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NON-SPLIT PERFECT TRIPLE CONNECTED DOMINATION NUMBER OF
SEMI PRODUCT OF PATHS AND CYCLES

G. MAHADEVAN1, T. PONNUCHAMY, AND SELVAM AVADAYAPPAN

ABSTRACT. Recently the concept of non-split Perfect Triple connected domina-
tion number was introduced by G. Mahadevan et.al., and obtained many in-
teresting results along with some product related graphs. A subset S of V of a
non-trivial graph G is said to be non-split perfect triple connected dominating
set, if S is a triple connected dominating set and <V-S> is connected and has at
least one perfect matching. The minimum cardinality taken over all non-split
perfect triple connected dominating sets in G is called the non-split perfect triple
connected domination number of G and is denoted by γnsptc(G). In this paper,
we investigate this parameter for various semi product of paths and cycles

1. INTRODUCTION

By a graph we mean a finite, simple, connected and undirected graph G(V,E),
where V denotes its vertex set and E its edge set. Unless otherwise stated, the
graph G has p vertices and q edges. We denote a path on m vertices by Pm. The
concept of triple connected graphs was introduced by J. Paulraj Joseph et.al.,
A graph G is said to be triple connected if any three vertices lie on a path in
G. A dominating set S is said to be triple connected dominating set, if the sub
graph <S> is triple connected. The minimum cardinality taken over all triple
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connected dominating sets is called the triple connected domination number of
a graph G and it is denoted by γtc(G). The concept of non-split perfect triple
connected domination number was introduced by G. Mahadevan et. al., A sub-
set S of V of a non-trivial graph G is said to be non-split perfect triple connected
dominating set, if S is a triple connected dominating set and the induced sub
graph < V −S > is connected and has a perfect matching. The minimum cardi-
nality taken over all non-split perfect triple connected dominating sets is called
the non-split perfect triple connected domination number of G and is denoted by
γnsptc(G). In [3],the authors find the Non-Split Perfect Triple Connected Dom-
ination number on Different Product of Paths. Motivated by the above, in this
paper we find the non-split perfect triple connected domination number of semi
product of paths and cycles.

For further reference see [1, 2, 4, 5].

2. SEMI STRONG PRODUCT OF PATHS

In this section we find the non-split perfect triple connected domination num-
ber of the semi strong product of paths. We recall the existing definition of Semi
strong product of graphs: The Semi strong product of the graphs G and H is
denoted by G| × |H, whose vertex set is V (G) × V (H). Two vertices (g, h) and
(g′, h′) are adjacent in G| × |H if gg′ ∈ E(G) and hh′ ∈ E(H) (or) h = h′and
gg′ ∈ E(G). That is V (G| × |H)={(g, h) g ∈ (G) and h ∈ (H)}, E(G| × |H) =

{(g, h)(g′, h′)�′∈ E(G) and hh′ ∈ (H) (or) h = h′ and gg′ ∈ E(G)}. The number
of vertices in the Semi Strong product of G| × |His |V (G)||V (H)|.

Theorem 2.1. For anyn ≥ 3, we have γnsptc(P2|×(Pn)) =

{
n, if n is even

n+ 1, if n is odd

Proof. Let P2 and Pn be the paths on 2 vertices and n vertices respectively Then
the semi strong product of P2 and Pn is denoted by P2| × |Pn has 2n vertices.
Here V (P2| × |Pn) = {(ui, vj)/1 ≤ i ≤ 2, 1 ≤ j ≤ n}.
Case 1: n is even Consider the set S = {(uk, vl) : k = 1, l = 1, 3, 5, ...n−1 and k =

2, l = 2, 4, 6, ...n}. Then |S| = n.
Claim: S is a non-split perfect triple connected dominating set in P2| × |Pn.
Here every vertex in V − S is adjacent to some vertex in S. This gives that S
is a dominating set in P2| × |Pn. Also < S >= Pn, S is a triple connected set.
< V − S >= Pn,which is connected. Here n is even, < V − S > has a perfect
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matching. Therefore S is non-split perfect triple connected dominating set in
P2| × |Pn.
Claim: γnsptc(P2| × |Pn) = |S|.
For any cases, |S ′| < |S|, < V − S ′ > has an odd number of vertices, it has
no perfect matching in P2| × |Pn. Therefore S is the non-split perfect triple
connected dominating set in P2| × |Pn)which is minimum.
Case 2: n is odd.
Consider the set S = {(uk, vl) : k = 1, l = 1, 3, 5, ...nandk = 2, l = 2, 4, 6, ...n −
1, n}. Then |S| = n+ 1.
Claim: S is a non-split perfect triple connected dominating set in P2| × |Pn.
Here every vertex in V-S is adjacent to some vertex in S. This gives that S is
a dominating set in P2| × |Pn. Also< S >= Pn+1, S is a triple connected set.
< V − S >= Pn−1,which is connected. Here n − 1 is even, < V − S > has a
perfect matching. Therefore S is non-split perfect triple connected dominating
set in P2| × |Pn.
Claim: γnsptc(P2| × |Pn) = |S|.
For any cases,|S ′| < |S|, < V − S ′ > has an odd number of vertices, it has no
perfect matching in P2|×|Pn. Therefore S is the non-split perfect triple connected
dominating set inP2| × |Pn which is minimum. Hence

γnsptc(P2| × |Pn) =

{
n, n is even
n+ 1, n is odd

.

�

Observation 2.1. If there exists a Triple connected dominating set S in Pm| × |Pn,
then < V − S > neither connected nor has a perfect matching. Hence, for any
m,n ≥ 3, γnsptc(Pm| × |Pn) does not exist.

3. SEMI STRONG PRODUCT OF CYCLES

In this section we find the non-split perfect triple connected domination num-
ber of the semi strong product of cycles.

Theorem 3.1. For any 3 ≤ n we have γnsptc(C3| × |Cn) = n.

Proof. Let C3 and Cn be the cycles on 3 vertices and n vertices respectively Then
the semi strong product of C3 and Cn is denoted by C3| × |Cn) has 3n vertices.
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Here V (C3| × |Cn) = {(ui, vj)/1 ≤ i ≤ 3, 1 ≤ j ≤ n}.
Case 1: n is odd.
Consider the set S = {(uk, vl) : k = 1, l = 1, 3, 5, ...n and k = 2, l = 2, 4, 6, ...n−1}.
Then |S| = n.
Claim: S is a non-split perfect triple connected dominating set in C3| × |Cn).

Here every vertex in V − S is adjacent to some vertex in S. This gives that S
is a dominating set in C3| × |Cn. Also < S >= Pn, S is a triple connected set.
< V − S >, is connected. Here 2n is even, < V − S > has a perfect matching.
Therefore S is non-split perfect triple connected dominating set in C3| × |Cn.
Claim: γnsptc(C3| × |Cn) = |S|. For any cases, |S ′| < |S|, < V − S ′ > has an odd
number of vertices, it has no perfect matching in C3| × |Cn). Therefore S is the
non-split perfect triple connected dominating set in C3|×|Cn which is minimum.
Case 2: n is even.
Consider the set S = {(uk, vl) : k = 1, l = 1, 3, 5, ...n−1 and k = 2, l = 2, 4, 6, ...n}.
Then |S| = n.
Claim: S is a non-split perfect triple connected dominating set inC3| × |Cn.
Here every vertex in V − S is adjacent to some vertex in S. This gives that S
is a dominating set in C3| × |Cn. Also < S >= Pn, S is a triple connected set.
< V − S >, is connected. Here 2n is even, < V − S > has a perfect matching.
Therefore S is non-split perfect triple connected dominating set in C3| × |Cn.
Claim: γnsptc(C3| × |Cn) = |S|. For any cases,|S ′| < |S|, < V − S ′ > has an odd
number of vertices, it has no perfect matching in C3| × |Cn. Therefore S is the
non-split perfect triple connected dominating set in C3|×|Cn which is minimum.
Hence γnsptc(C3| × |Cn) = n. �

Theorem 3.2. For any n ≥ 4, we have

γnsptc(C4| × |Cn) =

{
2dn

2
e, n is odd

2dn+1
2
e, n is even

.

Proof. Let C4 and Cn be the cycles on 4 vertices and n vertices respectively Then
the semi strong product of C4 and Cn is denoted byC4| × |Cn has 4n vertices.
HereV (C4| × |Cn) = {(ui, vj)/1 ≤ i ≤ 4, 1 ≤ j ≤ n}.
Case 1: n is odd.
Consider the setS = {(uk, vl) : k = 1, l = 1, 2, 3..., dn

2
e − 1; k = 2, l = dn

2
e; k =

3, l = dn
2
e+ 1 and k = 4, l = dn

2
e, dn

2
e − 1, ...2}. Then |S| = 2dn

2
e.

Claim: S is a non-split perfect triple connected dominating set in C4| × |Cn.
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Here every vertex in V−S is adjacent to some vertex in S. This gives that S is
a dominating set inC4| × |Cn. Also < S >= P2dn2 e, S is a triple connected set.
< V − S > is connected. Here 4n − 2dn

2
e is even, < V − S > has a perfect

matching. Therefore S is a non-split perfect triple connected dominating set in
C4| × |Cn.
Claim: γnsptc(C4| × |Cn) = |S|. For any cases, |S ′| < |S|, < V − S ′ > has an odd
number of vertices, it has no perfect matching in C4| × |Cn. Therefore S is the
non-split perfect triple connected dominating set in C4|×|Cn which is minimum.
Case 2: n is even.
Consider the set S = {(uk, vl) : k = 1, l = 1, 2, 3..., dn

2
e; k = 2, l = dn

2
e + 1; k =

3, l = dn
2
e+ 2 and k = 4, l = dn

2
e+ 1, dn

2
e, dn

2
e − 1, ...2}. Then |S| = 2dn+1

2
e.

Claim: S is a non-split perfect triple connected dominating set in C4| × |Cn.
Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a
dominating set in C4| × |Cn. Also < S >= P2dn+1

2
e , S is a triple connected set.

< V − S > is connected. Here 4n − 2dn+1
2
e is even, < V − S > has a perfect

matching. Therefore S is non-split perfect triple connected dominating set in
C4| × |Cn.
Claim: γnsptc(C4| × |Cn) = |S|. For any cases, |S ′| < |S|, < V − S ′ > has an odd
number of vertices, it has no perfect matching in C4| × |Cn. Therefore S is the
non-split perfect triple connected dominating set in C4|×|Cn which is minimum.
Hence

γnsptc(C4| × |Cn) =

{
2dn

2
e, n is odd

2dn+1
2
e, n is even

.

�

Theorem 3.3. For any m,n ≥ 5 we have,

γnsptc(Cm| × |Cn) =


dm

2
e(dn

2
e) + 1, m, n are odd and m ≡ 1(mod 3)

dm
2
e(dn+1

2
e), m is odd

dm
2
e(dn

2
e), otherwise

.

Proof. Let Cm and Cn be the cycles on m vertices and n vertices respectively Then
the semi strong product of Cm and Cn is denoted byCm| × |Cn has mn vertices.
HereV (Cm| × |Cn) = {(ui, vj)/1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Case 1: m,n are odd and m ≡ 1(mod 3).

Consider the setS = {(uk, vl) : k = 1, l = 1, 2, 3..., dn
2
− 1e; k = 2, l = dn

2
e; k =

3, l = dn
2
+1e; k = 4, l = dn

2
e; dn

2
− 1e, ...2, 1; ..... and k = m, l = dn

2
e, dn

2
− 1, ...2e}.
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Then |S| = dm
2
e(dn

2
e) + 1.

Claim: S is a non-split perfect triple connected dominating set in Cm| × |Cn.
Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a
dominating set in Cm|× |Cn. Also < S >= Pd

m
2
e(dn

2
e)+1, S is a triple connected

set. < V − S >, is connected. Here mn− [dm
2
e(dn

2
e) + 1] is even, < V − S > has

a perfect matching. Therefore S is non-split perfect triple connected dominating
set in Cm| × |Cn.
Claim: γnsptc(Cm| × |Cn) = |S|.
For any cases,|S ′| < |S|, < V − S ′ > has an odd number of vertices, it has
no perfect matching in Cm| × |Cn. Therefore S is the non-split perfect triple
connected dominating set in Cm| × |Cn which is minimum.
Case 2: n is even.
Consider the se tS = {(uk, vl) : k = 1, l = 1, 2, 3..., dn

2
− 1e; k = 2, l = dn

2
e; k =

3, l = dn
2
+1e; k = 4, l = dn

2
e; dn

2
− 1e, ...2, 1; ..... and k = m, l = dn

2
e, dn

2
− 1, ...2e}.

Then |S| = dm
2
e(dn+1

2
e).

Claim: S is a non-split perfect triple connected dominating set in Cm| × |Cn.
Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a
dominating set in Cm| × |Cn. Also < S >= Pd

m
2
e(dn+1

2
e) , S is a triple connected

set. < V − S >, is connected. Here mn− [dm
2
e(dn+1

2
e)] is even, < V − S > has a

perfect matching. Therefore S is non-split perfect triple connected dominating
set in Cm| × |Cn.
Claim: γnsptc(Cm| × |Cn) = |S|.
For any cases,|S ′| < |S|, < V − S ′ > has an odd number of vertices, it has
no perfect matching in Cm| × |Cn . Therefore S is the non-split perfect triple
connected dominating set in Cm| × |Cn which is minimum.
Case 3:
Consider the se tS = {(uk, vl) : k = 1, l = 1, 2, 3..., dn

2
− 1e; k = 2, l = dn

2
e; k =

3, l = dn
2
+1e; k = 4, l = dn

2
e; dn

2
− 1e, ...2, 1; ..... and k = m, l = dn

2
e, dn

2
− 1, ...2e}.

Then |S| = dm
2
e(dn

2
e).

Claim: S is a non-split perfect triple connected dominating set in Cm| × |Cn.
Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a
dominating set in Cm| × |Cn. Also < S >= Pd

m
2
e(dn

2
e) , S is a triple connected

set. < V − S >, is connected. Here mn − [dm
2
e(dn

2
e)] is even, < V − S > has a

perfect matching. Therefore S is non-split perfect triple connected dominating
set in Cm| × |Cn.
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Claim: γnsptc(Cm| × |Cn) = |S|
For any cases,|S ′| < |S|, < V − S ′ > has an odd number of vertices, it has
no perfect matching in Cm| × |Cn . Therefore S is the non-split perfect triple
connected dominating set in Cm| × |Cn which is minimum Hence

γnsptc(Cm| × |Cn) =


dm

2
e(dn

2
e) + 1, m, n are odd and m ≡ 1(mod 3)

dm
2
e(dn+1

2
e), m is odd

dm
2
e(dn

2
e), otherwise

.

�

4. SEMI LEXICO GRAPHIC PRODUCT OF PATHS

In this section we find the non-split perfect triple connected domination num-
ber of the semi lexico graphic product of paths. We recall the existing definition
of Semi lexico graphic product of graphs: The Semi lexico graphic product of
the graphs G and H is denoted by G©H, whose vertex set is V (G)× V (H). Two
vertices (g, h) and (g′, h′) are adjacent in G© H if gg′ ∈ E(G) (or) h = h′ and
gg′ ∈ E(G). That is V (G© H) = {(g, h) g ∈ (G) and h ∈ (H)}, E(G© H) =

{(g, h)(g′, h′) : gg′ ∈ E(G) (or) h = h′ and gg′ ∈ E(G)}. The number of vertices
in the Semi lexico graphic product of G©His |V (G)||V (H)|.

Theorem 4.1. For any n ≥ 3, we have γnsptc(P2© Pn) = 4.

Proof. Let P2 and Pn be the paths on 2 vertices and n vertices respectively Then
the semi lexicographic product of P2 and Pn is denoted by P2 © Pn has 2n
vertices. Here V (P2© Pn) = {(ui, vj)/1 ≤ i ≤ 2, 1 ≤ j ≤ n}.
Consider the set S = {(u1, v1), (u1, v2), (u2, v1), (u2, v2)}. Then |S| = 4.
Claim: S is a non-split perfect triple connected dominating set in P2 © Pn.
Here every vertex in V-S is adjacent to some vertex in S. This gives that S is
a dominating set in P2 © Pn. Also < S >= C4, S is a triple connected set.
< V − S > is connected. Here2n− 4 is even, < V − S > has a perfect matching.
Therefore S is non-split perfect triple connected dominating set in P2© Pn.
Claim: γnsptc(P2© Pn) = |S|.
For any cases,|S ′| < |S|, < V − S ′ > has an odd number of vertices, it has no
perfect matching in P2©Pn. Therefore S is the non-split perfect triple connected
dominating set in P2© Pn which is minimum. Hence γnsptc(P2© Pn) = 4. �
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Theorem 4.2. For any 3 ≤ m ≤ n and m is even , we have γnsptc(Pm© Pn) = m.

Proof. Let Pm and Pn be the paths on m vertices and n vertices respectively Then
the semi lexicographic product of Pm and Pn is denoted by Pm © Pn has mn
vertices. Here V (Pm© Pn) = {(ui, vj)/1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Consider the set S = {(ui, v1) : 1 ≤ i ≤ m}. Then |S| = m.
Claim: S is a non-split perfect triple connected dominating set in Pm © Pn.
Here every vertex in V-S is adjacent to some vertex in S. This gives that S is
a dominating set in Pm © Pn. Also < S >= Pm, S is a triple connected set.
< V − S >= Pm©P(n− 1) is connected. Here m(n− 1) is even, < V − S > has
a perfect matching. Therefore S is non-split perfect triple connected dominating
set in Pm© Pn.
Claim: γnsptc(Pm© Pn) = |S|.
For any cases,|S ′| < |S|, < V − S ′ > has an odd number of vertices, it has no
perfect matching in Pm©Pn. Therefore S is the non-split perfect triple connected
dominating set in Pm©Pn which is minimum. Hence γnsptc(Pm©Pn) = m. �

Note: If m is odd, then for any triple connected dominating set S in Pm© Pn,
< V −S > has no perfect matching. This gives that γnsptc(Pm©Pn) doesn’t exist.

5. SEMI LEXICO GRAPHIC PRODUCT OF CYCLES

In this section we find the non-split perfect triple connected domination num-
ber of the semi lexico graphic product of cycles.

Theorem 5.1. For any 3 ≤ m ≤ n, we have

γnsptc(Cm© Cn)) =

{
m+ 1, m is odd, n is even
m, otherwise

.

Proof. Let Cm and Cn be the cycles on m vertices and n vertices respectively
Then the semi lexicographic product of Cm and Cn is denoted by Cm© Cn has
mn vertices. Here V (Cm© Cn) = {(ui, vj)/1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Case I: m is odd and n is even.
Consider the set S = {(ui, v1), (u2, vn) : 1 ≤ i ≤ m}. Then |S| = m+ 1.
Claim: S is a non-split perfect triple connected dominating set in Cm© Cn.
Here every vertex in V-S is adjacent to some vertex in S. This gives that S is a
dominating set in Cm©Cn. Also < S >= P (m− 2)∪ P3, S is a triple connected
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set. < V − S >= Cm© C(n − 2) ∪ Pn − 1 is connected. Here m(n − 1) − 1 is
even, < V − S > has a perfect matching. Therefore S is non-split perfect triple
connected dominating set in Cm© Cn.
Claim: γnsptc(Cm© Cn) = |S|.
For any cases,|S ′| < |S|, < V − S ′ > has an odd number of vertices, it has
no perfect matching in Cm © Cn. Therefore S is the non-split perfect triple
connected dominating set in Cm © Cn which is minimum. Hence γnsptc(Cm ©
Cn) = m+ 1

Case II: m is odd and n is odd.
Consider the set S = {(ui, v1) : 1 ≤ i ≤ m}. Then |S| = m.
Claim: S is a non-split perfect triple connected dominating set in Cm© Cn.
Here every vertex in V-S is adjacent to some vertex in S. This gives that S is
a dominating set in Cm © Cn. Also< S >= Cm, S is a triple connected set.
< V −S >= Cm©Cn− 1 is connected. Here m(n− 1) is even, < V −S > has a
perfect matching. Therefore S is non-split perfect triple connected dominating
set in Cm© Cn.
Claim: γnsptc(Cm© Cn) = |S|.
For any cases,|S ′| < |S|, < V − S ′ > has an odd number of vertices, it has
no perfect matching in Cm © Cn. Therefore S is the non-split perfect triple
connected dominating set in Cm © Cn which is minimum. Hence γnsptc(Cm ©
Cn) = m.
Case III: m is even and n is even or n is odd.
Consider the set S = {(ui, v1) : 1 ≤ i ≤ m}. Then |S| = m.
Claim: S is a non-split perfect triple connected dominating set in Cm© Cn.
Here every vertex in V-S is adjacent to some vertex in S. This gives that S is
a dominating set in Cm © Cn. Also< S >= Cm, S is a triple connected set.
< V −S >= Cm©Cn− 1 is connected. Here m(n− 1) is even, < V −S > has a
perfect matching. Therefore S is non-split perfect triple connected dominating
set in Cm© Cn.
Claim: γnsptc(Cm© Cn) = |S|.
For any cases,|S ′| < |S|, < V − S ′ > has an odd number of vertices, it has
no perfect matching in Cm © Cn. Therefore S is the non-split perfect triple
connected dominating set in Cm © Cn which is minimum. Hence γnsptc(Cm ©
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Cn) = m. Therefore

γnsptc(Cm© Cn)) =

{
m+ 1, m is odd, n is even
m, otherwise

.

�
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