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µij-PREOPEN SETS IN BIGENERALIZED TOPOLOGICAL SPACES

R. JAMUNA RANI1 AND M. ANEES FATHIMA

ABSTRACT. In this paper, we introduce µij-preopen sets in bigeneralized topo-
logical space and investigate some of their properties.

1. INTRODUCTION

A. Csaszar [3] introduced the concepts of generalized neighbourhood systems
and generalized topological spaces. He also introduced the concepts of con-
tinuous functions and associated interior and closure operators on generalized
topological spaces. In [9], P. Sivagami and D. Sivaraj introduced preopen sets
and studied its properties of generalized topologies. In 2010, C Boonpok [2]
introduced the concept of bigeneralized topological spaces and studied (m,n)-
closed sets and (m,n)- open sets in bigeneralized topological spaces. In 2019,
R. Jamuna Rani and M. Anees fathima introduced the concept of semi open sets
in bigeneralized topological space [1].

In this paper, our main aim is to introduce the notions of µij -preopen sets in
bigeneralized topological spaces. We study some of their properties and give its
characterizations.
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2. PRELIMINARIES

In this section, we recall some basic definitions and notations. Let X be a non
empty set and denotes exp X, the power set of X. A subset µ of exp X is said
to be generalized topology on X if ∅ ∈ µ and an arbitrary union of elements of
µ belongs to µ [3]. Let µ be a generalized topology on X, the elements of µ are
called µ-open sets and the complement of µ-open sets are called µ-closed sets.
In a generalized topological space (X,µ), if µ is closed under finite intersection,
(X,µ) is called quasi-topological space [5].

For A ⊆ X, iµ(A) is the union of all µ-open sets contained in A and cµ(A) is
the intersection of all µ-closed sets containing A [4]. In [10], the family of all
µ- friendly functions, where µ is the family of all γ- open sets, is denoted by Γ4,
and (X, γ) is called a γ- space. In [6], it is established that every γ-space is a
quasi-topological space and all the results established in [10] for γ-spaces are
valid for quasi-topological spaces.

Definition 2.1. Let (X,µ) be a generalized topological space. A subset M of X is
said to be a µ- semi open set iff M ⊆ cµ(iµ(M)), µ- preopen set iff M ⊆ iµ(cµ(M)),
µα-open set iff M ⊆ iµ(cµ(iµ(M))), and µβ-open set iff M ⊆ cµ(iµ(cµ(M))) [4].

Theorem 2.1. Let (X,µ) be a generalized topological space. Then [3]:

(1) cµ(A) = X − iµ(X − A).
(2) iµ(A) = X − cµ(X − A).

Proposition 2.1. Let (X,µ) be a generalized topological space. For subsets A and
B of X, the following properties hold [8]:

(1) cµ(X − A) = X − iµ(A) and iµ(X − A) = X − cµ(A).
(2) If (X − A) ∈ µ, then cµ(A) = A and if A ∈ µ, then iµ(A) = A.
(3) If A ⊆ B, then cµ(A ⊆)cµ(B) and iµ(A) ⊆ iµ(B).
(4) A ⊆ cµ(A) and iµ(A) ⊆ A.
(5) cµ(cµ(A)) = cµ(A) and iµ(iµ(A)) = iµ(A).

Proposition 2.2. If (X,µ) is a quasi topological space and A,B ⊆ X, then the
following hold:

(1) If A and B are µ-open sets, then A ∩B is µ-open [10].
(2) iµ(A ∩B) = iµ(A) ∩ iµ(B), for every subsets A and B of X [6].
(3) cµ(A ∪B) = cµ(A) ∪ cµ(B), for every subsets A and B of X [10].



µij-PREOPEN SETS IN BIGENERALIZED . . . 2461

Proposition 2.3. Let (X, γ) be γ- space. Then G ∩ cγ(A) ⊂ cγ(G ∩ A), for every
A ⊂ X, and γ-open set G of X, [7].

Definition 2.2. Let X be a nonempty set and µ1, µ2 be generalized topologies on
X. A triple (X,µ1, µ2) is said to be a bigeneralized topological space [2].

Let (X,µ1, µ2) be a bigeneralized topological space and A be a subset of X.
The closure of A and the interior of A with respect to µm are denoted by cµm(A)

and iµm(A) respectively, for m = 1, 2.

Definition 2.3. A subset A of a bigeneralized topological space (X,µ1, µ2) is called
(m,n)-closed if and only if cµm(cµn(A)) = A, where m,n = 1, 2 and m 6= n. The
complement of (m,n)-closed set is called (m,n)-open [2].

Proposition 2.4. Let (X,µ1, µ2) be a bigeneralized topological space and A be a
subset of X. Then A is (m,n)-closed if A is both µ-closed in (X,µm) and (X,µn),
[2].

Proposition 2.5. Let (X,µ1, µ2) be a bigeneralized topological space and A be a
subset of X. Then A is (m,n)-open if and only if iµm(iµn(A)) = A, [2].

3. µij -PREOPEN SETS

Definition 3.1. Let X be a nonempty set. Let (X,µ1, µ2) be a bigeneralized topo-
logical space and A ⊂ X. Then A is said to be a µij-preopen set if A ⊂ iµj(cµj(A)),
where i, j = 1, 2 and i 6= j. The collection of all µij-preopen sets is denoted by
πij(µ).

Example 1. Let X = {a, b, c, d},
µ1 = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}},
µ2 = {∅, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}} on X. Then {a, b, c} is a

µ12-preopen set and {a, b, d} is not a µ12-preopen set.

The following theorem gives some of the properties of µij -preopen sets in
bigeneralized topological spaces.

Theorem 3.1. Let (X,µ1, µ2) be a bigeneralized topological space. Then the fol-
lowing hold.

(a) Every µi-open set (respectively µj ) is a µij-preopen set.
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(b) Arbitrary union of µij-preopen sets is a µij-preopen set.

Proof. (a) Let A ⊂ X be a µi-open set. Then A = iµi(A) ⊂ iµj(cµj(A)) and so A
is µij- preopen.

(b) Let {Aα/α ∈ ∆} be a family of µij-preopen sets and A = ∪{Aα/α ∈ ∆}.
Since Aα ⊂ A, Aα ⊂ iµi(Cµj(Aα)) ⊂ iµi(cµj(A)) for every α and so A = ∪Aα ⊂
iµi(cµj(A)) and therefore, A is µij-preopen. �

Remark 3.1. (i) It is clear that ∅ is a µi-open set and hence by Theorem 3.1
(a) it is a µij- preopen set.

(ii) Let A and B be any two µij-preopen sets in a bigeneralized topological
space X, then A ∩B need not be a µij-preopen set. It can be seen from the
following example.

Example 2. Let X = {a, b, c, d}, µ1 = {∅, {a}, {b}, {a, b}, {a, c}, {b, c}, {a, b, c}},
µ2 = {∅, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}} on X. Then {a, c} and {b, c}
are µ12- preopen sets but {a, c} ∩ {b, c} = {c} which is not a µ12-preopen set.

Definition 3.2. Let (X,µ1, µ2) be a bigeneralized topological space. Then the union
of all µij-preopen sets contained inA is called the µij-preinterior ofA and is denoted
by iπij(A).

The following theorem gives some of the properties of µij-preinterior operator
iπij(A).

Theorem 3.2. Let (X,µ1, µ2) be a bigeneralized topological space and A ⊂ X.
Then the following hold.

(a) iπij(A) is the largest µij-preopen set contained in A.
(b) A is µij-preopen if and only if A = iπij(A).
(c) A is µij-preopen if and only if A is iµicµj -open if and only if A = iiµicµj (A).
(d) x ∈ iπij(A) if and only if there exists a µij-preopen set G containing x such

that G ⊂ A.
(e) iπij = iiµicµj .
(f) iπij ∈ Γ02−.

Proof. (a) Since arbitrary union of µij-preopen sets is a µij-preopen set and by
the definition of iπij , the proof follows.
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(b) Clearly, iπij(A) ⊂ A. Since A is µij-preopen, A = iµijcµj(A) ⊂ iπij(A).
Therefore, A ⊂ iπij(A). Hence A = iπij(A). Conversely, suppose A = iπij(A),

then by Theorem 3.1 (b), A is µij-preopen.
(c) Suppose A is µij-preopen, then A ⊂ iµi(cµj(A)) and hence A is iµicµj -open.
Conversely, if A is iµicµj -open, then A ⊂ iiµicµj (A). Clearly, iiµicµj (A) ⊂ A and

hence A = iiµicµj (A).

(d) Suppose x ∈ iπij(A). Let G be a µij-preopen set containing x. Suppose
G 6⊂ A, then x /∈ A and hence x /∈ iπij(A) which is a contradiction. So G ⊂ A.

Conversely, suppose there exists a µij-preopen set G containing x such that
G ⊂ A.

Suppose x /∈ iπij(A), then x does not belong to any of the µij-preopen set G
and hence G 6⊂ A which is a contradiction. Therefore, x ∈ iπij(A).

(e) Let A be any subset of X. Let x be any element in iπij(A). Then by (d),
there exists a µij-preopen set G containing x such that G ⊂ A and hence x

belongs to a µij-preopen set G. Now by (c), G = iiµicµj (G) ⊂ iiµicµj (A) and
hence x ∈ iiµicµj (A).

Therefore, iπij(A) ⊂ iiµicµj (A). Suppose x ∈ iiµicµj (A), then clearly x ∈ iπij(A)

and hence iiµicµj (A) ⊂ iπij(A). Therefore, the result follows.
(f) Since iπij(A) is the union of all µij-preopen set contained in A, then by

(b), iπij ∈ Γ2. Also, ∅ is µi-open and so is µij-preopen, then ∅ = iπij(φ). Hence
iπij ∈ Γ0. By the definition of iπij , iπij(A) ⊂ A for every subset A ofX. Therefore,
iπij ∈ Γ−. �

Definition 3.3. Let (X,µ1, µ2) be a bigeneralized topological space. Then the
complement of µij-preopen set is called µij-preclosed set. The intersection of all
µij-preclosed sets containing A is called the µij-preclosure of A and is denoted by
cπij(A).

It is clear that X is µij-preclosed since ∅ is µij-preopen and the following
theorem gives some of the properties of µij-preclosure operator iπij(A).

Theorem 3.3. Let (X,µ1, µ2) be a bigeneralized topological space and A ⊂ X.
Then the following hold.

(a) cπij(A) is the smallest µij-preclosed set containing A.
(b) A is µij-preclosed if and only if A = cπij(A).
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(c) A is µij-preclosed if and only if A is iµicµj -closed if and only if A =

ciµicµj (A).

(d) x ∈ cπij(A) if and only if every µij-preclosed set G containing x, G∩A 6= ∅.
(e) cπij = ciµicµj .
(f) cπij ∈ Γ12+.

Proof. Since µij-preclosed set is the complement of µij-preopen set, then by The-
orem 3.2, the results follows. �

Theorem 3.4. Let (X,µ1, µ2) be a bigeneralized topological space and A ⊂ X.
Then the following hold.

(a) (iπij)
∗ = cπij .

(b) (cπij)
∗ = iπij .

(c) iπij(X − A) = X − cπij(A).
(d) cπij(X − A) = X − iπij(A).

Proof. (a) Let A be any subset of X. Then, (iπij)
∗(A) = X − iπij(X − A). Since,

iπij(X − A) is the largest µij-preopen set contained in X − A, X − iπij(X − A)

is the smallest µij- preclosed set containing A and X − iπij(X − A) = cπij(A).

Hence, (iπij)
∗ = cπij .

(b) (cπij)
∗ = (i∗πij)

∗ = iπij , this proves (b).
(c) If A is a subset of X, then, (iπij)

∗(A) = X − iπij(X − A) and so by (i)
(cπij)(A) = X − iπij(X − A) which implies iπij(X − A) = X − cπij(A), for every
subset A of X.

(d) The proof of (d) is similar to the proof of (c). �

The following theorem discusses the intersection of µi-open set and µij-preopen
set is a µij-preopen set.

Theorem 3.5. Let (X,µ1, µ2) be a bigeneralized topological space and µi, µj ∈ Γ4.
If A is a µi-open set and B is a µij-preopen set, then A ∩B is a µij-preopen set.

Proof. Since B is µij-preopen set, then B ⊂ iµi(cµj(B)) and so

A ∩B ⊂ A ∩ iµi(cµj(B)) ⊂ iµi(A ∩ (cµj(B))) ⊂ iµi(cµj(A ∩B)).

Hence the result. �

Theorem 3.6. Let (X,µ1, µ2) be a bigeneralized topological space and µi, µj ∈ Γ4,
then cπij and iπij ∈ Γ4.



µij-PREOPEN SETS IN BIGENERALIZED . . . 2465

Proof. Let G be a µi-open set and A be any subset of X. Then G ∩ iπij(A) is a
µij- preopen set by Theorem 3.5 and G ∩ iπij(A) ⊂ G ∩ A.

Then G ∩ iπij(A) ⊂ iπij(G ∩ A) and so iπij ∈ Γ4. Again iπij ∈ Γ4 implies
(iπij)

∗ ∈ Γ4. By Theorem 3.4 (a), cπij ∈ Γ4. �

Theorem 3.7. Let (X,µ1, µ2) be a bigeneralized topological space and µi ∈ Γ4 and
G be µi-open, then for every subset A of X, cπij(G ∩ A) = cπij(G ∩ (cπij(A))).

Proof. Since cπij ∈ Γ4, then by Theorem 3.6, G ∩ cπij(A) ⊂ cπij(G ∩ A) and so
cπij(G ∩ cπij(A)) ⊂ cπij(G ∩ A).

Also, since G ∩ A ⊂ G ∩ cπij(A), we have cπin(G ∩ A) ⊂ cπij(G ∩ cπij(A)) and
cπin(G ∩ A) = cπij(G ∩ cπij(A)). �

Theorem 3.8. Let (X,µ1, µ2) be a bigeneralized topological space and µi ∈ Γ4

(respectively µj). Then the following hold.

(a) If G is a µi-open set such that G ⊂ iµi(cµj(A)) for some subset A of X, then
G is a µij-preopen set.

(b) If µi ∈ Γ1 (respectively µj), then every µi-open set is a µij-preopen set.

Proof. (a)Since G ⊂ iµi(cµj(A)), we have G = G ∩ iµi(cµj(A)) ⊂ iµi(cµj(G ∩ A).
Therefore, G ⊂ iµi(cµj(G)) which implies G is µij-preopen.

(b) Let G be an open set. If µi ∈ Γ1, then G ⊂ X = iµi(cµj(X)). By (a), G is
µij-preopen. �

Theorem 3.9. Let (X,µ1, µ2) be a bigeneralized topological space. Let A be any
subset of X. Then the following are equivalent.

(a) cπij(A) = X.
(b) If B is any µij-preclosed subset of X such that A ⊂ B, then B = X.
(c) Every nonempty µij-preopen set has a nonempty intersection with A.
(d) iπij(X − A) = ∅.

Proof. (a)⇒ (b)
If B is any µij-preclosed set such that A ⊂ B, then X = cπij(A) ⊂ cπij(B) = B

and B = X.
(b)⇒ (c)
If G is any nonempty µij-preopen set such that G ∩ A = ∅, then A ⊂ X − G

and X − G is µij-preclosed. By hypothesis, X − G = X and G = ∅ which is a
contradiction.
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Therefore, G ∩ A = ∅.
(c)⇒ (d)
Suppose iπij(X −A) 6= ∅, then iπij(X −A) is a nonempty µij-preopen set such

that iπij(X − A) ∩ A = ∅, a contradiction.
Therefore, iπij(X − A) = ∅.
(d)⇒ (a)
iπij(X − A) = ∅ implies that X − iπij(X − A) = X and cπij(A) = X.

�
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