interesting relations are also given. In addition, the recurrence relations for the sides of the triangle are presented.

¹corresponding author

2010 Mathematics Subject Classification. 97G30.

Key words and phrases. Integral solutions, Pythagorean triangles.

2. Methods of analysis

Taking U > 0, to be the generators of the Pythagorean triangle (x, y, z), the assumption that α ((Hypotonuse× Perimeter)-4(Area))= $(a^2 - b^2)$ (Perimeter) becomes:

$$\alpha(((2U^2+2U+1)\times(2U+1+2U^2+2U+2U^2+2U+1))-4(\frac{1}{2}(2U+1)(2U^2+2U)) = (a^2-b^2)(2U+1+2U^2+2U+2U^2+2U+1)$$

which leads to the equation

(2.1)
$$\alpha(2U^2+1) = (a^2-b^2).$$

For the understanding we consider the cases, $\alpha = 1$ and $\alpha = 3$.

Choice I:

3166

If we consider $\alpha = 1$ then the equation (2.1) becomes $a^2 = 2U^2 + b^2 + 1$, which leads to the Pellian equation

$$(2.2) X^2 = DY^2 + K$$

where D = 2, X = a, Y = U and $K = b^2 + 1$. Clearly K is not a Perfect square. For the sake of clear understanding, we present below forms of integral solutions and thus the following choice of b:

Case (1): Setting b = 1, so that K = 2. The equation (2.2) becomes

$$(2.3) X^2 = 2Y^2 + 2$$

 $(X_0, Y_0) = (10, 7)$ will be the initial solution of (2.3). Consider the Pellian

$$(2.4) X^2 = 2Y^2 + 1$$

Let $((\bar{x}_0), (\bar{y}_0)) = (3, 2)$ be the initial solution of (2.4). Using Brahmagupta lemma, the general solution (\bar{x}_n, \bar{y}_n) of the equation (2.4) is given by:

$$\bar{x}_n + \sqrt{2}\bar{y}_n = (3 + 2\sqrt{2})^{n+1}, n = 0, 1, 2, \dots$$

Since irrational roots occur in pairs,

 $\bar{x}_n + \sqrt{2}\bar{y}_n = (3 - 2\sqrt{2})^{n+1}, n = 0, 1, 2, \dots$

From the previous equations, we obtain

(2.5)
$$\bar{x}_n = \frac{1}{2} [(3+2\sqrt{2})^{n+1} + (3-2\sqrt{2})^{n+1}], n = 0, 1, 2, 3, ...$$

(2.6)
$$\bar{y}_n = \frac{1}{2\sqrt{2}} [(3+2\sqrt{2})^{n+1} + (3-2\sqrt{2})^{n+1}], n = 0, 1, 2, 3, ...$$

Using the equations (2.5) and (2.6), the solutions of equation (2.3) are given by:

$$X_{n+1} = X_0 \bar{x}_n + D Y_0 \bar{y}_n, n = 0, 1, 2, 3, \dots$$
$$Y_{n+1} = X_0 \bar{y}_n + Y_0 \bar{x}_n, n = 0, 1, 2, 3, \dots$$

So that,

$$X_{n+1} = [(3+2\sqrt{2})^{n+1}(10+7\sqrt{2}) + (3-2\sqrt{2})^{n+1}(10-7\sqrt{2})], n = -1, 0, 1, 2, 3, \dots$$
$$U_{n+1} = Y_{n+1} = \frac{1}{\sqrt{2}}[(3+2\sqrt{2})^{n+1}(10+7\sqrt{2}) - (3-2\sqrt{2})^{n+1}(10-7\sqrt{2})], n = -1, 0, 1, 2, 3, \dots$$

n	X_{n+1}	$U_{n+1} = Y_{n+1}$	x = 2U + 1	$y = 2U^2 + 2U$	$z = 2U^2 + 2U + 1$
-1	10	7	15	112	113
0	58	41	83	3444	3445
1	338	239	479	114720	114721
2	1970	1393	2787	3883684	3883685
3	11482	8119	16239	131852560	131852561
4	66922	47321	94643	4478648724	4478648725
TABLE 1 Numerical examples					

 TABLE 1. Numerical examples

Observations

(1) Recurrence relations for X and Y are

$$X_{n+3} - 6X_{n+2} + X_{n+1} = 0$$

$$Y_{n+3} - 6Y_{n+2} + Y_{n+1} = 0$$

(2) For all values of
$$n$$
, $X_{n+3} + X_{n+1} \equiv 0 \pmod{6}$

(3) For all values of n, $Y_{n+3} + Y_{n+1} \equiv 0 \pmod{6}$

S. SRIRAM AND P. VEERAMALLAN

- (4) For all values of n, X is even and Y is odd.
- (5) For all values of n, X is divisible by 2.

Case (2): Setting b = 4, so that K = 17. The equation $X^2 = DY^2 + K$ becomes (2.7) $X^2 = 2Y^2 + 17$

 $(X_0, Y_0) = (5, 2)$ will be the initial solution of (2.7). Consider the Pellian

$$(2.8) X^2 = 2Y^2 + 1$$

Let $((\bar{x_0}), (\bar{y_0})) = (3, 2)$ be the initial solution of (2.8). Using Brahmagupta lemma, the general solution (\bar{x}_n, \bar{y}_n) of equation (2.8) is given by:

(2.9)
$$\bar{x}_n + \sqrt{2}\bar{y}_n = (3 + 2\sqrt{2})^{n+1}, n = 0, 1, 2, ...$$

Since irrational roots occur in pairs,

(2.10)
$$\bar{x}_n - \sqrt{2}\bar{y}_n = (3 - 2\sqrt{2})^{n+1}, n = 0, 1, 2, ...$$

Using equations (2.9) and (2.10), we obtain:

(2.11)
$$\bar{x}_n = \frac{1}{2} [(3+2\sqrt{2})^{n+1} + (3-2\sqrt{2})^{n+1}], n = 0, 1, 2, 3, ...$$

(2.12)
$$\bar{y}_n = \frac{1}{2\sqrt{2}} [(3+2\sqrt{2})^{n+1} - (3-2\sqrt{2})^{n+1}], n = 0, 1, 2, 3, ...$$

Using the equations (2.11) and (2.12), the solutions of the equation (2.7) is given by:

$$X_{n+1} = \frac{1}{2} [(3+2\sqrt{2})^{n+1}(5+2\sqrt{2}) + (3-2\sqrt{2})^{n+1}(5-2\sqrt{2})], n = -1, 0, 1, 2, 3, \dots$$
$$U_{n+1} = Y_{n+1} = \frac{1}{2\sqrt{2}} [(3+2\sqrt{2})^{n+1}(5+2\sqrt{2}) - (3-2\sqrt{2})^{n+1}(5-2\sqrt{2})], n = -1, 0, 1, 2, 3, \dots$$

Observations

(1) Recurrence relations for X and Y are:

$$X_{n+3} - 6X_{n+2} + X_{n+1} = 0$$
$$Y_{n+3} - 6Y_{n+2} + Y_{n+1} = 0$$

(2) For all values of
$$n$$
, $X_{n+3} + X_{n+1} \equiv 0 \pmod{6}$

(3) For all values of n, $Y_{n+3} + Y_{n+1} \equiv 0 \pmod{6}$

n	X_{n+1}	$U_{n+1} = Y_{n+1}$	x = 2U + 1	$y = 2U^2 + 2U$	$z = 2U^2 + 2U + 1$
-1	5	2	5	12	13
0	23	16	33	544	545
1	133	94	189	17860	17861
2	775	548	1097	601704	601705
3	4517	3194	6389	20409660	20409661

TABLE 2. Numerical examples

- (4) For all values of n, X is odd and Y is even.
- (5) For all values of n, Y is divisible by 2.

Case (3): Setting b = 7, so that K = 50. The equation $X^2 = DY^2 + K$ becomes

$$(2.13) X^2 = 2Y^2 + 50$$

 $(X_0, Y_0) = (10, 5)$ will be the initial solution of (2.13). Consider the Pellian

$$(2.14) X^2 = 2Y^2 + 1$$

Let $(\bar{x}_0, \bar{y}_0) = (3, 2)$ be the initial solution of (2.14). Using Brahmagupta lemma, the general solution (\bar{x}_n, \bar{y}_n) of equation (2.14) is given by:

(2.15)
$$\bar{x}_n + \sqrt{2}\bar{y}_n = (3 + 2\sqrt{2})^{n+1}, n = 0, 1, 2, ...$$

Since irrational roots occur in pairs

(2.16)
$$\bar{x}_n - \sqrt{2}\bar{y}_n = (3 - 2\sqrt{2})^{n+1}, n = 0, 1, 2, ...$$

Using equations (2.15) and (2.16), we obtain:

(2.17)
$$\bar{x}_n = \frac{1}{2} [(3+2\sqrt{2})^{n+1} + (3-2\sqrt{2})^{n+1}], n = 0, 1, 2, 3, ...$$

(2.18)
$$\bar{y}_n = \frac{1}{2\sqrt{2}} [(3+2\sqrt{2})^{n+1} - (3-2\sqrt{2})^{n+1}], n = 0, 1, 2, 3, ...$$

Using the equations (2.17) and (2.18), the solutions of equation (2.13) is given by:

$$X_{n+1} = \frac{1}{2} [(3+2\sqrt{2})^{n+1}(10+5\sqrt{2}) + (3-2\sqrt{2})^{n+1}(10-5\sqrt{2})], n = -1, 0, 1, 2, 3, \dots$$

S. SRIRAM AND P. VEERAMALLAN

$$U_{n+1} = Y_{n+1} = \frac{1}{2\sqrt{2}} [(3+2\sqrt{2})^{n+1}(10+5\sqrt{2}) - (3-2\sqrt{2})^{n+1}(10-5\sqrt{2})],$$

where $n = -1, 0, 1, 2, 3, ...$

n	X_{n+1}	$U_{n+1} = Y_{n+1}$	x = 2U + 1	$y = 2U^2 + 2U$	$z = 2U^2 + 2U + 1$
-1	10	5	11	60	61
0	50	35	71	2520	2521
1	290	205	411	84460	84461
2	1690	1195	2391	2858440	2858441
3	9850	6965	13931	97036380	97036381

TABLE 3. Numerical examples

Observations:

(1) Recurrence relations for *X* and *Y* are:

$$X_{n+3} - 6X_{n+2} + X_{n+1} = 0$$

$$Y_{n+3} - 6Y_{n+2} + Y_{n+1} = 0$$

- (2) For all values of n, $X_{n+3} + X_{n+1} \equiv 0 \pmod{6}$
- (3) For all values of n, $Y_{n+3} + Y_{n+1} \equiv 0 \pmod{6}$
- (4) For all values of n, X is even and Y is odd.
- (5) For all values of n, X is divisible by 5 and 10, and Y is divisible by 5.

Choice II:

Consider the, $\alpha = 3$ so that equation (2.1) becomes $a^2 = 6U^2 + b^2 + 3$, which leads to the Pellian equation

(2.19)
$$X^2 = DY^2 + K$$

where D = 6, X = a, Y = U and $K = b^2 + 3$. Clearly K is not a Perfect square. For the sake of clear understanding, we present below forms of integral solutions of (2.19) and thus the following choices of b:

(i)
$$b = 1$$

(ii) $b = 3$

Case (1): Setting b = 1, so that K = 4 (Perfect Square). The equation $X^2 = DY^2 + K$ becomes

$$(2.20) X^2 = 6Y^2 + 4$$

 $(X_0,Y_0) = (10,4)$ will be the initial solution of (2.20). Consider the Pellian

$$(2.21) X^2 = 6Y^2 + 1$$

Let $(\bar{x}_0, \bar{y}_0) = (5,2)$ be the initial solution of (2.21). Using Brahmagupta lemma, the general solution (\bar{x}_n, \bar{y}_n) of equation (2.21) is given by:

(2.22)
$$\bar{x}_n + \sqrt{2}\bar{y}_n = (5 + 2\sqrt{6})^{n+1}, n = 0, 1, 2, ...$$

Since irrational roots occur in pairs,

(2.23)
$$\bar{x}_n - \sqrt{2}\bar{y}_n = (5 - 2\sqrt{6})^{n+1}, n = 0, 1, 2, ...$$

From equation (2.22) and (2.23), we obtain:

(2.24)
$$\bar{x}_n = \frac{1}{2} [(5+2\sqrt{6})^{n+1} + (5-2\sqrt{6})^{n+1}], n = 0, 1, 2, 3, ...$$

(2.25)
$$\bar{y}_n = \frac{1}{2\sqrt{6}} [(5+2\sqrt{6})^{n+1} - (5-2\sqrt{6})^{n+1}], n = 0, 1, 2, 3, ...$$

Using the equations (2.24) and (2.25), the solutions of equation (2.20) is given by:

$$X_n = \sqrt{K\bar{x}_n}, n = 0, 1, 2, 3, \dots$$
$$Y_n = \sqrt{K\bar{y}_n}, n = 0, 1, 2, 3, \dots$$

So that,

$$X_n = [(5+2\sqrt{6})^{n+1} + (5-2\sqrt{6})^{n+1}], n = 0, 1, 2, 3, \dots$$
$$U_n = Y_n = \frac{1}{\sqrt{6}} [(5+2\sqrt{6})^{n+1} - (5-2\sqrt{6})^{n+1}], n = 0, 1, 2, 3, \dots$$

Observations

(1) Recurrence relations for X and Y are

$$X_{n+2} - 10X_{n+1} + X_n = 0$$
$$Y_{n+2} - 10Y_{n+1} + Y_n = 0$$

(2) For all values of n, $X_{n+2} + X_n \equiv 0 \pmod{10}$

n	X_{n+1}	$U_{n+1} = Y_{n+1}$	x = 2U + 1	$y = 2U^2 + 2U$	$z = 2U^2 + 2U + 1$
-1	10	4	9	40	41
0	98	40	81	3280	3281
1	970	396	793	314424	314425
2	9602	3920	7841	30740640	30740641
3	95050	38804	77609	3011578440	3011578441

TABLE 4. Numerical examples

(3) For all values of n, $Y_{n+2} + Y_n \equiv 0 \pmod{10}$

- (4) For all values of n, both X and Y are even.
- (5) For all values of n, X is divisible by 2, and Y is divisible by 4.

Case (2): Setting b = 3, so that K = 12 (Non Perfect Square). The equation $X^2 = DY^2 + K$ becomes

$$(2.26) X^2 = 6Y^2 + 12$$

 $(X_0, Y_0) = (6, 2)$ will be the initial solution of (2.26) Consider the Pellian

$$(2.27) X^2 = 6Y^2 + 1$$

Let $(\bar{x}_0, \bar{y}_0) = (5, 2)$ be the initial solution of (2.27). Using Brahmagupta lemma, the general solution (\bar{x}_n, \bar{y}_n) of equation (2.27) is given by:

(2.28)
$$\bar{x}_n + \sqrt{2}\bar{y}_n = (5 + 2\sqrt{6})^{n+1}, n = 0, 1, 2, ...$$

Since irrational roots occur in pairs,

(2.29)
$$\bar{x}_n - \sqrt{2}\bar{y}_n = (5 - 2\sqrt{6})^{n+1}, n = 0, 1, 2, ...$$

From equation (2.28) and (2.29), we obtain:

(2.30)
$$\bar{x}_n = \frac{1}{2} [(5+2\sqrt{6})^{n+1} + (5-2\sqrt{6})^{n+1}], n = 0, 1, 2, 3, ...$$

(2.31)
$$\bar{y}_n = \frac{1}{2\sqrt{6}} [(5+2\sqrt{6})^{n+1} - (5-26)^{n+1}], n = 0, 1, 2, 3, ...$$

Using the equations ((2.30) and (2.31), the solutions of equation (2.26) are given by:

$$X_{n+1} = [(5+2\sqrt{6})^{n+1}(3+\sqrt{6}) + (5-2\sqrt{6})^{n+1}(3-\sqrt{6})], n = -1, 0, 1, 2, 3, \dots$$
$$U_{n+1} = Y_{n+1} = \frac{1}{2\sqrt{2}}[(3+2\sqrt{2})^{n+1}(5+2\sqrt{2}) - (3-2\sqrt{2})^{n+1}(5-2\sqrt{2})],$$

where n = -1, 0, 1, 2, 3, ...

n	X_{n+1}	$X_{n+1} \mid U_{n+1} = Y_{n+1}$	x = 2U + 1	$y = 2U^2 + 2U$	$z = 2U^2 + 2U + 1$
-1	6	6 2	5	12	13
0	54	54 22	45	1012	1013
1	534	534 218	437	95484	95485
2	5286	5286 2158	4317	9318244	9318245
3	52326	2326 21362	42725	912712812	912712813
	5286	5286 2158 2326 21362	4317 42725	9318244	93

 TABLE 5. Numerical examples

Observations

(1) Recurrence relations for *X* and *Y* are:

$$X_{n+3} - 10X_{n+2} + X_{n+1} = 0$$
$$Y_{n+3} - 10Y_{n+2} + Y_{n+1} = 0$$

- (2) For all values of *n*, $X_{n+3} + X_{n+1} \equiv 0 \pmod{10}$
- (3) For all values of *n*, $Y_{n+3} + Y_{n+1} \equiv 0 \pmod{10}$
- (4) For all values of n, both X and Y are even.
- (5) For all values of n, X is divisible by 2, 3 and 6, and Y is divisible by 2.

3. CONCLUSION

One may search for other patterns of solutions and their corresponding properties.

REFERENCES

- [1] L. E. DICKSON: *History of Theory of Numbers*, Vol.II, Chelsea Publishing Company, New York, 1952.
- [2] D. E. SMITH: *History of Mathematics*, Vol.I and II, Dover Publications, New York, 1953.
- [3] W. SIERPINSKI: Pythagorean Triangles, Dover Publications, INC, New York, 2003.
- [4] M. A. GOPALAN, B. SIVAKAMI: Pythagorean triangle with hypotenuse minus (area/perimeter) as a square integer, Archimedes J. math, **2**(2) (2012), 153–156.
- [5] M. A. GOPALAN, V. SANGEETHA, M. SOMANATH: Pythagorean triangle and Polygoanal number, Cayley J.Math., 2(2) (2013), 151–156.

S. SRIRAM AND P. VEERAMALLAN

[6] M. A. GOPALAN, S. VIDHYALAKSHMI, E. PREMALATHA, R. PRESENNA: Special Pythagorean triangle and Kepricker numb-digit dhuruva numbers, IRJMEIT, 1(4) (2014), 29–33.

P.G. AND RESEARCH DEPARTMENT OF MATHEMATICS NATIONAL COLLEGE TIRUCHIRAPPALLI, TAMILNADU, INDIA

P.G Assistant in Mathematics GHSS, Yethapur Salem, Tamilnadu, India