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HERMITE-HADAMARD TYPE OF INEQUALITIES FOR HARMONICALLY
CONVEX FUNCTION USING FOURIER INTEGRAL TRANSFORM

A. MOHANAPRIYA1 AND A. GANESH

ABSTRACT. The aim of this paper is to establish some new Hermite-Hadamard
form of inequalities of harmonic convex characteristic in reference to Fourier
transform integral. Some results are obtained related to Hermite-Hadamard
type of inequalities of these magnificence of characteristic.

1. INTRODUCTION

The inequalities plays a significant part in the world of mathematics. In fact,
most of the mathematical inequalities act as a basic tool for constructing proof
of important theorems and estimate several known definite integrals. The the-
ory of convexity has been subject so far-reaching studies throughout the past
few years because of its performance in numerous branches of pure and applied
mathematics. The standards of convexity has been unlimited and regularly oc-
curring in numerous directions. The classical convexity is defined as follows: s
function K : I ⊆ R→ R is said to be convex if the inequality

K (ξx+ (1− ξ)y) ≤ ξK(x) + (1− ξ)K(y)

holds for all x, y ∈ I and ξ ∈ [0, 1]. The convexity in connection with inequalities
has also influenced several mathematicians from all over the world. For the
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past three decades, many researchers have provided special attention to study
various aspects of convex functions. The most fascinating inequality associated
with convex function is called as Hermite-Hadamard inequality. In literatures,
the Hermite-Hadamard inequality is named by Charles Hermite (1822 − 1901)

and Jacques Hadamard (1865− 1963). This states that if a function K : I ⊆ R→
R is convex, then the following chain of inequalities holds

K(c) +K(d)
2

≤ 1

d− c

∫ d

c

K(x)dx ≤ K(c) +K(d)
2

.

For more results which provide calculations of the mean value of convex func-
tions, extension, generalizations, refinements and numerous application, see
[2, 6]. In line with the above mentioned definition, the considerable convex is
harmonically convex functions has been introduced and studied by Iscan [1].

Definition 1.1. A mapping K : I ⊆ R→ R is said to be harmonic convex if

K
(

xy

ξx+ (1− ξ)y

)
≤ ξK(x) + (1− ξ)K(y), ∀x, y ∈ I .

The Hermite-Hadamard inequality for harmonically convex function is as the
following:

Theorem 1.1. [1] Let K : I ⊆ R/0 → R be harmonically convex and a < b. If
f ∈ L[a, b], then following inequalities hold

K
(

2cd

c+ d

)
≤ cd

d− c

∫ d

c

K(x)
x2

dx ≤ K(c) +K(d)
2

.

For some results to harmonic convex function and its generalization, the re-
searcher refer the readers to visit [3–5]. The convexity of function and their
generalized forms play an immodest role in many fields such as optimization,
economic science, biology.

Theorem 1.2. [2] If a function K : I ⊆ (−∞,∞) → R is harmonic convex
function and g : (−∞,∞) → R is a linear function, then f ◦ g is a harmonic
convex.

Now we take into account some primary ideas of Fourier transform [7]. If
a function K : R → F is piecewise continuous in each finite interval and is
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absolutely integrable on R, then the Fourier transform is given by the integral

F̂ (K(ξ)) =
∫ ∞
−∞
K(x)eiξxdx .

The inverse Fourier transform is defined by

K(x) = 1

2π

∫ ∞
−∞

F̂ (K(ξ))e−iξxdξ .

Definition 1.2. The Fourier transform of composition of two function K(x) and
K(x) is defined as

F̂ (K ◦ G)(x) =
∫ ∞
−∞
K(G(x))e−iξxdx .

Motivated and considered by ongoing research in this field, the aim of this
paper is to establish new Hermite-Hadamard type of inequalities for harmonic
convex function in terms of Fourier transform.

2. MAIN RESULTS

In this section, we are going to derive our results related to Fourier integral
transform of harmonically convex function.

Theorem 2.1. Let K : I ⊆ (−∞,∞) → R be a convex function with c < d and
c, d ∈ I. Then, the following inequalities for Fourier integral transform hold:

K
(
c+ d

2

)
≤ iξ

2(1− e−iρ)

(
F̂ (K ◦ G)(ξ + 1

d
) + F̂ (K ◦ G)(ξ − 1

c
)

)
≤ K(c) +K(d) .

Proof. Consider the functionK is harmonically convex function on [u, v] ⊆ (−∞,∞),
for all u, v ∈ [c, d], we have

K
(

2uv

u+ v

)
≤ K(u) +K(v)

2
.

Setting u =
cd

td+ (1− t)c
and v =

cd

(1− t)d+ tc
, then we get

K
(

2cd

c+ d

)
≤
K
(

cd
tc+(1−t)d

)
+K

(
cd

td+(1−t)c

)
2

.(2.1)
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Let ρ =
ξ(d− c)
cd

. Multiplying both sides of (2.1) by e−iρt and then integrating

the resulting inequality with respect to t over [0, 1], then we obtain∫ 1

0
K
(

2cd

c+ d

)
e−iρtdt ≤1

2

{∫ 1

0
K
(

cd

td+ (1− t)c

)
e−iρtdt+

∫ 1

0
K
(

cd

(1− t)d+ tc

)
e−iρtdt

}
K
(

2cd

c+ d

)(
1− e−iρ

iρ

)
≤ cd

2(d− c)

{(∫ 1
c

1
b

K(1
s
)e−iξ(s−

1
b
)ds+

∫ 1
c

1
d

K(1
t
)e−iξ(

1
a
−t)dt

)}

K
(

2cd

c+ d

)
≤ iξ

2 (1− e−iρ)

{(
ei

1
d
ξ

∫ 1
c

1
d

K
(
1

s

)
e−iξsds+ e−i

1
c
ξ

∫ 1
c

1
d

K
(
1

t

)
eiξtdt

)}
.

Let G(s) = 1

s
, ∀s ∈ I and by convolution property of Fourier transform, then we

get

K
(

2cd

c+ d

)
≤ iξ

2 (1− e−iρ)

{
F̂ (K ◦ G)

(
ξ +

1

b

)
+ F̂ (K ◦ G)

(
ξ − 1

a

)}
.

Thus the first part of the inequality is established. For the proof of the second
inequality, since K is harmonically convex function, then for t ∈ [0, 1] it gives

K
(

cd

td+ (1− t)c

)
≤ tK(c) + (1− t)K(d) ,(2.2)

and

K
(

cd

tc+ (1− t)d

)
≤ tK(d) + (1− t)K(c) .(2.3)

By addition of the inequalities (2.2) and (2.3), we get

K
(

cd

td+ (1− t)c

)
+K

(
cd

tc+ (1− t)d

)
≤ K(c) +K(d) .(2.4)

Then multiplying both sides of (2.4) by e−iρt and integrating the resulting in-
equality with respect to t over [0, 1], we get,∫ 1

0
K
(

cd

td+ (1− t)c

)
e−iρtdt+

∫ 1

0
K
(

cd

tc+ (1− t)d

)
e−iρtdt ≤

∫ 1

0
(K(c) +K(d))e−iρtdt

(
ei

1
d
ξ

∫ 1
c

1
d

K
(
1

s

)
e−iξsds+ e−i

1
c
ξ

∫ 1
c

1
d

K
(
1

t

)
eiξtdt

)
≤ (K(c) +K(d))

(
1− e−iρ

iξ

)
iξ

(1− e−iρ)

(
F̂ (K ◦ G)(ξ + 1

d
) + F̂ (K ◦ G)(ξ − 1

c
)

)
≤K(c) +K(d) .

This completes the proof. �
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Theorem 2.2. Let K : I ⊆ (−∞,∞) → R be a differentiable function over an
interval I such that f ′ ∈ L[c, d], where c, d ∈ I with a < b. Then we have:

K
(
c+ d

2

)
− iξ

2(1− e−iρ)

(
F̂ (K ◦ G)(ξ + 1

d
) + F̂ (K ◦ G)(ξ − 1

c
)

)
=
cd(d− c)
2(e−iρ−1)

∫ 1

0

e−iρt − e−iρ(1−t)

(tc+ (1− t)d)2
f ′
(

cd

tc+ (1− t)d)

)
dt .

Proof. Consider

cd(d− c)
2

∫ 1

0

e−iρt − e−iρ(1−t)

(tc+ (1− t)d)2
K′
(

cd

tc+ (1− t)d)

)
dt

=
cd(d− c)

2

∫ 1

0

e−iρt

(tc+ (1− t)d)2
K′
(

cd

tc+ (1− t)d)

)
dt

−cd(d− c)
2

∫ 1

0

e−iρ(1−t)

(tc+ (1− t)d)2
K′
(

cd

tc+ (1− t)d)

)
dt

= I1 − I2 .

By integration by parts,

I1 =
1

2

(
e−iρtK

(
cd

tc+ (1− t)d

))1

0

+
iρ

2

∫ 1
c

1
d

e−iρtK
(

cd

tc+ (1− t)d

)
dt

=
1

2

(
e−iρK(d)−K(c)

)
+
iξ

2

∫ 1
c

1
d

e−iξ(s−
1
d
)K(1

s
)ds

=
1

2

(
e−iρK(d)−K(c)

)
+
iξ

2
e
iξ
d F̂ (K ◦ G)(ξ + 1

b
) ,

and

I2 =
1

2

(
e−iρ(1−t)K

(
cd

tc+ (1− t)d

))1

0

− iρ

2

∫ 1
c

1
d

e−iρ(1−t)K
(

cd

tc+ (1− t)d

)
dt

=
1

2

(
K(d)− e−iρK(c)

)
− iξ

2

∫ 1
c

1
d

e−iξ(s−
1
d
)K(1

s
)ds

=
1

2

(
K(d)− e−iρK(c)

)
− iξ

2
e

−iξ
c F̂ (K ◦ G)(ξ − 1

a
) .
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In view of the previous equation, we have:

cd(d− c)
2

∫ 1

0

e−iρt − e−iρ(1−t)

(tc+ (1− t)d)2
K′
(

cd

tc+ (1− t)d)

)
dt

=
1

2

(
e−iρK(d)−K(c)

)
+
iξ

2
e
iξ
d F̂ (K ◦ G)(ξ + 1

b
)

+
1

2

(
K(d)− e−iρK(c)

)
− iξ

2
e

−iξ
c F̂ (K ◦ G)(ξ − 1

a
)

=
e−iρ

2
(f(a) + f(b))− 1

2
(f(a) + f(b))

+
iξ

2

(
F̂ (K ◦ G)(ξ + 1

b
) + F̂ (K ◦ G)(ξ − 1

a
)

)
.

This implies that

cd(d− c)
2(e−iρ − 1)

∫ 1

0

e−iρt − e−iρ(1−t)

(tc+ (1− t)d)2
K′
(

cd

tc+ (1− t)d)

)
dt =

(f(a) + f(b))

2

+
iξ

2(e−iρ − 1)

(
F̂ (K ◦ G)(ξ + 1

b
) + F̂ (K ◦ G)(ξ − 1

a
)

)
.

The proof is complete. �

Lemma 2.1. For 0 < ϑ ≤ 1 and 0 ≤ c < d, we have∣∣cϑ − dϑ∣∣ ≤ (d− c)ϑ ≤ dϑ + cϑ .

Theorem 2.3. Let K : I(0,∞) → R be a differentiable function on I such that
K′ ∈ L(c, d), where c, d ∈ I with c < d. If |f ′| is harmonically convex on [a, b]

for some fixed q > 1, then the following inequality for Fourier integral transform
holds:

K
(
c+ d

2

)
− iξ

2(1− e−iρ)

(
F̂ (K ◦ G)(ξ + 1

d
) + F̂ (K ◦ G)(ξ − 1

c
)

)
≤ cd(d− c)
2(e−iρ − 1)

(
B

1
2
1 + B

1
2
2

)( |K′(d)|p + |K′(c)|q
2

) 1
q

,

where,

B1 =
∫ 1

0

e−iρ(1−t)p

(tc+ (1− t)d)2p
dt and B2 =

∫ 1

0

e−iρtp

(tc+ (1− t)d)2p
dt .
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Proof. Using Theorem 2.2 and Lemma 2.1, we have∣∣∣∣K(c+ d

2

)
− iξ

2(1− e−iρ)

(
F̂ (K ◦ G)(ξ + 1

d
) + F̂ (K ◦ G)(ξ − 1

c
)

)∣∣∣∣
≤ cd(d− c)

2(e−iρ−1)

∫ 1

0

e−iρt − e−iρ(1−t)

(tc+ (1− t)d)2

∣∣∣∣K′( cd

tc+ (1− t)d

)∣∣∣∣ dt
≤ cd(d− c)

2(e−iρ−1)

{∫ 1

0

e−iρ(1−t)

(tc+ (1− t)d)2

∣∣∣∣K′( cd

tc+ (1− t)d

)∣∣∣∣ dt
+

∫ 1

0

e−iρt

(tc+ (1− t)d)2

∣∣∣∣K′( cd

tc+ (1− t)d)

)∣∣∣∣ dt}
.

By Holders inequality and harmonic convexity of |K′|q, we get∣∣∣∣K(c+ d

2

)
− iξ

2(1− e−iρ)

(
F̂ (K ◦ G)(ξ + 1

d
) + F̂ (K ◦ G)(ξ − 1

c
)

)∣∣∣∣
≤ cd(d− c)

2(e−iρ−1)

{(∫ 1

0

e−iρtp

(tc+ (1− t)d)2p
dt

) 1
p
(∫ 1

0

∣∣∣∣K′( cd

tc+ (1− t)d)

)∣∣∣∣ dt)
1
q

}

+
cd(d− c)
2(e−iρ−1)

{(∫ 1

0

e−iρtp

(tc+ (1− t)d)2p
dt

) 1
p
(∣∣∣∣K′( cd

tc+ (1− t)d)

)∣∣∣∣ dt) 1
q

}

≤ cd(d− c)
2(e−iρ−1)

(B
1
p

1 +B
1
p

2 )

(∫ 1

0

t |K′(c)|q + (1− t) |K′(d)|q dt
) 1

q

,

where,

B1 =
∫ 1

0

e−iρ(1−t)p

(tc+ (1− t)d)2p
dt and B2 =

∫ 1

0

e−iρtp

(tc+ (1− t)d)2p
dt ,

which is required result. �

Theorem 2.4. Let K : I ⊆ (0,∞) → R be a continuously differentiable function
on I with c < d, c, d ∈ I, If |f ′| is harmonically convex on [a, b] for q > 1, then the
following inequality for Fourier integral transform holds:

K
(
c+ d

2

)
− iξ

2(1− e−iρ)

(
F̂ (K ◦ G)(ξ + 1

d
) + F̂ (K ◦ G)(ξ − 1

c
)

)
≤ cd(d− c)
2(e−iρ − 1)

C1
e−iρq

2iρq

(
|K′(d)|q + |K′(c)|q

)
(2.5)
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where,

C1 =
∫ 1

0

1

(tc+ (1− t)d)2p
dt .

Proof. Using Theorem 2.2 and Lemma 2.1, we have:

∣∣∣∣K(c+ d

2

)
− iξ

2(1− e−iρ)

(
F̂ (K ◦ G)(ξ + 1

d
) + F̂ (K ◦ G)(ξ − 1

c
)

)∣∣∣∣
≤ cd(d− c)

2(e−iρ−1)

∫ 1

0

∣∣∣∣∣e−iρ(1−t) − e−iρt(tc+ (1− t)d)2

∣∣∣∣∣
∣∣∣∣K′( cd

tc+ (1− t)d)

)∣∣∣∣ dt
≤ cd(d− c)

2(e−iρ−1)

(∫ 1

0

1

(tc+ (1− t)d)2p

) 1
p
(∫ 1

0

∣∣∣e−iρ(1−t) − eiρt∣∣∣q ∣∣∣∣K′( cd

tc+ (1− t)d

)∣∣∣∣q dt)
1
q

≤ cd(d− c)
2(e−iρ−1)

(∫ 1

0

1

(tc+ (1− t)d)2p

) 1
p
(∫ 1

0

∣∣∣e−iρ(1−2t)∣∣∣q [t ∣∣K′(d)∣∣q + (1− t)
∣∣K′(c)∣∣q] dt) 1

q

≤ cd(d− c)
2(e−iρ−1)

(∫ 1

0

1

(tc+ (1− t)d)2p

) 1
p
((∫ 1

0

∣∣∣e−iρ(1−2t)∣∣∣q tdt) ∣∣K′(d)∣∣q
+

(∫ 1

0

∣∣∣e−iρ(1−2t)∣∣∣q (1− t)dt) ∣∣K′(c)∣∣q) ,

where,

C1 =
∫ 1

0

1

(tc+ (1− t)d)2p
dt

C2 =
∫ 1

0

∣∣e−iρ(1−2t)∣∣q tdt = ∫ 1
2

0

e−iρq(1−2t)tdt+

∫ 1

1
2

e−iρq(2t−1)tdt

=

(
te−iρ(1−2t)

2iρq
− e−iρ(1−2t)

(2iρq)2

) 1
2

0

+

(
te−iρ(1−2t)

2iρq
− e−iρ(2t−1)

(2iρq)2

)1

1
2

=
e−iρq

2iρq

C3 =
∫ 1

0

∣∣e−iρ(1−2t)∣∣q (1− t)dt = −e−iρq
2iρq

.

Thus, if we use the last three equations, we obtain the inequality in (2.5). This
completes the proof. �
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3. APPLICATION

(1) Let K : I ∈ (−∞,∞) → R, defined by f(x) = x is harmonic convex
function on I. Therefore, by Theorem 2.1, we have:

2cd

c+ d
≤ cd

d− c
(logd− logc) ≤ c+ d

2

which gives relation between hamonic, logorithmic and Arithmetic means.
(2) Let K : I ∈ (−∞,∞) → R, defined by f(x) = e−2x is harmonic convex

function on I. We have,

e
−4cd
c+d ≤ cd

d− c

∫ d

c

e−2x

x2
dx ≤ e−2c + e−2d

2
.

(3) Since f(x) = cosx is harmonic convex function in (0, π), therefore, by
using Theorem 2.1 for c, d ∈ (0,∞), we have:

cos

(
2cd

c+ d

)
≤ cd

d− c

∫ d

c

cosx

x2
dx ≤ cos c+ cos d

2
.

Similarly, we can calculate some definite integrals.

4. CONCLUSION

We have established some non-numeric calculations of well known definite
integrals related to Hermite-Hadamard type of inequalities of harmonic convex
function by using Fourier transform. This new class unifies several classes of
harmonically convex functions which may inspire further research in this fields.
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