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DIFFUSION ANALYSIS OF A PREY-PREDATOR MODEL WITH HOLLING
TYPE II FUNCTIONAL RESPONSE

G. BASAVA KUMAR1, M. N. SRINIVAS, AND V. MADHUSUDANAN

ABSTRACT. In this article, a prey predator model with Holling type II func-
tional response with diffusive parameters is proposed to analyse the dynamics
and effects of diffusion and delay further. Local and global stability is discussed
both analytically and graphically. An appropriate time delay is introduced in
the model to catch the effects of the delay and considering delay as bifurca-
tion parameter to examine the Hopf-bifurcation, which allows us to draw some
interesting findings to discuss in both analytical and graphical view. Finally
numerical simulations are performed to validate the results by using MATLAB.

1. INTRODUCTION

Mathematical modelling is a significant tool in numerous fields like natural
science, applied mathematics, economics and engineering science. Modelling
of collaborating populations can give profitable bits of knowledge into varieties
of populations over a period of time. In this article, we consider prey-predator
framework with a Holling type II association. In present examination, populace
models showing up in various fields of numerical science have been inferred
and contemplated comprehensively because of their all-inclusive presence and
significance [1]. The most significant urgent component in prey-predator frame-
work is the kinds of practical reaction. It portrays the quantity of prey devoured
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per predator per unit time for given amounts of prey and predator. The helpful
and significant practical reaction is known as Holling type-II is as in the form of
R(p1) = kp1/(n + p1), where p1 and p2 are the population densities of the prey
and predator, respectively. k is the maximal predator per capita consumption
rate, the maximum number of prey that can be eaten by a predator in each time
unit; n is the half capturing saturation constant. i.e., the number of prey neces-
sary to achieve one half of the maximum rate k. Marine saves likewise help in
ensuring bio assorted variety and eco framework structure. In the writing [2],
C. W .Clark examines broadly the ideal administration inexhaustible assets as
fishery. Leung [3], B. S. Ghosh [4], Mesterton-Gibbons.M [5, 6] contemplated
the affordable and organic of sustainable assets by displaying dynamic model
for fishery assets. The stage organized prey predator model with reaping is a
significant model and it is considered by numerous creators [7–12]. The impact
of dispersal and spatial heterogeneity is progressively significant in the popu-
lace elements as it assumes real job in the dependability of the environment.
The subjective hypothesis on the diffusive frameworks was built and created by
numerous analysts [11–18]. The organization of this article is as follows that
the mathematical model is available in section 2; analysis of stability of non-
diffusive system is in section 3 whereas section 4 consists of stability of diffusive
system. We add some numerical simulations in section 5. The conclusions are
provided in section 6.

2. MATHEMATICAL MODEL

We consider an ecological system, where prey and predator species living
together with the spatiotemporal effect along with Holling type II interaction
between the species. Assume that the prey species are growing logistically and
the predator purely depends on prey for food with Holling type-II interaction.
Also, it is ignoring the mortality rate of prey and considering the mortality rate
of predator species. Let p1 and p2 represents the density of prey and preda-
tors respectively at any time t, c1 represents carrying capacity of prey species, i1
represents intrinsic growth rate of prey species, m1 is the mortality rate of preda-
tor species, the term (r1p1)/(1 + r2p1) represents the functional response of the
predator, (r1/r2) is the maximum number of prey that eaten by each predator in
unit time, (1/r2) is the density of prey necessary to achieve one half that rate,
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m2 is the conversion factor denoting the number of newly born predators for
each captured prey. Dp1 , Dp2 represent the constant diffusion coefficient of the
prey, predator species. Keeping these in view, the mathematical model of the
system is governed by the following equations:

(2.1)
∂p1
∂t

= i1p1

(
1 − p1

c1

)
− r1p1p2

1 + r2p1
+D1

∂2p1
∂x2

,

(2.2)
∂p2
∂t

= p2

(
r1m2p1
1 + r2p1

−m1

)
+D2

∂2p2
∂x2

.

We consider the following conditions of the population

(2.3) p1(u, t) and p2(u, t) in 0 ≤ u ≤ LL > 0,

(2.4)
∂p1(0, t)

∂t
=
∂p1(L, t)

∂t
=
∂p2(0, t)

∂t
=
∂p2(L, t)

∂t
= 0.

3. DYNAMICS OF THE SYSTEM IN THE ABSENCE OF DIFFUSION

Equilibria: The probable steady situations of the scheme (2.1)-(2.2) are

E1(0, 0), E2(p1
θ, 0), E3(0, p2

ϕ), E4(p1
∗, p2

∗).

Since we are studying the stability of the given system around interior equilib-
rium point E4(p1

∗, p2
∗), the concentration is on E4(p1

∗, p2
∗) only.

p1
∗ = m1/(r1m2 − r2m1); p2

∗ = (1 + r2p1) (i1 − (i1p1/c1)) /r1

For p1∗ and p2∗ are to be positive, provided

m2 > (m1r2/r1)andc1 > p1
∗

Local Stability: To check the local stability at E4(p1
∗, p2

∗), it is required to form
Jacobean matrix of the system (2.1)-(2.2). Let this matrix be in the form of

J =

[
P Q

R S

]
, where

P = −i1p1
c1

+
r1r2p1p2

(1 + r2p1)2
, Q =

−r1p1
1 + r2p1

, R =
p2r1m2

(1 + r2p1)2
, S = 0.

The characteristic equation of J is

λ2 − Pλ− (QR) = 0.
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Clearly, the system is locally asymptotically stable provided (i1/c1) < M .

Global Stability:

Theorem 3.1. : The positive equilibrium E4(p1
∗, p2

∗) of system (2.1)-(2.2) is glob-
ally asymptotically stable if (i1 > (Ac1)/(1 + r2p1)) and (1 + r2p1) > 0, where
A = (r1r2p2

∗)/(1 + r2p1
∗).

4. DYNAMICS OF THE SYSTEM IN THE PRESENCE OF DIFFUSION

We consider the effect of diffusion of ecological population on the above
model (2.1)-(2.2). Here Dp1 and Dp2 represents the constant diffusion coeffi-
cients of the prey and predator species. The model system (2.1)-(2.2) are in
homogeneous as the reaction diffusion system is added at the top. For such
introduction of the diffusion terms of the populations, it has become a spatio-
temporal one dimensional system. We consider the conditions (2.3)-(2.4). The
zero isoclines of model equations (2.1)-(2.2) also give the steady state which
are same as we have obtained for homogeneous system. Now we consider lin-
earized the system of (2.1)-(2.2) about the interior steady state as

(4.1)
∂p1
∂t

= i1p1p1
∗ + c1rp2p1

∗ +D1
∂2p1
∂x2

,

(4.2)
∂p2
∂t

= r1m2p1p2
∗ −m1r2p2p2

∗ +D2
∂2p2
∂x2

,

by putting p1 = p1
∗ + P1 and p2 = p2

∗ + P2. Let us assume the solutions in the
form

P1(u, t) = α1e
λteiku, P2(u, t) = α2e

λteiku,

where λ and k are frequency and wave numbers respectively. Then the charac-
teristic equation of the model (4.1)-(4.2) is given by

(4.3) λ2 + A1λ+ A2 = 0,

A1 = i1p1
∗ − k2(D1 +D2) +m1r2p2

∗,

A2 = D1D2k
4 + k2(D1i1c1r2p1

∗ −D2m1r2p2
∗) + p1

∗p2
∗r2(m1 − c1r1m2).

Let us rewrite A2 as a function of k2 say G(k2) and is as follows. G(k2) =

D1D2k
4 +k2(D1i1c1r2p1

∗−D2m1r2p2
∗) +p1

∗p2
∗r2(m1− c1r1m2), our main goal is
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to derive the criteria for diffusive instability of model system (2.1)-(2.2).The sys-
tem (2.1)-(2.2) is unstable if one of the above roots of the equation (4.3) is posi-
tive. A necessary condition for a root to be positive is that
i1p1

∗ − k2(D1 + D2) + m1r2p2
∗ > 0 and (i1p1

∗ + m1r2p2
∗) − k2(D1 + D2) > 0.

This implies that

(4.4) k2 < (i1p1
∗ +m1r2p2

∗) /(D1D2).

Thus, the necessary condition for diffusive instability of the system is
i1p1

∗ + m1r2p2
∗ > 0. The sufficient condition for positivity of one of the roots

of the equation (4.3) is G(k2) < 0. Since G(k2) is an expression in k2 where
k the wave number, non-zero positive quantity, the minimum of G(k2) occurs.
Let (k2)min be the corresponding value of k2 for minimum value of G(k2). The
corresponding minimum value of G(k2) is

G(k2)
(i1p1

∗)2D2

4D1

,

provided

(4.5) Γ <
4m1r2
i1p1∗

; Γ =
D1

D2

.

Thus the diffusion of the prey predator populations derives the ecological system
into unstable oscillation when (4.4) and (4.5) are satisfied.

Theorem 4.1.

(i) if the interior equilibrium of the non-diffusive system is globally stable, and
then the respective uniform steady state of the diffusive model (2.1)-(2.2)
under (2.3) and (2.4) is also globally asymptotically stable.

(ii) If the interior equilibrium of the non-diffusive system is unstable, then the
respective uniform steady state of the diffusive model (2.1)-(2.2) under
(2.3) and (2.4) can be made stable by increasing diffusion coefficients ap-
propriately.

Proof. Let us define the function V1(t) =
∫ R
0
V (P1, P2) ds. Differentiating V1 with

respect to t along the solutions of the diffusive model (2.1)-(2.2), we get,

(4.6)
dV1
dt

=

∫ R

0

(
∂V

∂P1

∂P1

∂t
+
∂V

∂P2

∂P2

∂t

)
ds = I1 + I2,
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FIGURE 1

where

(4.7) I1 =

∫ R

0

dV

dt
dx; I2 =

∫ R

0

(
D1

∂V

∂P1

∂2P1

∂s2
+D2

∂V

∂P2

∂2P2

∂s2

)
ds

and

I2 = −D1

∫ R

0

∂2V

∂P 2
1

(
∂P1

∂s

)2

ds−D2

∫ R

0

∂2V

∂P 2
2

(
∂P2

∂s

)2

ds

= −D1

∫ R

0

P ∗1
P 2
1

(
∂P1

∂s

)2

ds−D2

∫ R

0

P ∗2
P 2
2

(
∂P2

∂s

)2

ds.

From (4.6) and (4.7), it can clearly be observed that if I1 < 0 then V1′(t) is neg-
ative. If I1 > 0, then it can be noted that by increasing the diffusion coefficients
D1 and D2 sufficiently large, V1′(t) can be made negative. �

5. NUMERICAL SIMULATIONS

In this section, we established the analytical findings through numerical sim-
ulations using MATLAB. Figure 1 and Figure 2 represent the variation of the
population against time and phase portrait between prey and predator species
respectively with the parameters c1 = 18,m2 = 0.4, i1 = 0.5.

Figure 3 and Figure 4 denote the steady fluctuations of the prey and predator
populace against space and time with the parameters m2 = 0.4, i1 = 0.5, D1 =

0.1, D2 = 0.2.
Figure 5 and Figure 6 denote the steady fluctuations of the prey and predator
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FIGURE 2

FIGURE 3

FIGURE 4
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FIGURE 5

FIGURE 6

populace against space and time with the parameters m2 = 0.4, i1 = 0.5, D1 =

0.0001, D2 = 0.0002.

6. CONCLUSION

In this article, it is discussed about a prey-predator model with diffusion for
both prey and predator. We obtained all possible equilibrium points and anal-
ysed for stability using various mathematical tools. It is shown that the dynamics
of deterministic system in the figures 1, 2 and also local and global stabilities are
analysed using Routh-Hurwitz criteria and Lyapunov function respectively. It is
also verified the stable oscillations of the prey and predator populations against
time and space in figures 3-6. Finally, numerical simulations have substantiated
the analytical findings.
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