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THE UPPER RESTRAINED EDGE
GEODETIC DOMINATION NUMBER OF A GRAPH
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ABSTRACT. A set S of vertices of a connected graph G is a restrained edge
geodetic dominating set, if either S = V or S is edge geodetic dominating
set with the subgraph G[V − S] induced by V − S has no isolated vertices. The
minimum cardinality of a restrained edge geodetic dominating set of G is called
the restrained edge geodetic domination number and is denoted by γger(G). A
restrained edge geodetic dominating set S in a connected graph G is called
a minimal restrained edge geodetic dominating set of G if no proper subset
of S is a restrained edge geodetic dominating set of G. The upper restrained
edge geodetic domination number γ+ger(G) is the maximum cardinality of a
minimal restrained edge geodetic dominating set of G. The upper restrained
edge geodetic domination number of certain classes of graphs are determined.
It is shown that for every pair of integers a, b with 3 ≤ a ≤ b, there exist a
connected graph G of order b such that γ+ger(G) = a. Also, for any four integers
a, b, c and d with 2 ≤ a ≤ b ≤ c ≤ d ≤ p, there exists a connected graph G of
order p such that ge(G) = a, γge(G) = b, γger(G) = c and γ+ger(G) = d.
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1. INTRODUCTION

By a graph G = (V,E), we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q respec-
tively. For basic graph theoretic terminology refer [3] and [6]. The neighbor-
hood of a vertex v is the set N(v) consisting of all vertices u which are adjacent
with v. The closed neighborhood of a vertex v is the set N [v] = N(v) ∪ N{v}.
A vertex v is an extreme vertex if the subgraph induced by its neighbors is com-
plete. A vertex v is a semi-extreme vertex of G if the subgraph induced by its
neighbors has a full degree vertex in N(v). In particular, every extreme vertex is
a semi-extreme vertex and a semi-extreme vertex need not be an extreme vertex
refer [2]. For vertices u and v in a connected graph G, the distance d(u, v) is the
length of a shortest u− v path in G. A u− v path of length d(u, v) is called u− v
geodesic. A geodetic set of G is a set S ⊆ V (G) such that every vertex of G is
contained in a geodesic joining some pair of vertices in S. The geodetic number
g(G) of G is the minimum order of its geodetic sets (refer [4], [7]).

A dominating set in a graphG is a subset of vertices ofG such that every vertex
outside the subset has neighbor in it. The size of a minimum dominating set in a
graph G is called the domination number of G and is denoted by γ(G). An edge
geodetic set of G is a set S ⊆ V (G) such that every vertex of G is contained in
an edge geodesic joining some pair of vertices in S. The edge geodetic number
ge(G) of G is the minimum order of its edge geodetic set. An edge geodetic
dominating set of G is a subset of V (G) which is both edge geodetic set and
dominating set of G. The minimum cardinality of an edge geodetic dominating
set is an edge geodetic domination number and is denoted by γge(G) (refer [5],
[8]). A set S of vertices of a connected graph G is a restrained edge geodetic
set, if either S = V or S is an edge geodetic set with the subgraph G[V − S]

induced by V − S has no isolated vertices. A set S of vertices of a connected
graph G is a restrained edge geodetic dominating set, if either S = V or S is
an edge geodetic dominating set with the subgraph G[V − S] induced by V − S
has no isolated vertices. The minimum cardinality of a restrained edge geodetic
dominating set of G is called the restrained edge geodetic domination number
and is denoted by γger(G) (refer [1]).

The following theorems, which can be find in [1], are used in sequel.
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Theorem 1.1. Each extreme vertex of a connected graph G belongs to every re-
strained edge geodetic dominating set of G.

Theorem 1.2. Every restrained edge geodetic dominating set of a connected graph
G contains its semi-extreme vertex of G.

2. THE UPPER RESTRAINED EDGE GEODETIC DOMINATION NUMBER OF A GRAPH

Definition 2.1. A restrained edge geodetic dominating set S in a connected graph
G is called a minimal restrained edge geodetic dominating set if no proper subset
of S is a restrained edge geodetic dominating set of G. The upper restrained edge
geodetic domination number γ+ger(G) is the maximum cardinality of a minimal
restrained edge geodetic dominating set of G.

Example 1. For the graph G given in Figure 1, S1 = {v1, v4, v6} be the mini-
mum restrained edge geodetic dominating set of G so that γger(G) = 3, S2 =

{v1, v2, v5, v6, v7} is a minimal restrained edge geodetic dominating set, so that
γ+ger(G) ≥ 6. It is easily verified that no six elements set of G is a restrained edge
geodetic dominating set of G. Hence γ+ger(G) = 5.

FIGURE 1

Theorem 2.1. Each extreme vertex of a connected graph G belongs to every mini-
mal restrained edge geodetic dominating set of G.

Proof. Since every minimal restrained edge geodetic dominating set is a re-
strained edge geodetic dominating set of G. By Theorem 1.1, it is also belonging
to every minimal restrained edge geodetic dominating set of G. �
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Theorem 2.2. Each semi-extreme vertex of a connected graph G belongs to every
minimal restrained edge geodetic dominating set of G.

Proof. By Theorem 1.2 and Theorem 2.1, every semi-extreme vertex belongs to
every restrained edge geodetic dominating set. Since minimal restrained edge
geodetic dominating set is itself a restrained edge geodetic dominating set. �

Theorem 2.3. Let G be a connected graph of order p. If G have a semi-extreme
vertex of order p then γ+ger(G) = p.

Proof. Let G have a semi-extreme vertex of order p and by Theorem 2.2, it be-
longs to every minimal restrained edge geodetic dominating set. The result
follows. �

Theorem 2.4. If G is a connected graph with extreme vertices and if the set S of all
extreme vertices is a restrained edge geodetic dominating set of G, then γger(G) =
γ+ger(G).

Proof. Suppose that G is a graph with extreme vertices and the set of all extreme
vertices forms a restrained edge geodetic dominating set. Since any minimal
restrained edge geodetic dominating set contains all the extreme vertices, it
follows that the minimum restrained edge geodetic dominating sets are nothing
but the minimal restrained edge geodetic dominating sets. Hence γger(G) =

γ+ger(G). �

Theorem 2.5. Let G be a connected graph with cut-vertices and let S be a minimal
restrained edge geodetic dominating set of G. If v is a cut-vertex of G, then every
component of G− v contains some vertices of S.

Proof. Let v be a cut-vertex of G and S be a minimal restrained edge geodetic
dominating set of G. Suppose, there is a component G1 of G − v such that
G1 contains no vertices of S. By Theorem 2.1, G1 contains at least one vertex,
say u. Since S is a minimal restrained edge geodetic dominating set, there
exists vertices x, y ∈ S such that u lies on the x − y geodetic path P : x =

u0, u1, ..., u, ..., ut = y in G. Let P1 be a x− u sub path of P and P2 be a u− y sub
path of P . Since v is a cut-vertex of G, both P1 and P2 contains v so that P is
not a path, which is a contradiction. Thus, every component of G − v contains
an element of S. �
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Theorem 2.6. For any connected graph G, 3 ≤ γgr(G) ≤ γ+gr(G) ≤ p.

Proof. A restrained edge geodetic dominating set needs at least three vertices
and therefore γger(G) ≥ 3. Also, since every minimal restrained edge geo-
detic dominating set is a restrained edge geodetic dominating set of G and then
γger(G) ≤ γ+ger(G). Also, since V (G) is a restrained edge geodetic dominating set
of G, it is clear that γ+ger(G) ≤ p. Thus 3 ≤ γger(G) ≤ γ+ger(G) ≤ p. �

Theorem 2.7. For a complete graph Kp(p ≥ 2), γ+ger(Kp) = p.

Proof. Since every vertex of the complete graph Kp(p ≥ 2) is an extreme ver-
tex, the vertex set of Kp is the restrained edge geodetic dominating set which
contains all the vertices of Kp. Thus γ+ger(Kp) = p. �

Theorem 2.8. For any connected graph G, γger(G) = p if and only if γ+ger(G) = p.

Proof. Let γ+ger(G) = p. Then S = V (G) is the unique minimal restrained edge
geodetic dominating set of G. Since no proper subset of S is a restrained edge
geodetic dominating set, it is clear that S is the minimum restrained edge ge-
odetic dominating set of G and so γger(G) = p. The converse follows from
Theorem 2.1. �

Theorem 2.9. Let G be a connected graph of order p and u ∈ V (G). If deg(u) = 1

then γ+ger(G− u) ≤ γ+ger(G).

Proof. Let u ∈ V (G) and deg(u) = 1. Let S be the minimal restrained edge
geodetic dominating set of G − u with maximum cardinality. So γ+ger(G) = |S|.
Since deg(u) = 1, u is an end vertex and u is adjacent to exactly one vertex, say
v. By Theorem 2.1, every minimal restrained edge geodetic dominating set of G
contains u. We consider two cases.

Case (i) Let v ∈ S. Since S is a restrained edge geodetic dominating set of
G − u, there exist a vertex w ∈ V (G − u) such that w ∈ I[v, x] ⊆ I[S],
w ∈ N(S) and d(v, x) ≤ 3. If d(v, x) = 3, then consider the set S1 =

S −{v} ∪ {u,w}. If d(v, x) ≤ 2 then consider the set S2 = S −{v} ∪ {u}.
It is straightforward to verify that S1 is a minimal restrained geodetic
dominating set of G so that γ+ger(G− u) = |S| ≤ |S1| ≤ γ+ger(G).

Case (ii) Let v /∈ S. Then consider the set S1 = S ∪ {u}. It is straight forward
to verify that S1 is a minimal restrained geodetic dominating set of G so
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that γ+ger(G − u) = |S| ≤ |S1| ≤ γ+ger(G). Hence in both cases, γ+ger(G −
u) ≤ γ+ger(G).

�

Remark 2.1. The sharpness of the bound, we take G = P5. Let u be an end vertex
of G.

Theorem 2.10. For the connected graph G of order p, the following are equivalent

(i) γ+ger(G) = p ;

(ii) γgr(G) = p ;

(iii) G = Kp .

Proof. (i)⇒ (ii)
Let γ+ger(G) = p. Then S = V (G) is the unique minimal restrained edge

geodetic dominating set of G. Since no proper subset of S is a restrained edge
geodetic dominating set, it is clear that S is the unique minimum restrained
edge geodetic dominating set of G and so γgr(G) = p.

(ii)⇒ (iii)
Let γgr(G) = p. If G 6= Kp, then by Theorem 2.9, γger(G) ≤ p − 1, which is a

contradiction. There for G = Kp.
(iii)⇒ (i).
Let G = Kp. Then by Theorem 2.7, γ+ger(G) = p. �

Theorem 2.11. Let G be a connected graph of order p with γger(G) ≤ p− 2 . Then
γ+ger(G) = p or p− 2.

Proof. Given γger(G) ≤ p − 2. Hence by Theorem 2.6, γ+ger(G) ≥ p − 2 therefore
γ+ger(G) is either p or p − 2. If γ+ger(G) = p then by Theorem 2.8, γger(G) = p

which is a contradiction. Therefore γ+ger(G) = p− 2. �

Theorem 2.12. For a connected graph G,

2 ≤ ge(G) ≤ γge(G) ≤ γger(G) ≤ γ+ger(G) ≤ p .

Proof. A geodetic set needs at least two vertices and therefore ge(G) ≥ 2. Also,
every edge geodetic set is a edge geodetic dominating set of G and then ge(G) ≤
γge(G). If γge(G) = p or p − 1 then γger(G) = p. Also, every minimal restrained
edge geodetic dominating set of G is a restrained edge geodetic dominating
set of G but the converse is not true there for γger(G) < γ+gr(G). If, suppose
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γger(G) = p − 2 then clearly γ+ger(G) = p − 2, there fore γger(G) = γ+ger(G). It
follows that 2 ≤ ge(G) ≤ γge(G) ≤ γger(G) ≤ γ+ger(G) ≤ p. �

2.1. Realization results.

Theorem 2.13. For every pair a, b of integers with 3 ≤ a ≤ b, there exist a con-
nected graph G of order b such that γ+ger(G) = a.

Proof. Let X = {x, y} and Y = {u1, u2, ..., ub−a} be two set of vertices. Let G be
the graph obtained from X and Y by adding new vertices zi(1 ≤ i ≤ a− 1) and
joining each zi(1 ≤ i ≤ a− 1) to y and also join each ui(1 ≤ i ≤ b− a) to both x
and y. The resulting graph G is given in Figure 2.

FIGURE 2

Let S = {z1, z2, z3, ..., za−1} be the set of all extreme vertices of G. By Theorem
2.1, S is the subset of every edge geodetic set, edge geodetic dominating set,
restrained edge geodetic dominating set and upper restrained edge geodetic
dominating set and clearly it is not an edge geodetic set of G. Obviously S1 =

S ∪{x} is an edge geodetic set and edge geodetic dominating set and restrained
edge geodetic dominating set of G. Also S1 is the minimal restrained edge
geodetic dominating set of G so that

γ+ger(G) = {z1, z2, z3, ..., za−1, x} = a− 1 + 1 = a .

�

Theorem 2.14. For every pair a, b of integers with 3 ≤ a ≤ b, there exist a con-
nected graph G such that γger(G) = a and γ+ger(G) = b.

Proof. Let P1 : v1, v2, v3, v4 be a path of order 4. Let H be the graph obtained
from P1 by adding the new vertices zi(1 ≤ i ≤ a − 2) and joining each zi(1 ≤
i ≤ a− 2) to v4. Let G be the graph obtained from H by adding the new vertices
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ui(1 ≤ i ≤ b − a) and join each ui(1 ≤ i ≤ b − a) with v1 and v4. The resulting
graph G is given in Figure 3.

Let S = {z1, z2, z3, ..., za−2} be the set of all extreme vertices of G. By Theorem
2.1, S is the subset of every edge geodetic set, edge geodetic dominating set,
restrained edge geodetic dominating set and upper restrained edge geodetic
dominating set and clearly it is not an edge geodetic set of G. It is clear that
S1 = S ∪ {v1, v2} is an edge geodetic set, edge geodetic dominating set and
restrained edge geodetic dominating set of G so that γger(G) = a − 2 + 2 = a.
Now, we see that S2 = S1 ∪ {u1, u2, ..., ub−a} is the minimal restrained edge
geodetic dominating set of G so that

γ+ger(G) = a− 2 + 2 + b− a = b .

�

FIGURE 3

Theorem 2.15. For any four integers a, b, c and d with 2 ≤ a ≤ b ≤ c ≤ d ≤ p,
there exists a connected graph G such that ge(G) = a, γge(G) = b, γger(G) = c and
γ+ger(G) = d.

Proof. Case 1. 2 < a < b+ 1 = c < d, we take V (G)− k = d.
Let P1 : v1, v2,3 ,4 , v5 be a path of order 5. Let H be the graph obtained

from P1 by adding a − 1 new vertices z1, z2, z3, ..., za−1 and join each
zi(1 ≤ i ≤ a− 1) with v1. Let G be the graph obtained from H by adding
a cycle C of even order n. Take the vertices of C be x1, x2, x3, ..., xn. Now,
we isolate the vertices v5 from a path P1 with a vertex x1 from the cycle
C. The resulting graph G given in Figure 4.

Let S = {z1, z2, z3, ..., za−1} be the set of all extreme vertices of G. By
Theorem 2.1, S is the subset of every edge geodetic set, edge geodetic
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FIGURE 4

dominating set, restrained edge geodetic dominating set and upper edge
restrained geodetic dominating set and clearly it is not an edge geodetic
set of G. Clearly S1 = S ∪ {xh} is a minimal edge geodetic set of G so
ge(G) = a−1+1 = a. Obviously S2 = S1∪{v2, v5 = x1, x4, x7, ..., xb−a−1}
is a minimal edge geodetic dominating set of G so that γge(G) = a +

b − a − 1 + 1 = b. Clearly S3 = S2 ∪ {v1} is a minimal restrained edge
geodetic dominating set of G so that γger(G) = b + 1 = c. Also, clearly
S4 = V (G) − {v3, v4, x2, x3, x5, x6, ..., xk} is a minimal upper restrained
edge geodetic dominating set of G so that γ+ger(G) = V (G)− k = d.

Case 2 2 ≤ a+ 1 = b = c < d

Consider the cycle C5 : v1, v2, v3, v4, v5, v6, v1. Let H be the graph ob-
tained from C by adding new vertices x1, x2, x3, ..., xa−1 and join each
xi(1 ≤ i ≤ a− 1) with v4. The resulting graph G is given in Figure 5.

Let S = {x1, x2, x3, ..., xa−1} be the set of all extreme vertices of G.
By Theorem 2.1, S is the subset of every edge geodetic set, edge geo-
detic dominating set, restrained edge geodetic dominating set and upper
restrained edge geodetic dominating set and clearly it is not an edge ge-
odetic set of G. Clearly S1 = S ∪ {v1} is a minimal edge geodetic set of
G so ge(G) = a − 1 + 1 = a. Now S2 = S1 ∪ {v4} is the edge geodetic
dominating set of G so that γge(G) = a + 1 = b it is also a minimal re-
strained edge geodetic dominating set of G so that γger(G) = b = c. Now,
it is seen that S2 = V (G)−{v1, v6} is the minimal upper restrained edge
geodetic dominating set of G so that γ+ger(G) = |V (G)− {v1, v6}| = d.

Case 3. 2 = a = b < c = d

Let P : v1, v2, v3 be a path of order 3. Let G be the graph obtained
from P by adding a new vertices w1, w2, w3, ..., wc−b−1 and joining each
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FIGURE 5

wi(1 ≤ i ≤ c − b − 1) to the vertices v1 and v3. The resulting graph G is
given in Figure 6.

FIGURE 6

Let S1 = {v1, v3} is a minimal edge geodetic set and minimal edge
geodetic dominating set of G so ge(G) = 2 = a = γge(G) = b. Now, we
see that S2 = S1∪{w1, w2, w3, ..., wc−b−1, v2} is a minimal restrained edge
geodetic dominating set of G so that γger(G) = b + c − b − 1 + 1 = c,
which is also a minimal upper restrained edge geodetic dominating set
of G so that γ+ger(G) = c = d.

Case 4. 2 < a+ 1 = b+ 1 = c < d

Let P : v1, v2, v3, v4, v5 be a path of order 5. Let G be the graph ob-
tained from P by adding new vertices z1, z2, z3, ..., za−1 and joining each
zi(1 ≤ i ≤ a − 1) to the vertices v1. The resulting graph G is given in
Figure 7.

Let S = {z1, z2, z3, ..., za−1} be the set of all extreme vertices of G.
By Theorem 2.1, S is the subset of every edge geodetic set, edge geo-
detic dominating set, restrained edge geodetic dominating set and upper
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FIGURE 7

restrained edge geodetic dominating set and clearly it is not an edge ge-
odetic set of G. Clearly S1 = S ∪ {v5} is a minimal edge geodetic set of
G so that ge(G) = a − 1 + 1 = a. Now, we see that S2 = S1 ∪ {v2} is a
minimal edge geodetic dominating set of G so that γge(G) = a + 1 = b.
Obviously S3 = S2 ∪ {v1} is a minimal restrained edge geodetic domi-
nating set of G so that γger(G) = b+ 1 = c. Clearly S4 = V (G)− {v3, v4}
is a minimal upper restrained edge geodetic dominating set of G so that
γ+ger(G) = |V (G)− {v3, v4}| = d.

�
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