ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.6, 4231–4240 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.6.105 Spec. Issue on ICIGA-2020

NON-SPLIT PERFECT TRIPLE CONNECTED DOMINATION NUMBER OF SEMI PRODUCT OF PATHS AND CYCLES

G. MAHADEVAN¹, T. PONNUCHAMY, AND SELVAM AVADAYAPPAN

ABSTRACT. Recently the concept of non-split Perfect Triple connected domination number was introduced by G. Mahadevan et.al., and obtained many interesting results along with some product related graphs. A subset *S* of *V* of a non-trivial graph *G* is said to be non-split perfect triple connected dominating set, if *S* is a triple connected dominating set and $\langle V-S \rangle$ is connected and has at least one perfect matching. The minimum cardinality taken over all non-split perfect triple connected dominating sets in *G* is called the non-split perfect triple connected domination number of *G* and is denoted by $\gamma_{nsptc}(G)$. In this paper, we investigate this parameter for various semi product of paths and cycles

1. INTRODUCTION

By a graph we mean a finite, simple, connected and undirected graph G(V,E), where V denotes its vertex set and E its edge set. Unless otherwise stated, the graph G has p vertices and q edges. We denote a path on *m* vertices by P_m . The concept of triple connected graphs was introduced by J. Paulraj Joseph et.al., A graph G is said to be triple connected if any three vertices lie on a path in G. A dominating set S is said to be triple connected dominating set, if the sub graph $\langle S \rangle$ is triple connected. The minimum cardinality taken over all triple

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. Non-split perfect triple connected domination number, Cartesian product, Strong product, Semi Strong Product, Lexicographic product, Semi Lexicographic Product.

4232 G. MAHADEVAN, T. PONNUCHAMY, AND S. AVADAYAPPAN

connected dominating sets is called the triple connected domination number of a graph G and it is denoted by $\gamma_{tc}(G)$. The concept of non-split perfect triple connected domination number was introduced by G. Mahadevan et. al., A subset *S* of *V* of a non-trivial graph G is said to be non-split perfect triple connected dominating set, if *S* is a triple connected dominating set and the induced sub graph $\langle V - S \rangle$ is connected and has a perfect matching. The minimum cardinality taken over all non-split perfect triple connected dominating sets is called the non-split perfect triple connected domination number of G and is denoted by $\gamma_{nsptc}(G)$. In [3],the authors find the Non-Split Perfect Triple Connected Domination number on Different Product of Paths. Motivated by the above, in this paper we find the non-split perfect triple connected domination number of semi product of paths and cycles.

For further reference see [1, 2, 4, 5].

2. Semi Strong Product of Paths

In this section we find the non-split perfect triple connected domination number of the semi strong product of paths. We recall the existing definition of Semi strong product of graphs: The Semi strong product of the graphs G and H is denoted by $G | \times | H$, whose vertex set is $V(G) \times V(H)$. Two vertices (g, h) and (g', h') are adjacent in $G | \times | H$ if $gg' \in E(G)$ and $hh' \in E(H)$ (or) h = h' and $gg' \in E(G)$. That is $V(G| \times | H) = \{(g, h) \ g \in (G) \ and \ h \in (H)\}, \ E(G| \times | H) = \{(g, h)(g', h') \gg' \in E(G) \ and \ hh' \in (H) \ (or) \ h = h' \ and \ gg' \in E(G)\}$. The number of vertices in the Semi Strong product of $G | \times | H$ is |V(G)||V(H)|.

Theorem 2.1. For any
$$n \ge 3$$
, we have $\gamma_{nsptc}(P_2 | \times (P_n)) = \begin{cases} n, & \text{if } n \text{ is even} \\ n+1, & \text{if } n \text{ is odd} \end{cases}$

Proof. Let P_2 and P_n be the paths on 2 vertices and n vertices respectively Then the semi strong product of P_2 and P_n is denoted by $P_2 | \times |P_n|$ has 2n vertices. Here $V(P_2 | \times |P_n) = \{(u_i, v_j)/1 \le i \le 2, 1 \le j \le n\}$.

Case 1: n is even Consider the set $S = \{(u_k, v_l) : k = 1, l = 1, 3, 5, ...n - 1 and k = 2, l = 2, 4, 6, ...n\}$. Then |S| = n.

Claim: S is a non-split perfect triple connected dominating set in $P_2 | \times |P_n$. Here every vertex in V - S is adjacent to some vertex in S. This gives that S is a dominating set in $P_2 | \times |P_n$. Also $\langle S \rangle = P_n$, S is a triple connected set. $\langle V - S \rangle = P_n$, which is connected. Here n is even, $\langle V - S \rangle$ has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $P_2| \times |P_n$.

Claim: $\gamma_{nsptc}(P_2| \times |P_n) = |S|$.

For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $P_2 | \times |P_n$. Therefore S is the non-split perfect triple connected dominating set in $P_2 | \times |P_n)$ which is minimum.

Case 2: n is odd.

Consider the set $S = \{(u_k, v_l) : k = 1, l = 1, 3, 5, ...nandk = 2, l = 2, 4, 6, ...n - 1, n\}$. Then |S| = n + 1.

Claim: S is a non-split perfect triple connected dominating set in $P_2 | \times | P_n$.

Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a dominating set in $P_2 | \times | P_n$. Also $< S >= P_{n+1}$, S is a triple connected set. $< V - S >= P_{n-1}$, which is connected. Here n - 1 is even, < V - S > has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $P_2 | \times | P_n$.

Claim: $\gamma_n sptc(P_2 | \times | P_n) = |S|$.

For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $P_2|\times|P_n$. Therefore S is the non-split perfect triple connected dominating set in $P_2|\times|P_n$ which is minimum. Hence

$$\gamma_{nsptc}(P_2| \times |P_n) = \begin{cases} n, & n \text{ is even} \\ n+1, & n \text{ is odd} \end{cases}$$
.

Observation 2.1. If there exists a Triple connected dominating set S in $P_m | \times | P_n$, then $\langle V - S \rangle$ neither connected nor has a perfect matching. Hence, for any $m, n \geq 3$, $\gamma_{nsptc}(P_m | \times | P_n)$ does not exist.

3. SEMI STRONG PRODUCT OF CYCLES

In this section we find the non-split perfect triple connected domination number of the semi strong product of cycles.

Theorem 3.1. For any $3 \le n$ we have $\gamma_{nsptc}(C_3 | \times |C_n) = n$.

Proof. Let C_3 and C_n be the cycles on 3 vertices and n vertices respectively Then the semi strong product of C_3 and C_n is denoted by $C_3 | \times |C_n)$ has 3n vertices.

4233

Here
$$V(C_3 | \times | C_n) = \{(u_i, v_j)/1 \le i \le 3, 1 \le j \le n\}.$$

Case 1: n is odd.

Consider the set $S = \{(u_k, v_l) : k = 1, l = 1, 3, 5, ...n \text{ and } k = 2, l = 2, 4, 6, ...n - 1\}.$ Then |S| = n.

Claim: S is a non-split perfect triple connected dominating set in $C_3 | \times |C_n)$. Here every vertex in V - S is adjacent to some vertex in S. This gives that S is a dominating set in $C_3 | \times |C_n$. Also $\langle S \rangle = P_n$, S is a triple connected set. $\langle V - S \rangle$, is connected. Here 2n is even, $\langle V - S \rangle$ has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $C_3 | \times |C_n$. **Claim:** $\gamma_{nsptc}(C_3 | \times |C_n) = |S|$. For any cases, |S'| < |S|, < V - S' > has an odd

number of vertices, it has no perfect matching in $C_3 | \times |C_n$). Therefore S is the non-split perfect triple connected dominating set in $C_3 | \times |C_n$ which is minimum. **Case 2:** n is even.

Consider the set $S = \{(u_k, v_l) : k = 1, l = 1, 3, 5, ...n - 1 \text{ and } k = 2, l = 2, 4, 6, ...n\}.$ Then |S| = n.

Claim: S is a non-split perfect triple connected dominating set $inC_3 | \times |C_n$.

Here every vertex in V - S is adjacent to some vertex in S. This gives that S is a dominating set in $C_3 | \times |C_n$. Also $\langle S \rangle = P_n$, S is a triple connected set. $\langle V - S \rangle$, is connected. Here 2n is even, $\langle V - S \rangle$ has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $C_3 | \times |C_n$.

Claim: $\gamma_{nsptc}(C_3| \times |C_n) = |S|$. For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $C_3| \times |C_n$. Therefore S is the non-split perfect triple connected dominating set in $C_3| \times |C_n$ which is minimum. Hence $\gamma_{nsptc}(C_3| \times |C_n) = n$.

Theorem 3.2. For any $n \ge 4$, we have

$$\gamma_{nsptc}(C_4|\times|C_n) = \begin{cases} 2\lceil \frac{n}{2}\rceil, & n \text{ is odd} \\ 2\lceil \frac{n+1}{2}\rceil, & n \text{ is even} \end{cases}$$

Proof. Let C_4 and C_n be the cycles on 4 vertices and n vertices respectively Then the semi strong product of C_4 and C_n is denoted by $C_4 | \times |C_n$ has 4n vertices. Here $V(C_4 | \times |C_n) = \{(u_i, v_j)/1 \le i \le 4, 1 \le j \le n\}$.

Case 1: n is odd. Consider the set $S = \{(u_k, v_l) : k = 1, l = 1, 2, 3..., \lceil \frac{n}{2} \rceil - 1; k = 2, l = \lceil \frac{n}{2} \rceil; k = 3, l = \lceil \frac{n}{2} \rceil + 1 \text{ and } k = 4, l = \lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil - 1, ...2 \}$. Then $|S| = 2\lceil \frac{n}{2} \rceil$.

Claim: S is a non-split perfect triple connected dominating set in $C_4 | \times |C_n$.

Here every vertex in V–S is adjacent to some vertex in S. This gives that S is a dominating set $inC_4 | \times |C_n$. Also $\langle S \rangle = P_2 \lceil \frac{n}{2} \rceil$, S is a triple connected set. $\langle V - S \rangle$ is connected. Here $4n - 2 \lceil \frac{n}{2} \rceil$ is even, $\langle V - S \rangle$ has a perfect matching. Therefore S is a non-split perfect triple connected dominating set in $C_4 | \times |C_n$.

Claim: $\gamma_{nsptc}(C_4 | \times |C_n) = |S|$. For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $C_4 | \times |C_n$. Therefore S is the non-split perfect triple connected dominating set in $C_4 | \times |C_n$ which is minimum. **Case 2:** n is even.

Consider the set $S = \{(u_k, v_l) : k = 1, l = 1, 2, 3..., \lceil \frac{n}{2} \rceil; k = 2, l = \lceil \frac{n}{2} \rceil + 1; k = 3, l = \lceil \frac{n}{2} \rceil + 2 \text{ and } k = 4, l = \lceil \frac{n}{2} \rceil + 1, \lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil - 1, ...2 \}$. Then $|S| = 2 \lceil \frac{n+1}{2} \rceil$.

Claim: S is a non-split perfect triple connected dominating set in $C_4 | \times |C_n$. Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a dominating set in $C_4 | \times |C_n$. Also $\langle S \rangle = P_2 \lceil \frac{n+1}{2} \rceil$, S is a triple connected set. $\langle V - S \rangle$ is connected. Here $4n - 2 \lceil \frac{n+1}{2} \rceil$ is even, $\langle V - S \rangle$ has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $C_4 | \times |C_n$.

Claim: $\gamma_{nsptc}(C_4| \times |C_n) = |S|$. For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $C_4| \times |C_n$. Therefore S is the non-split perfect triple connected dominating set in $C_4| \times |C_n$ which is minimum. Hence

$$\gamma_{nsptc}(C_4|\times|C_n) = \begin{cases} 2\lceil \frac{n}{2}\rceil, & n \text{ is odd} \\ 2\lceil \frac{n+1}{2}\rceil, & n \text{ is even} \end{cases}$$

Theorem 3.3. For any $m, n \ge 5$ we have,

$$\gamma_{nsptc}(C_m|\times|C_n) = \begin{cases} \lceil \frac{m}{2} \rceil (\lceil \frac{n}{2} \rceil) + 1, & m, n \text{ are odd and } m \equiv 1 \pmod{3} \\ \lceil \frac{m}{2} \rceil (\lceil \frac{n+1}{2} \rceil), & m \text{ is odd} \\ \lceil \frac{m}{2} \rceil (\lceil \frac{n}{2} \rceil), & \text{otherwise} \end{cases}$$

Proof. Let C_m and C_n be the cycles on m vertices and n vertices respectively Then the semi strong product of C_m and C_n is denoted by $C_m | \times |C_n$ has mn vertices. Here $V(C_m | \times |C_n) = \{(u_i, v_j)/1 \le i \le m, 1 \le j \le n\}$.

Case 1: m,n are odd and $m \equiv 1 \pmod{3}$. Consider the set $S = \{(u_k, v_l) : k = 1, l = 1, 2, 3..., \lceil \frac{n}{2} - 1 \rceil; k = 2, l = \lceil \frac{n}{2} \rceil; k = 3, l = \lceil \frac{n}{2} + 1 \rceil; k = 4, l = \lceil \frac{n}{2} \rceil; \lceil \frac{n}{2} - 1 \rceil, ...2, 1; and k = m, l = \lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} - 1, ...2 \rceil\}$.

Then $|S| = \lceil \frac{m}{2} \rceil (\lceil \frac{n}{2} \rceil) + 1$.

Claim: S is a non-split perfect triple connected dominating set in $C_m | \times |C_n$.

Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a dominating set in $C_m | \times |C_n$. Also $\langle S \rangle = P_{\lceil \frac{m}{2} \rceil}(\lceil \frac{n}{2} \rceil) + 1$, S is a triple connected set. $\langle V - S \rangle$, is connected. Here $mn - \lceil \lceil \frac{m}{2} \rceil (\lceil \frac{n}{2} \rceil) + 1 \rceil$ is even, $\langle V - S \rangle$ has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $C_m | \times |C_n$.

Claim: $\gamma_{nsptc}(C_m | \times | C_n) = |S|.$

For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $C_m | \times |C_n$. Therefore S is the non-split perfect triple connected dominating set in $C_m | \times |C_n$ which is minimum.

Case 2: n is even.

Consider the set $S = \{(u_k, v_l) : k = 1, l = 1, 2, 3..., \lceil \frac{n}{2} - 1 \rceil; k = 2, l = \lceil \frac{n}{2} \rceil; k = 3, l = \lceil \frac{n}{2} + 1 \rceil; k = 4, l = \lceil \frac{n}{2} \rceil; \lceil \frac{n}{2} - 1 \rceil, ...2, 1; and k = m, l = \lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} - 1, ...2 \rceil\}.$ Then $|S| = \lceil \frac{m}{2} \rceil (\lceil \frac{n+1}{2} \rceil).$

Claim: S is a non-split perfect triple connected dominating set in $C_m | \times |C_n$. Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a dominating set in $C_m | \times |C_n$. Also $\langle S \rangle = P \lceil \frac{m}{2} \rceil (\lceil \frac{n+1}{2} \rceil)$, S is a triple connected set. $\langle V - S \rangle$, is connected. Here $mn - \lceil \lceil \frac{m}{2} \rceil (\lceil \frac{n+1}{2} \rceil) \rceil$ is even, $\langle V - S \rangle$ has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $C_m | \times |C_n$.

Claim: $\gamma_{nsptc}(C_m | \times | C_n) = |S|$.

For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $C_m | \times |C_n|$. Therefore S is the non-split perfect triple connected dominating set in $C_m | \times |C_n$ which is minimum.

Case 3:

Consider the set $S = \{(u_k, v_l) : k = 1, l = 1, 2, 3..., \lceil \frac{n}{2} - 1 \rceil; k = 2, l = \lceil \frac{n}{2} \rceil; k = 3, l = \lceil \frac{n}{2} + 1 \rceil; k = 4, l = \lceil \frac{n}{2} \rceil; \lceil \frac{n}{2} - 1 \rceil, ...2, 1; and k = m, l = \lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} - 1, ...2 \rceil\}.$ Then $|S| = \lceil \frac{m}{2} \rceil (\lceil \frac{n}{2} \rceil).$

Claim: S is a non-split perfect triple connected dominating set in $C_m | \times |C_n$. Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a dominating set in $C_m | \times |C_n$. Also $\langle S \rangle = P_{\lceil \frac{m}{2} \rceil}(\lceil \frac{n}{2} \rceil)$, S is a triple connected set. $\langle V - S \rangle$, is connected. Here $mn - \lceil \lceil \frac{m}{2} \rceil(\lceil \frac{n}{2} \rceil) \rceil$ is even, $\langle V - S \rangle$ has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $C_m | \times |C_n$.

Claim: $\gamma_{nsptc}(C_m | \times |C_n) = |S|$ For any cases |S'| < |S| < V

For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $C_m | \times |C_n|$. Therefore S is the non-split perfect triple connected dominating set in $C_m | \times |C_n$ which is minimum Hence

$$\gamma_{nsptc}(C_m | \times | C_n) = \begin{cases} \left\lceil \frac{m}{2} \right\rceil \left(\left\lceil \frac{n}{2} \right\rceil \right) + 1, & m, n \text{ are odd and } m \equiv 1 \pmod{3} \\ \left\lceil \frac{m}{2} \right\rceil \left(\left\lceil \frac{n+1}{2} \right\rceil \right), & m \text{ is odd} \\ \left\lceil \frac{m}{2} \right\rceil \left(\left\lceil \frac{n}{2} \right\rceil \right), & \text{otherwise} \end{cases}$$

4. Semi Lexico graphic product of Paths

In this section we find the non-split perfect triple connected domination number of the semi lexico graphic product of paths. We recall the existing definition of Semi lexico graphic product of graphs: The Semi lexico graphic product of the graphs G and H is denoted by G \bigcirc H, whose vertex set is $V(G) \times V(H)$. Two vertices (g,h) and (g',h') are adjacent in $G \bigcirc H$ if $gg' \in E(G)$ (or) h = h' and $gg' \in E(G)$. That is $V(G \bigcirc H) = \{(g,h) \ g \in (G) \ and \ h \in (H)\}, \ E(G \bigcirc H) =$ $\{(g,h)(g',h') : gg' \in E(G) \ (or) \ h = h' \ and \ gg' \in E(G)\}$. The number of vertices in the Semi lexico graphic product of $G \bigcirc H$ is |V(G)||V(H)|.

Theorem 4.1. For any $n \ge 3$, we have $\gamma_{nsptc}(P_2 \bigcirc P_n) = 4$.

Proof. Let P_2 and P_n be the paths on 2 vertices and n vertices respectively Then the semi lexicographic product of P_2 and P_n is denoted by $P_2 \bigcirc P_n$ has 2n vertices. Here $V(P_2 \bigcirc P_n) = \{(u_i, v_j)/1 \le i \le 2, 1 \le j \le n\}$.

Consider the set $S = \{(u_1, v_1), (u_1, v_2), (u_2, v_1), (u_2, v_2)\}$. Then |S| = 4.

Claim: S is a non-split perfect triple connected dominating set in $P_2 \bigcirc P_n$. Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a dominating set in $P_2 \bigcirc P_n$. Also $\langle S \rangle = C_4$, S is a triple connected set. $\langle V - S \rangle$ is connected. Here2n - 4 is even, $\langle V - S \rangle$ has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $P_2 \bigcirc P_n$. **Claim:** $\gamma_{nsptc}(P_2 \bigcirc P_n) = |S|$.

For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $P_2 \bigcirc P_n$. Therefore S is the non-split perfect triple connected dominating set in $P_2 \bigcirc P_n$ which is minimum. Hence $\gamma_{nsptc}(P_2 \bigcirc P_n) = 4$.

Theorem 4.2. For any $3 \le m \le n$ and m is even, we have $\gamma_{nsptc}(P_m \bigcirc P_n) = m$.

Proof. Let P_m and P_n be the paths on m vertices and n vertices respectively Then the semi lexicographic product of P_m and P_n is denoted by $P_m \bigcirc P_n$ has mn vertices. Here $V(P_m \bigcirc P_n) = \{(u_i, v_j)/1 \le i \le m, 1 \le j \le n\}$.

Consider the set $S = \{(u_i, v_1) : 1 \le i \le m\}$. Then |S| = m.

Claim: S is a non-split perfect triple connected dominating set in $P_m \bigcirc P_n$. Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a dominating set in $P_m \bigcirc P_n$. Also $\langle S \rangle = P_m$, S is a triple connected set. $\langle V - S \rangle = P_m \bigcirc P(n-1)$ is connected. Here m(n-1) is even, $\langle V - S \rangle$ has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $P_m \bigcirc P_n$.

Claim:
$$\gamma_{nsptc}(P_m \bigcirc P_n) = |S|$$
.

For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $P_m \bigcirc P_n$. Therefore S is the non-split perfect triple connected dominating set in $P_m \bigcirc P_n$ which is minimum. Hence $\gamma_{nsptc}(P_m \bigcirc P_n) = m$. \Box

Note: If m is odd, then for any triple connected dominating set S in $P_m \bigcirc P_n$, $\langle V-S \rangle$ has no perfect matching. This gives that $\gamma_{nsptc}(P_m \bigcirc P_n)$ doesn't exist.

5. Semi Lexico graphic Product of Cycles

In this section we find the non-split perfect triple connected domination number of the semi lexico graphic product of cycles.

Theorem 5.1. For any $3 \le m \le n$, we have

$$\gamma_{nsptc}(C_m \bigcirc C_n)) = \begin{cases} m+1, & m \text{ is odd}, n \text{ is even} \\ m, & \text{otherwise} \end{cases}$$

Proof. Let C_m and C_n be the cycles on m vertices and n vertices respectively Then the semi lexicographic product of C_m and C_n is denoted by $C_m \bigcirc C_n$ has mn vertices. Here $V(C_m \bigcirc C_n) = \{(u_i, v_j)/1 \le i \le m, 1 \le j \le n\}$. **Case I:** m is odd and n is even.

Consider the set $S = \{(u_i, v_1), (u_2, v_n) : 1 \le i \le m\}$. Then |S| = m + 1.

Claim: S is a non-split perfect triple connected dominating set in $C_m \bigcirc C_n$. Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a dominating set in $C_m \bigcirc C_n$. Also $\langle S \rangle = P(m-2) \cup P_3$, S is a triple connected

set. $\langle V - S \rangle = C_m \bigcirc C_n(n-2) \cup P_n - 1$ is connected. Here m(n-1) - 1 is even, $\langle V - S \rangle$ has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $C_m \bigcirc C_n$.

Claim: $\gamma_{nsptc}(C_m \bigcirc C_n) = |S|.$

For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $C_m \bigcirc C_n$. Therefore S is the non-split perfect triple connected dominating set in $C_m \bigcirc C_n$ which is minimum. Hence $\gamma_{nsptc}(C_m \bigcirc C_n) = m + 1$

Case II: m is odd and n is odd.

Consider the set $S = \{(u_i, v_1) : 1 \le i \le m\}$. Then |S| = m.

Claim: S is a non-split perfect triple connected dominating set in $C_m \bigcirc C_n$.

Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a dominating set in $C_m \bigcirc C_n$. Also $< S >= C_m$, S is a triple connected set. $< V - S >= C_m \bigcirc C_n - 1$ is connected. Here m(n-1) is even, < V - S > has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $C_m \bigcirc C_n$.

Claim: $\gamma_{nsptc}(C_m \bigcirc C_n) = |S|.$

For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $C_m \bigcirc C_n$. Therefore S is the non-split perfect triple connected dominating set in $C_m \bigcirc C_n$ which is minimum. Hence $\gamma_{nsptc}(C_m \bigcirc C_n) = m$.

Case III: m is even and n is even or n is odd.

Consider the set $S = \{(u_i, v_1) : 1 \le i \le m\}$. Then |S| = m.

Claim: S is a non-split perfect triple connected dominating set in $C_m \bigcirc C_n$.

Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a dominating set in $C_m \bigcirc C_n$. Also $< S >= C_m$, S is a triple connected set. $< V - S >= C_m \bigcirc C_n - 1$ is connected. Here m(n-1) is even, < V - S > has a perfect matching. Therefore S is non-split perfect triple connected dominating set in $C_m \bigcirc C_n$.

Claim: $\gamma_{nsptc}(C_m \bigcirc C_n) = |S|$.

For any cases, |S'| < |S|, < V - S' > has an odd number of vertices, it has no perfect matching in $C_m \bigcirc C_n$. Therefore S is the non-split perfect triple connected dominating set in $C_m \bigcirc C_n$ which is minimum. Hence $\gamma_{nsptc}(C_m \bigcirc$ C_n) = m. Therefore

$$\gamma_{nsptc}(C_m \bigcirc C_n)) = \begin{cases} m+1, & m \text{ is odd}, n \text{ is even} \\ m, & \text{otherwise} \end{cases}$$
.

Acknowledgment

The research work was supported by DSA (Departmental special assistance), Department of Mathematics, Gandhigram Rural Institute-Deemed to be university, Gandhigram, under University Grants Commission- New Delhi.

References

- [1] F. HARARY: Graph Theory, Addison Wesley Publishing Company Pvt Ltd USA, 1969.
- [2] G. MAHADEVAN, A. IRAVITHULBASIRA, C. SIVAGNAM: Non Split Perfect Triple Connected Domination Number of a Graph, Asian Journal of Research in Social Sciences and Humanities, 6 (2016), 1954–1966.
- [3] G. MAHADEVAN, T. PONNUCHAMY, A. SELVAM: Non-Split Perfect Triple connected Domination number on Different Product of Paths, International Journal of Mathematical Combinatorics, 15 (2018), 118–131.
- [4] J. PAULRAJ JOSEPH, M. K. ANGEL JEBITHA, P. CHITHRA DEVI, G. SUDHANA: Triple Connected Graphs, Indian Journal Mathematics and Mathematical Sciences, 8 (2012), 61– 75.
- [5] J. PAULRAJ JOSEPH, G. MAHADEVAN, A. SELVAM: *Triple Connected Domination number of a Graph*, International Journal of Mathematical COmbinatorics, **3** (2012), 93–104.

Department of Mathematics, Gandhigram Rural Institute-Deemed to be University, Gandhigram

Email address: drgmaha2014@gmail.com

Department of Mathematics, Gandhigram Rural Institute-Deemed to be University, Gandhigram

Email address: tponnuchamy@gmail.com

DEPARTMENT OF MATHEMATICS, VHNSN COLLEGE, VIRUDHUNAGAR *Email address*: selvam_avadayappan@yahoo.co.in