

Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2459–2466 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.9

μ_{ij} -PREOPEN SETS IN BIGENERALIZED TOPOLOGICAL SPACES

R. JAMUNA RANI¹ AND M. ANEES FATHIMA

ABSTRACT. In this paper, we introduce μ_{ij} -preopen sets in bigeneralized topological space and investigate some of their properties.

1. INTRODUCTION

A. Csaszar [3] introduced the concepts of generalized neighbourhood systems and generalized topological spaces. He also introduced the concepts of continuous functions and associated interior and closure operators on generalized topological spaces. In [9], P. Sivagami and D. Sivaraj introduced preopen sets and studied its properties of generalized topologies. In 2010, C Boonpok [2] introduced the concept of bigeneralized topological spaces and studied (m, n)closed sets and (m, n)- open sets in bigeneralized topological spaces. In 2019, R. Jamuna Rani and M. Anees fathima introduced the concept of semi open sets in bigeneralized topological space [1].

In this paper, our main aim is to introduce the notions of μ_{ij} -preopen sets in bigeneralized topological spaces. We study some of their properties and give its characterizations.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. generalized topology, bigeneralized topology, μ_i -open set, μ_i -closed set, μ_{ij} -preclosed set, μ_{ij} -preclosure.

R. J. RANI AND M. A. FATHIMA

2. Preliminaries

In this section, we recall some basic definitions and notations. Let X be a non empty set and denotes exp X, the power set of X. A subset μ of exp X is said to be generalized topology on X if $\emptyset \in \mu$ and an arbitrary union of elements of μ belongs to μ [3]. Let μ be a generalized topology on X, the elements of μ are called μ -open sets and the complement of μ -open sets are called μ -closed sets. In a generalized topological space (X, μ) , if μ is closed under finite intersection, (X, μ) is called quasi-topological space [5].

For $A \subseteq X$, $i_{\mu}(A)$ is the union of all μ -open sets contained in A and $c_{\mu}(A)$ is the intersection of all μ -closed sets containing A [4]. In [10], the family of all μ - friendly functions, where μ is the family of all γ - open sets, is denoted by Γ_4 , and (X, γ) is called a γ - space. In [6], it is established that every γ -space is a quasi-topological space and all the results established in [10] for γ -spaces are valid for quasi-topological spaces.

Definition 2.1. Let (X, μ) be a generalized topological space. A subset M of X is said to be a μ - semi open set iff $M \subseteq c_{\mu}(i_{\mu}(M))$, μ - preopen set iff $M \subseteq i_{\mu}(c_{\mu}(M))$, $\mu\alpha$ -open set iff $M \subseteq i_{\mu}(c_{\mu}(i_{\mu}(M)))$, and $\mu\beta$ -open set iff $M \subseteq c_{\mu}(i_{\mu}(c_{\mu}(M)))$ [4].

Theorem 2.1. Let (X, μ) be a generalized topological space. Then [3]:

(1) $c_{\mu}(A) = X - i_{\mu}(X - A).$ (2) $i_{\mu}(A) = X - c_{\mu}(X - A).$

Proposition 2.1. Let (X, μ) be a generalized topological space. For subsets A and B of X, the following properties hold [8]:

- (1) $c_{\mu}(X-A) = X i_{\mu}(A)$ and $i_{\mu}(X-A) = X c_{\mu}(A)$.
- (2) If $(X A) \in \mu$, then $c_{\mu}(A) = A$ and if $A \in \mu$, then $i_{\mu}(A) = A$.
- (3) If $A \subseteq B$, then $c_{\mu}(A \subseteq)c_{\mu}(B)$ and $i_{\mu}(A) \subseteq i_{\mu}(B)$.
- (4) $A \subseteq c_{\mu}(A)$ and $i_{\mu}(A) \subseteq A$.
- (5) $c_{\mu}(c_{\mu}(A)) = c_{\mu}(A)$ and $i_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$.

Proposition 2.2. If (X, μ) is a quasi topological space and $A, B \subseteq X$, then the following hold:

- (1) If A and B are μ -open sets, then $A \cap B$ is μ -open [10].
- (2) $i_{\mu}(A \cap B) = i_{\mu}(A) \cap i_{\mu}(B)$, for every subsets A and B of X [6].
- (3) $c_{\mu}(A \cup B) = c_{\mu}(A) \cup c_{\mu}(B)$, for every subsets A and B of X [10].

2461

Proposition 2.3. Let (X, γ) be γ - space. Then $G \cap c_{\gamma}(A) \subset c_{\gamma}(G \cap A)$, for every $A \subset X$, and γ -open set G of X, [7].

Definition 2.2. Let X be a nonempty set and μ_1, μ_2 be generalized topologies on X. A triple (X, μ_1, μ_2) is said to be a bigeneralized topological space [2].

Let (X, μ_1, μ_2) be a bigeneralized topological space and A be a subset of X. The closure of A and the interior of A with respect to μ_m are denoted by $c_{\mu_m}(A)$ and $i_{\mu_m}(A)$ respectively, for m = 1, 2.

Definition 2.3. A subset A of a bigeneralized topological space (X, μ_1, μ_2) is called (m, n)-closed if and only if $c_{\mu_m}(c_{\mu_n}(A)) = A$, where m, n = 1, 2 and $m \neq n$. The complement of (m, n)-closed set is called (m, n)-open [2].

Proposition 2.4. Let (X, μ_1, μ_2) be a bigeneralized topological space and A be a subset of X. Then A is (m, n)-closed if A is both μ -closed in (X, μ_m) and (X, μ_n) , [2].

Proposition 2.5. Let (X, μ_1, μ_2) be a bigeneralized topological space and A be a subset of X. Then A is (m, n)-open if and only if $i_{\mu_m}(i_{\mu_n}(A)) = A$, [2].

3. μ_{ij} -Preopen sets

Definition 3.1. Let X be a nonempty set. Let (X, μ_1, μ_2) be a bigeneralized topological space and $A \subset X$. Then A is said to be a μ_{ij} -preopen set if $A \subset i_{\mu_j}(c_{\mu_j}(A))$, where i, j = 1, 2 and $i \neq j$. The collection of all μ_{ij} -preopen sets is denoted by $\pi_{ij}(\mu)$.

Example 1. Let $X = \{a, b, c, d\}$,

 $\mu_1 = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\},\$

 $\mu_2 = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$ on X. Then $\{a, b, c\}$ is a μ_{12} -preopen set and $\{a, b, d\}$ is not a μ_{12} -preopen set.

The following theorem gives some of the properties of μ_{ij} -preopen sets in bigeneralized topological spaces.

Theorem 3.1. Let (X, μ_1, μ_2) be a bigeneralized topological space. Then the following hold.

(a) Every μ_i -open set (respectively μ_j) is a μ_{ij} -preopen set.

(b) Arbitrary union of μ_{ij} -preopen sets is a μ_{ij} -preopen set.

Proof. (a) Let $A \subset X$ be a μ_i -open set. Then $A = i_{\mu_i}(A) \subset i_{\mu_j}(c_{\mu_j}(A))$ and so A is μ_{ij} -preopen.

(b) Let $\{A_{\alpha}/\alpha \in \Delta\}$ be a family of μ_{ij} -preopen sets and $A = \bigcup \{A_{\alpha}/\alpha \in \Delta\}$. Since $A_{\alpha} \subset A$, $A_{\alpha} \subset i_{\mu_i}(C_{\mu_j}(A_{\alpha})) \subset i_{\mu_i}(c_{\mu_j}(A))$ for every α and so $A = \bigcup A_{\alpha} \subset i_{\mu_i}(c_{\mu_j}(A))$ and therefore, A is μ_{ij} -preopen.

- **Remark 3.1.** (i) It is clear that \emptyset is a μ_i -open set and hence by Theorem 3.1 (a) it is a μ_{ij} preopen set.
 - (ii) Let A and B be any two μ_{ij} -preopen sets in a bigeneralized topological space X, then $A \cap B$ need not be a μ_{ij} -preopen set. It can be seen from the following example.

Example 2. Let $X = \{a, b, c, d\}$, $\mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$, $\mu_2 = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$ on X. Then $\{a, c\}$ and $\{b, c\}$ are μ_{12} -preopen sets but $\{a, c\} \cap \{b, c\} = \{c\}$ which is not a μ_{12} -preopen set.

Definition 3.2. Let (X, μ_1, μ_2) be a bigeneralized topological space. Then the union of all μ_{ij} -preopen sets contained in A is called the μ_{ij} -preinterior of A and is denoted by $i_{\pi_{ij}}(A)$.

The following theorem gives some of the properties of μ_{ij} -preinterior operator $i_{\pi_{ij}}(A)$.

Theorem 3.2. Let (X, μ_1, μ_2) be a bigeneralized topological space and $A \subset X$. Then the following hold.

- (a) $i_{\pi_{ij}}(A)$ is the largest μ_{ij} -preopen set contained in A.
- (b) A is μ_{ij} -preopen if and only if $A = i_{\pi_{ij}}(A)$.
- (c) A is μ_{ij} -preopen if and only if A is $i_{\mu_i}c_{\mu_j}$ -open if and only if $A = i_{i_{\mu_i}c_{\mu_j}}(A)$.
- (d) $x \in i_{\pi_{ij}}(A)$ if and only if there exists a μ_{ij} -preopen set G containing x such that $G \subset A$.
- (e) $i_{\pi_{ij}} = i_{i_{\mu_i}} c_{\mu_j}$.
- (f) $i_{\pi_{ij}} \in \Gamma_{02-}$.

Proof. (a) Since arbitrary union of μ_{ij} -preopen sets is a μ_{ij} -preopen set and by the definition of $i_{\pi_{ij}}$, the proof follows.

(b) Clearly, $i_{\pi_{ij}}(A) \subset A$. Since A is μ_{ij} -preopen, $A = i_{\mu_{ij}}c_{\mu_j}(A) \subset i_{\pi_{ij}}(A)$. Therefore, $A \subset i_{\pi_{ij}}(A)$. Hence $A = i_{\pi_{ij}}(A)$. Conversely, suppose $A = i_{\pi_{ij}}(A)$, then by Theorem 3.1 (b), A is μ_{ij} -preopen.

(c) Suppose A is μ_{ij} -preopen, then $A \subset i_{\mu_i}(c_{\mu_j}(A))$ and hence A is $i_{\mu_i}c_{\mu_j}$ -open. Conversely, if A is $i_{\mu_i}c_{\mu_j}$ -open, then $A \subset i_{i_{\mu_i}c_{\mu_j}}(A)$. Clearly, $i_{i_{\mu_i}c_{\mu_j}}(A) \subset A$ and hence $A = i_{i_{\mu_i}c_{\mu_j}}(A)$.

(d) Suppose $x \in i_{\pi_{ij}}(A)$. Let G be a μ_{ij} -preopen set containing x. Suppose $G \not\subset A$, then $x \notin A$ and hence $x \notin i_{\pi_{ij}}(A)$ which is a contradiction. So $G \subset A$.

Conversely, suppose there exists a μ_{ij} -preopen set G containing x such that $G \subset A$.

Suppose $x \notin i_{\pi_{ij}}(A)$, then x does not belong to any of the μ_{ij} -preopen set G and hence $G \not\subset A$ which is a contradiction. Therefore, $x \in i_{\pi_{ij}}(A)$.

(e) Let A be any subset of X. Let x be any element in $i_{\pi_{ij}}(A)$. Then by (d), there exists a μ_{ij} -preopen set G containing x such that $G \subset A$ and hence x belongs to a μ_{ij} -preopen set G. Now by (c), $G = i_{i_{\mu_i}c_{\mu_j}}(G) \subset i_{i_{\mu_i}c_{\mu_j}}(A)$ and hence $x \in i_{i_{\mu_i}c_{\mu_i}}(A)$.

Therefore, $i_{\pi_{ij}}(A) \subset i_{i_{\mu_i}c_{\mu_j}}(A)$. Suppose $x \in i_{i_{\mu_i}c_{\mu_j}}(A)$, then clearly $x \in i_{\pi_{ij}}(A)$ and hence $i_{i_{\mu_i}c_{\mu_j}}(A) \subset i_{\pi_{ij}}(A)$. Therefore, the result follows.

(f) Since $i_{\pi_{ij}}(A)$ is the union of all μ_{ij} -preopen set contained in A, then by (b), $i_{\pi_{ij}} \in \Gamma_2$. Also, \emptyset is μ_i -open and so is μ_{ij} -preopen, then $\emptyset = i_{\pi_{ij}}(\phi)$. Hence $i_{\pi_{ij}} \in \Gamma_0$. By the definition of $i_{\pi_{ij}}, i_{\pi_{ij}}(A) \subset A$ for every subset A of X. Therefore, $i_{\pi_{ij}} \in \Gamma_-$.

Definition 3.3. Let (X, μ_1, μ_2) be a bigeneralized topological space. Then the complement of μ_{ij} -preopen set is called μ_{ij} -preclosed set. The intersection of all μ_{ij} -preclosed sets containing A is called the μ_{ij} -preclosure of A and is denoted by $c_{\pi_{ij}}(A)$.

It is clear that X is μ_{ij} -preclosed since \emptyset is μ_{ij} -preopen and the following theorem gives some of the properties of μ_{ij} -preclosure operator $i_{\pi_{ij}}(A)$.

Theorem 3.3. Let (X, μ_1, μ_2) be a bigeneralized topological space and $A \subset X$. Then the following hold.

- (a) $c_{\pi_{ij}}(A)$ is the smallest μ_{ij} -preclosed set containing A.
- (b) A is μ_{ij} -preclosed if and only if $A = c_{\pi_{ij}}(A)$.

- (c) A is μ_{ij} -preclosed if and only if A is $i_{\mu_i}c_{\mu_j}$ -closed if and only if $A = c_{i_{\mu_i}c_{\mu_j}}(A)$.
- (d) $x \in c_{\pi_{ij}}(A)$ if and only if every μ_{ij} -preclosed set G containing $x, G \cap A \neq \emptyset$.
- (e) $c_{\pi_{ij}} = c_{i_{\mu_i}} c_{\mu_j}$.
- (f) $c_{\pi_{ij}} \in \Gamma_{12+}$.

Proof. Since μ_{ij} -preclosed set is the complement of μ_{ij} -preopen set, then by Theorem 3.2, the results follows.

Theorem 3.4. Let (X, μ_1, μ_2) be a bigeneralized topological space and $A \subset X$. Then the following hold.

(a) $(i_{\pi_{ij}})^* = c_{\pi_{ij}}$. (b) $(c_{\pi_{ij}})^* = i_{\pi_{ij}}$. (c) $i_{\pi_{ij}}(X - A) = X - c_{\pi_{ij}}(A)$. (d) $c_{\pi_{ij}}(X - A) = X - i_{\pi_{ij}}(A)$.

Proof. (a) Let A be any subset of X. Then, $(i_{\pi_{ij}})^*(A) = X - i_{\pi_{ij}}(X - A)$. Since, $i_{\pi_{ij}}(X - A)$ is the largest μ_{ij} -preopen set contained in X - A, $X - i_{\pi_{ij}}(X - A)$ is the smallest μ_{ij} - preclosed set containing A and $X - i_{\pi_{ij}}(X - A) = c_{\pi_{ij}}(A)$. Hence, $(i_{\pi_{ij}})^* = c_{\pi_{ij}}$.

(b) $(c_{\pi_{ij}})^* = (i_{\pi_{ij}}^*)^* = i_{\pi_{ij}}$, this proves (b).

(c) If A is a subset of X, then, $(i_{\pi_{ij}})^*(A) = X - i_{\pi_{ij}}(X - A)$ and so by (i) $(c_{\pi_{ij}})(A) = X - i_{\pi_{ij}}(X - A)$ which implies $i_{\pi_{ij}}(X - A) = X - c_{\pi_{ij}}(A)$, for every subset A of X.

(d) The proof of (d) is similar to the proof of (c).

The following theorem discusses the intersection of μ_i -open set and μ_{ij} -preopen set is a μ_{ij} -preopen set.

Theorem 3.5. Let (X, μ_1, μ_2) be a bigeneralized topological space and $\mu_i, \mu_j \in \Gamma_4$. If A is a μ_i -open set and B is a μ_{ij} -preopen set, then $A \cap B$ is a μ_{ij} -preopen set.

Proof. Since B is μ_{ij} -preopen set, then $B \subset i_{\mu_i}(c_{\mu_j}(B))$ and so

 $A \cap B \subset A \cap i_{\mu_i}(c_{\mu_j}(B)) \subset i_{\mu_i}(A \cap (c_{\mu_j}(B))) \subset i_{\mu_i}(c_{\mu_j}(A \cap B)).$

Hence the result.

Theorem 3.6. Let (X, μ_1, μ_2) be a bigeneralized topological space and $\mu_i, \mu_j \in \Gamma_4$, then $c_{\pi_{ij}}$ and $i_{\pi_{ij}} \in \Gamma_4$.

Proof. Let G be a μ_i -open set and A be any subset of X. Then $G \cap i_{\pi_{ij}}(A)$ is a μ_{ij} - preopen set by Theorem 3.5 and $G \cap i_{\pi_{ij}}(A) \subset G \cap A$.

Then $G \cap i_{\pi_{ij}}(A) \subset i_{\pi_{ij}}(G \cap A)$ and so $i_{\pi_{ij}} \in \Gamma_4$. Again $i_{\pi_{ij}} \in \Gamma_4$ implies $(i_{\pi_{ij}})^* \in \Gamma_4$. By Theorem 3.4 (a), $c_{\pi_{ij}} \in \Gamma_4$.

Theorem 3.7. Let (X, μ_1, μ_2) be a bigeneralized topological space and $\mu_i \in \Gamma_4$ and G be μ_i -open, then for every subset A of X, $c_{\pi_{ij}}(G \cap A) = c_{\pi_{ij}}(G \cap (c_{\pi_{ij}}(A)))$.

Proof. Since $c_{\pi_{ij}} \in \Gamma_4$, then by Theorem 3.6, $G \cap c_{\pi_{ij}}(A) \subset c_{\pi_{ij}}(G \cap A)$ and so $c_{\pi_{ij}}(G \cap c_{\pi_{ij}}(A)) \subset c_{\pi_{ij}}(G \cap A)$.

Also, since $G \cap A \subset G \cap c_{\pi_{ij}}(A)$, we have $c_{\pi_{in}}(G \cap A) \subset c_{\pi_{ij}}(G \cap c_{\pi_{ij}}(A))$ and $c_{\pi_{in}}(G \cap A) = c_{\pi_{ij}}(G \cap c_{\pi_{ij}}(A))$.

Theorem 3.8. Let (X, μ_1, μ_2) be a bigeneralized topological space and $\mu_i \in \Gamma_4$ (respectively μ_i). Then the following hold.

- (a) If G is a μ_i -open set such that $G \subset i_{\mu_i}(c_{\mu_j}(A))$ for some subset A of X, then G is a μ_{ij} -preopen set.
- (b) If $\mu_i \in \Gamma_1$ (respectively μ_j), then every μ_i -open set is a μ_{ij} -preopen set.

Proof. (a)Since $G \subset i_{\mu_i}(c_{\mu_j}(A))$, we have $G = G \cap i_{\mu_i}(c_{\mu_j}(A)) \subset i_{\mu_i}(c_{\mu_j}(G \cap A))$. Therefore, $G \subset i_{\mu_i}(c_{\mu_j}(G))$ which implies G is μ_{ij} -preopen.

(b) Let G be an open set. If $\mu_i \in \Gamma_1$, then $G \subset X = i_{\mu_i}(c_{\mu_j}(X))$. By (a), G is μ_{ij} -preopen.

Theorem 3.9. Let (X, μ_1, μ_2) be a bigeneralized topological space. Let A be any subset of X. Then the following are equivalent.

- (a) $c_{\pi_{ij}}(A) = X$.
- (b) If B is any μ_{ij} -preclosed subset of X such that $A \subset B$, then B = X.
- (c) Every nonempty μ_{ij} -preopen set has a nonempty intersection with A.
- (d) $i_{\pi_{ij}}(X A) = \emptyset$.

Proof. (a) \Rightarrow (b)

If *B* is any μ_{ij} -preclosed set such that $A \subset B$, then $X = c_{\pi_{ij}}(A) \subset c_{\pi_{ij}}(B) = B$ and B = X.

(b) \Rightarrow (c)

If G is any nonempty μ_{ij} -preopen set such that $G \cap A = \emptyset$, then $A \subset X - G$ and X - G is μ_{ij} -preclosed. By hypothesis, X - G = X and $G = \emptyset$ which is a contradiction. Therefore, $G \cap A = \emptyset$.

(c) \Rightarrow (d)

Suppose $i_{\pi_{ij}}(X - A) \neq \emptyset$, then $i_{\pi_{ij}}(X - A)$ is a nonempty μ_{ij} -preopen set such that $i_{\pi_{ij}}(X - A) \cap A = \emptyset$, a contradiction.

Therefore, $i_{\pi_{ii}}(X - A) = \emptyset$.

(d) \Rightarrow (a)

 $i_{\pi_{ij}}(X-A) = \emptyset$ implies that $X - i_{\pi_{ij}}(X-A) = X$ and $c_{\pi_{ij}}(A) = X$.

References

- [1] M. A. FATHIMA, R. J. RANI: μ_{ij} -Semi open sets in bigeneralized topological spaces, Malaya Journal of Matematik, **5**(1) (2019), 12–16.
- [2] C. BOONPAK: Weakly open functions on bigeneralized topological spaces, Int.J. of Math. Analysis, 15(5) (2010), 891–897.
- [3] A. CSASZAR: Generalized topology, generalized continuity, Acta. Math. Hungar, **96** (2002), 351–357.
- [4] A. CSASZAR: Generalized open sets in generalized topologies, Acta. Math. Hungar, 106 (2005), 53–66.
- [5] A. CSASZAR: Further remarks on the formula for γ -interior, Acta. Math. Hungar, **113**(4) (2006), 325–332.
- [6] A. CSAAZAR: Remarks on quasi-topologies, Acta. Math. Hungar, 119 (2007), 197–200.
- [7] R. J. RANI, P. JEYANTHI, D. SIVARAJ: More on γ -interior, Bull. Allahabad Math.Soc., **25** (2010), 1–12.
- [8] K. MIN: Almost continuity on generalized topological spaces, Acta. Math. Hungar, 125 (2009), 121–125.
- [9] P. SIVAGAMI, D. SIVARAJ: Properties of some generalized topologies, International Journal of general topology, **1** (2) (2008), 129–135.
- [10] P. SIVAGAMI: Remarks on γ -interior, Acta Math. Hungar., 119 (2008), 81–94.

DEPARTMENT OF MATHEMATICS RANI ANNA GOVERNMENT COLLEGE FOR WOMEN TIRUNELVELI - 627 008 *E-mail address*: palani@apcmcollege.ac.in

DEPARTMENT OF MATHEMATICS RANI ANNA GOVERNMENT COLLEGE FOR WOMEN TIRUNELVELI - 627 008