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MITTAG-LEFFLER-ULAM STABILITIES
OF FRACTIONAL EVOLUTION EQUATIONS

P. S. DEEPA1 AND M. ANGAYARKANNI

ABSTRACT. In this paper, we present and discuss four types of Mittag-Leffler-
Ulam stability: Mittag- Leffler-Ulam-Hyers stability, generalized Mittag-Leffler-
Ulam-Hyers stability, Mittag- Leffler-Ulam-Hyers-Rassias stability and general-
ized Mittag-Leffler-Ulam-Hyers-Rassias stability for fractional evolution equa-
tion in Banach spaces.

1. INTRODUCTION

Numerous research papers and monographs have appeared devoted to frac-
tional differential and fractional integral equations. It draws a great application
in nonlinear oscillations of earthquakes, many physicalphenomen a such as see
page flow in porous media and in fluid dynamic traffic model. For more detail
son fractional calculus theory, one can see the monographs of Kilb et al. in [1],
Miller and Ross in [2], Podlubny in [3]. Fractional differential equations and its
optimal control problems have been studied in the papers, [4–6]. On the other
hand, in the theory of functional equations there are some special kind of data
dependence: Ulam-Hyers, Ulam-Hyers-Rassias, Ulam-Hyers-Bourginand Aoki-
Rassias, [7–9]. Motivated by [5, 10], we present four types of Mittag-Leffler-
Ulam stability for the following fractional evolution equation in a Banach space

cDqu (t) = −Au (t) + f (t, u (t)) , q ∈ (0, 1) t ∈ I ⊂ R,
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where cDq is the Caputo fractional derivative of order q and

(i) I := [0, b]or[0,+∞);
(ii) (B, |.|) is a Banach space;

(iii) −A : D(A)→ B is the infinitesimal generator of a C0-semigroup
{S(t), t ≥ 0} or an analytic semigroup of uniformly bounded linear op-
erators {S(t), t ≥ 0};

(iv) f ∈ C(I × B,B) or f ∈ C(I × Bα,B, where Bα = D(Aα)(0 < α < 1) is a
Banach space with the norm |x|α = |Aαx| for x ∈ Bα.

2. PRELIMINARIES

Let (B, |.|) and (Y, |.|) be two Banach spaces, Lb(B,Y) denote the space of
bounded linear operators from B to . We denote C(I,B) the Banach space of all
continuous functions from I into B with the norm ||X||C := sup{|x(t)| : t ∈ I}.

For the main operator −A, we consider the following two cases.
Case1. Let −A : D(A) → B, be the infinite simalgenerator of aC0-semigroup
{S(t), t ≥ 0}. That is, for some fixed T > 0, we can denote
M := supt∈[0,T ]||S(t)||Lb(B,B), which is a finite number.
Case2. Let −A : D(A) → B, be the in finite simalgenerator of ananalytic semi-
group of uniformly bounded linear operators {S(t), t ≥ 0}. This means that
there exists M > 1such that ||S(t)|| ≤ M . Let us recall the following known
definitions of fractional calculus. For more details, see Kilbas et al. in [1].

Definition 2.1. The fractional integral of order γ with the lower limit zero for a
function f is defined as

Iγf (t) =
1

Γ(γ)

∫ t

0

f(s)

(t− s)1−γ ds, t > 0, γ > 0,

provided the right side is point-w is defined on [0,∞), where Γ() is the gamma
function.

Definition 2.2. The Riemann Liouville derivative of order γ with the lower limit
zero for a function f : [0,∞)→ R can be written as

LDγf (t) =
1

Γ(n− γ)

dn

dtn

∫ t

0

f(s)

(t− s)γ+1−nds, t > 0,−1 < γ < n.
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Definition 2.3. The Caputo derivative of order γ for a function f : [0,∞) → R
can be written as

cDγf (t) =L Dγ(f (t)−
n−1∑
k=0

tk

k!
f (k)(0)),t > 0, n− 1 < γ < n

Remark 2.1.

(1) If f(t) ∈ Cn[0,∞), then cDγf (t) = 1
Γ(n−γ)

∫ t
0

f (n)(s)

(t−s)γ+1−nds

= In−γf (n)(t) t > 0,−1 < γ < n.

(2) The Caputo derivative of a constant Is equal to zero.
(3) If f is an abstract function with values in B, then integrals which appearin

Definitions 2.1 and 2.2 are taken in Bochner’s sense.

We recall the following definition of a mild solution for the problem below.
For more details, one can see our earlier work, [5,6].

Definition 2.4.cDqu (t) = −Au (t) + f (t, u (t)) , t ∈ I, q ∈ (0, 1) ,

u(0) = u0

we mean that the function u ∈ C(I,B) which satisfies

u (t) = T (t)u0 +

∫ t

0

(t− s)q−1 S (t− s) f (s, x (s)) ds,t ∈ I,

where
T (t) =

∫∞
0
ξq (θ)S (tqθ) dθ,S (t) = q

∫∞
0
θξq (θ)S (tqθ) dθ,

ξq (θ) = 1
q
θ−1− 1

q$q

(
θ−

1
q

)
≥ 0, $q (θ) = 1

π

∑∞
n=1 (−1)n−1θ−qn−1

Γ(nq+1)
n!

sin (nπq),

θ ∈ (0,∞), ξq is a probability density function defined on (0,∞), i.e.,
ξq (θ) ≥ 0, θ ∈ (0,∞) and

∫∞
0
ξq (θ)dθ = 1.

The following results will be used throughout this paper.

Lemma 2.1. (Lemma 2.9, [5]). The operators T and S have the following prop-
erties:

(1) For any fixed t ≥ 0, T (t) and S (t) are linear and bounded operators, i.e.,
for any x ∈ B, |T (t) (x)| ≤M |x| and |S (t)x| ≤ qM

Γ(1+q)
|x|.

(2) {T (t) , t ≥ 0} and {S (t) , t ≥ 0} are strongly continuous.
(3) For every > 0, T (t) and S (t) are aslo compact operators if S(t) is compact.
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(4) For any x ∈ B, β ∈ (0, 1) and α ∈ (0, 1) , AS (t)x = A1−βS (t)Aβx, t ∈
[0, T ] and

|AαS (t)| ≤ MαqΓ (2− α)

Γ (1 + q (1− α))
t−αq, 0 < t ≤ T.

(5) For any fixed t ≤ 0 and x ∈ Bα, |T (t)x|α ≤ M |x|α and
|S (t)x|α ≤

qM
Γ(1+q)

|x|α .

To end this section, we collect an important singular type Gronwall inequality
which is introduced by Yeetal in [11] and can be used in fractional differential
equations.

Theorem 2.1. Suppose ã(t) is a nonnegative function locally integrable on [0,+∞)

and g̃(t) is a nonnegative, nondecreasing continuous function defined on g̃ (t) ≤
M, t ∈ [0,+∞), and suppose u(t) is nonnegative and locally integrable on [0,+∞)

with

u (t) ≤ ã (t) + g̃ (t)

∫ t

0

(t− s)q−1 u (s)ds, t ∈ [0,+∞) .

Then u (t) ≤ ã (t) +
∫ t

0
[
∑∞

n=1
(g̃(t)Γ(q)n

Γ(nq)
(t− s)nq−1ã (s)]ds. ∈ [0,+∞).

Remark 2.2. Under the hypothesis of Theorem 2.1, let ã (t) be a nondecreasing
function on [0,+∞). Then we have u (t) ≤ ã (t)Eq[g̃ (t) Γ (q) tq], where Eq is the
Mittag-Leffler function defined by Eq [z] =

∑∞
k=0

zk

Γ(kq+1)
, z ∈ C.

3. DEFINITIONS OF MITTAG - LEFFLER - ULAM STABILITIES

For f ∈ (I ×B,B)(orf ∈ (I ×Bα,B)), ε > 0 and ϕ ∈ C(I, R+) we consider the
following equation

(3.1) cDqu (t) = −Au (t) + f (t, u (t)) , t ∈ I,

and the following inequations

(3.2) |cDqv (t) + Av (t)− f (t, v (t))| ≤ ε, t ∈ I,

(3.3) |cDqv (t) + Av (t)− f (t, v (t))| ≤ ϕ (t) , t ∈ I,

(3.4) |cDqv (t) + Av (t)− f (t, v (t))| ≤ εϕ (t) , t ∈ I .
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Definition 3.1. The equation (3.1) is Mittag-Leffler-Ulam-Hyers stable, with re-
spect to Eq, if there exists a real number c > 0 such that for each ε > 0 and for each
solution v ∈ C1(I,B)(orC1(I,Bα) of inequation (3.2) there exists a mild solution
u ∈ C(I,B)(orC(I, Bα)) of equation (3.1) with |v(t)−u(t)| ≤ cεEq[t], for all t ∈ I.

Definition 3.2. Equation (3.1) is generalized Mittag-Leffler-Ulam-Hyersstable, with
respect to Eq, if there exists θ ∈ C(R+,R+), θ(0) = 0, such that for each so-
lution v ∈ C1(I,B)(orC1(I,Bα)) of inequation (3.2) there exists a mild solution
u ∈ C(I,B)(orC(I,Bα)) of equation 3.1 with |v(t)−u(t)| ≤ θ(ε)Eq[t], for all t ∈ I.

Definition 3.3. Equation (3.1) is Mittag-Leffler-Ulam-Hyers-Rassias stable, with
respect to φEq, if there exists cφ > 0 such that for each ε > 0 and for each solu-
tion v ∈ C1(I,B)(orC1(I,Bα)) of inequation (3.4) there exists a mild solution
u ∈ C(I,B)(orC(I,Bα)) of equation (3.1) with |v(t) − u(t)| ≤ cφεφ(t)Eq[t], for
all t ∈ I.

Definition 3.4. Equation (3.1) is generalized Mittag-Leffler-Ulam-Hyers-Rassias
stable, with respect to φEq,if there exists cφ > 0 such that for each solution
v ∈ C1(I,B)(orC1(I,Bα)) of (3.3) there exists a mild solution

u ∈ C(I,B)(orC(I,Bα))

of equation (3.1) with |v(t)− u(t)| ≤ cφφ(t)Eq[t], for all t ∈ I.

Remark 3.1. It is clear that:

(i) Definition 3.1⇒ Definition 3.2;
(ii) Definition 3.3⇒ Definition 3.4.

Remark 3.2. A function v ∈ C1(I,B)(orC1(I,Bα)) is a solution of inequation
(3.2) if and only if there exists a function g ∈ C(I,B)(orC(I,Bα)) (which depend
on v) such that:

(i) |g(t)| ≤ ε, for all t ∈ I;
(ii) cDqv(t) = −Av(t) + f(t, v(t)) + g(t), t ∈ I.

We have similar remarks for in equations (3.3) and (3.4).
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Remark 3.3. (1) If v ∈ C1(I,B) is a solution of in equation (3.2), then v is a
solution of the following integral in equation∣∣∣∣v (t)− T (t) v (0)−

∫ t

0

(t− s)q−1 S (t− s) f (s, v (s)) ds

∣∣∣∣
≤ ε

∫ t

0

(t− s)q−1||S(t− s)||ds.

(2) If v ∈ C1(I,Bα) is a solution of in equation (3.2),then v is a solution of
the following integral in equation∣∣∣∣v (t)− T (t) v (0)−

∫ t

0

(t− s)q−1 S (t− s) f (s, v (s)) ds

∣∣∣∣
α

≤ ε

∫
0

t(t− s)q−1||S(t− s)||αds.

We have similar remarks for the solutions of in equations (3.3) and (3.4).

4. MITTAG-LEFFLER-ULAM-HYERS STABILITY ON A COMPACT INTERVAL

Let us consider equation (3.1) and in equation(3.2) in the case I:= [0, b].
Case 1. {S(t), t ≥ 0} is C0-semigroup.

Theorem 4.1. We suppose that:

(1) f ∈ C([0, b]× B,B)

(2) there exists Lf > 0 such that |f(t, w1)− f(t, w2)| ≤ Lf |w1 −w2|, forall t ∈
[0, b], w1, w2 ∈ B. Then equation (3.1) is Mittag-Leffler-Ulam-Hyersstable.

Proof. Let v ∈ C1(I,B) be a solution of in equation (3.2). Let us denote by
u ∈ C([0, b],B) the unique mild solution of the Cauchy problem

(4.1)

cDqu (t) = −Au (t) + f (t, u (t)) , t ∈ [0, b] ,

u(0) = v(0)
.

We have

u (t) = T (t) v (0) +

∫ t

0

(t− s)q−1 S (t− s) f (s, u (s)) ds,t ∈ [0, b] ,
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And applying Lemma 2.1, one can get∣∣∣∣v (t)− T (t) v (0)−
∫ t

0

(t− s)q−1 S (t− s) f (s, v (s)) ds

∣∣∣∣
≤ ε

∫
0

t(t− s)q−1||S(t− s)||ds

≤ qMε

Γ (1 + q)

∫ t

0

(t− s)q−1 ds

≤ Mbq

Γ (1 + q)
ε.

From these relations, we have

|v (t)− u (t)| ≤
∣∣∣∣v (t)− T (t) v (0)−

∫ t

0

(t− s)q−1 S (t− s) f (s, v (s)) ds

∣∣∣∣
+

∫
0

t(t− s)q−1||S(t− s)||.|f(s, v(s))− f(s, u(s))|ds

≤ Mbq

Γ (1 + q)
ε+

LfqM

Γ (1 + q)

∫ t

0

(t− s)q−1 |v (s)− u (s)| ds.

It comes from Theorem 2.1 that

|v (t)− u (t)| ≤ Mbq

Γ (1 + q)
Eq

[
LfqM

Γ (1 + q)
Γ (q) tq

]
ε.

Thus, the conclusion of our theorem holds.
Case 2. {S(t), t ≥ 0} is ananalytic semigroup.

�

Theorem 4.2. We suppose that

(1) f ∈ C([0, b]× Bα,B)

(2) there exists Lf > 0 such that |f(t, w1) − f(t, w2)| ≤ Lf |w1 − w2|α, for all
t ∈ [0, b], w1, w2 ∈ Bα. Then (3.1) is Mittag-Leffler-Ulam-Hyers stable.

Proof. Let v ∈ C1([0, b],Bα) be a solution of in equation (3.2). Let us denote
by u ∈ C([0, b],Bα) the unique mild solution of the Cauchy problem and apply
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Lemma 2.1, one can get∣∣∣∣v (t)− T (t) v (0)−
∫ t

0

(t− s)q−1 S (t− s) f (s, v (s)) ds

∣∣∣∣
α

≤ ε

∫
0

t(t− s)q−1||S(t− s)||αds

≤ bq(1−α)MαΓ (2− α)

(1− α) Γ (1 + q (1− α))
ε.

From these relations, we have

|v (t)− u (t)|α

≤ bq(1−α)MαΓ (2− α)

(1− α) Γ (1 + q (1− α))
ε

+
LfMαqΓ (2− α)

Γ (1 + q (1− α))

∫ t

0

(t− s)q−αq−1 |v (s)− u (s)|α ds.

It comes from Theorem 2.1 that

|v (t)− u (t)|α ≤
bq(1−α)MαΓ (2− α)

(1− α) Γ (1 + q (1− α))
Eq(1−α)[

LfMαqΓ (2− α)

Γ (1 + q (1− α))
Γ (q (1− α)) tq(1−α)

]
ε.

�

5. GENERALIZED MITTAG-LEFFLER-ULAM-HYERSSTABILITYON [0,+∞)

Let us consider equation (3.1) and in equation (3.3) in the case I:= [0,+∞).
Case 1. {S(t), t ≥ 0} is a C0-semigroup.

Theorem 5.1. We suppose that

(1) f ∈ C([0,+∞)× B,B)

(2) L(t) is a nonnegative, nondecreasing continuous function defined on
L(t) ≤ M, t ∈ [0,+∞) and |f(t, w1) − f(t, w2)| ≤ L(t)|w1 − w2| for all
t ∈ [0,+∞), w1, w2 ∈ B
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(3) the function ϕ ∈ C([0,+∞) ,R+) is increasing and there exists λ > 0 such
that

∫
0
t(t−s)q−1||S(t−s)||ϕ(s)ds ≤ λϕ(t) for all t ∈ [0,+∞). Then equa-

tion (3.1) is generalized Mittag-Leffler-Ulam-Hyers-Rassias stable with re-
spect to φE.

Proof. Let v ∈ C1([0,+∞),B) be asolution of in equation (3.3). By Remark 3.2,
we have that∣∣∣∣v (t)− T (t) v (0)−

∫ t

0

(t− s)q−1 S (t− s) f (s, v (s)) ds

∣∣∣∣
≤
∫

0

t(t− s)q−1||S(t− s)||ϕ(s)ds ≤ λϕ (t) ,

for all t ∈ [0,+∞).
Let us denote by u ∈ C([0,+∞),B) the unique mild solution of the Cauchy

problem

(5.1)

cDqu (t) = −Au (t) + f (t, u (t)) , t ∈ [0,+∞) ,

u(0) = v(0)

we have that

u (t) = T (t) v (0) +

∫ t

0

(t− s)q−1 S (t− s) f (s, u (s)) ds,t ∈ [0,+∞) .

It follows from

|v (t)− u (t)| ≤ λϕ (t) +
qML(t)

Γ(1 + q)

∫ t

0

(t− s)q−1 |v (s)− u(s)| ds

and Theorem 2.1 that equation (3.1) is generalized Mittag-Leffler-Ulam-Hyers-
Rassiasstable.
Case 2. {S(t), t ≥ 0}is ananalytic semigroup.

�

Theorem 5.2. We suppose that

(1) f ∈ C([0,+∞)× Bα,B)

(2) L(t) is a nonnegative, nondecreasing continuous function defined on
L(t) ≤ ML, t ∈ [0,+∞) and |f(t, w1) − f(t, w2)| ≤ L(t)|w1 − w2|α for
all t ∈ [0,+∞), w1, w2 ∈ Bα
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(3) the function ϕ ∈ C([0,+∞) ,R+) is increasing and there exists λ > 0 such
that

∫
0
t(t − s)q−1||S(t − s)||ϕ(s)ds ≤ λϕ(t) for all t ∈ [0,+∞). Then

equation (3.1)is generalized Mittag-Leffler-Ulam-Hyers-Rassias stable with
respect to φEq.

Proof. Let v ∈ C1([0,+∞),Bα) be a solution of in equation (3.3). By Remark
3.2, we have that∣∣∣∣v (t)− T (t) v (0)−

∫ t

0

(t− s)q−1 S (t− s) f (s, v (s)) ds

∣∣∣∣
α

≤ λϕ (t) ,

for all t ∈ [0,+∞).
Let us denote by u ∈ C([0,+∞),Bα) the unique mild solution of the Cauchy

problem (5.1) and by applying Lemma 2.1, one can get

|v (t)− u (t)|α ≤ λϕ (t) +
L(t)MαqΓ (2− α)

Γ (1 + q (1− α))
·
∫ t

0

(t− s)q−αq−1 |v (s)− u(s)|α ds.

Using Theorem 2.1 again, one can obtain the results. �
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