

Advances in Mathematics: Scientific Journal 9 (2020), no.6, 4293-4302

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.6.112 Spec. Issue on ICIGA-2020

IDEAL THEORY IN NEAR-SEMIRINGS AND ITS APPLICATION TO AUTOMATA

C. JENILA¹ AND P. DHEENA

ABSTRACT. In this paper we develop ideal theory in near-semirings. We use the ideal theory to find the necessary and sufficient conditions for a linear sequential machine to be minimal.

1. Introduction

It has been shown that a homomorphic group-automaton $\mathcal{A}=(Q,A,B,F,G)$, where Q is a state set, A is an input set and B is an output set are groups and $F:Q\times A\to Q$ and $G:Q\times A\to B$, the state-transition function and output function respectively, are homomorphisms, is minimal if and only if the $N(\mathcal{A})$ -group Q is generated by 0 and does not contain non-zero ideals which are annihilated by g_0 where $g_0:Q\to B$ ([3], Theorem 9.259). Pilz [3] considered linear sequential machines in which the state set forms a group.

Krishna and Chatterjee [2] considered a generalized linear sequential machine $\mathcal{M}=(Q,A,B,F,G)$ where Q,A,B are semigroups and R-semimodules for some semiring R and $F:Q\times A\to Q$ and $G:Q\times A\to B$ are R-homomorphisms. They have obtained a necessary condition for the above generalized sequential machine to be minimal. So naturally one is interested to find a necessary and sufficient conditions for the above generalized linear sequential machine to be minimal. To achieve that, we develop ideal theory in a

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 16Y30, 16Y60.

Key words and phrases. Near-semiring, ideal, linear sequential machine.

S-semigroup Γ , where S is a near-semiring. Using this ideal theory we find the necessary and sufficient conditions for a generalized linear sequential machine to be minimal. For the terminology and notation used in this paper we refer to Pilz [3], Krishna and Chatterjee [2].

2. Near-semirings

A near- semiring is a nonempty set S with two binary operations '+'and '.' such that

- (1) (S, +) is a semigroup with identity 0,
- (2) (S, .) is a semigroup,
- (3) (x+y)z = xz + yz for all $x, y, z \in S$, and
- (4) 0s = 0 for all $s \in S$.

In the near-semiring (S,+,.), if (S,.) has identity then S is a near-semiring with identity. Now we give a natural example of the near-semiring. Let $(\Gamma,+)$ be a semigroup with identity 0. If $M(\Gamma)$ is the set of all mappings from Γ into Γ then $M(\Gamma)$ is a near-semiring under pointwise addition and composition. $M(\Gamma)$ is neither a ring, nor a near-ring, nor a semiring. A semigroup (S,+) is an inverse semigroup if for each $a \in S$, there exists a unique element $a' \in S$ such that a+a'+a=a and a'+a+a'=a'. Then a' is the additive inverse of a. A near-semiring (S,+,.) is an additive inverse near-semiring if (S,+) is an inverse semigroup. If A and B are any two non-empty sets of S, we define $AB=\{ab|a\in A,b\in B\}$. For $x,y\in S$, x=(x')',(x+y)'=y'+x' and (xy)'=x'y. We have $E^+(S)=\{a\in S: a+a=a\}$.

The properties of additive inverse semiring were obtained by Bandelt and Petrich [1] and the properties of regularity in an additive inverse semiring were obtained by Sen and Maity [4]. They have assumed the three conditions.

- (1) a(a+a') = (a+a')
- (2) a(b+b') = (b+b')a
- (3) a + a(b + b') = a.

An element of $M(\Gamma)$ is said to be an affine mapping if it is a sum of an endomorphism and a constant map on Γ . The set of affine mappings on Γ is a subsemigroup of $M(\Gamma)$, denoted by $M_{aff}(\Gamma)$. Throughout this paper S denotes a near-semiring unless otherwise specified.

3. Ideal theory

Now we develop ideal theory in a S-semigroup Γ .

Definition 3.1. Let S be a near-semiring. A semigroup $(\Gamma, +)$ is said to be an S-semigroup if there exists a mapping $(x, \gamma) \mapsto x\gamma$ of $S \times \Gamma \longrightarrow \Gamma$ such that for all $x, y \in S, \gamma \in \Gamma$,

- (1) $(x+y)\gamma = x\gamma + y\gamma$,
- (2) $(xy)\gamma = x(y\gamma)$, and
- (3) $0\gamma = 0_{\Gamma}$, where 0_{Γ} is the zero of Γ .

Definition 3.2. A subsemigroup Δ of ${}_{S}\Gamma$ with $S\Delta\subseteq\Delta$ is said to be an S-subsemigroup of Γ .

Definition 3.3. Let ${}_{S}\Gamma_{1}$, ${}_{S}\Gamma_{2}$ be S-semigroups. A map $f: {}_{S}\Gamma_{1} \to {}_{S}\Gamma_{2}$ is called an S-homomorphism if $f(\gamma + \gamma_{1}) = f(\gamma) + f(\gamma_{1})$ and $f(s\gamma) = sf(\gamma)$ for all $\gamma, \gamma_{1} \in {}_{S}\Gamma_{1}$ and $s \in S$.

Note that $f(0_{\Gamma_1}) = 0_{\Gamma_2}$.

Definition 3.4. If f is an S-homomorphism of Γ_1 into Γ_2 , then the kernel of f is defined by $K = \{ \gamma_1 \in \Gamma_1 | f(\gamma_1) = 0_{\Gamma_2} \}$.

Hereafter $(\Gamma, +)$ is assumed to be inverse semigroup with $E^+(\Gamma)$ in the center of $(\Gamma, +)$.

Definition 3.5. A non-empty subset I of an S-semigroup Γ is an ideal of ${}_S\Gamma$ ($I \leq_S \Gamma$) if

- (1) $E^+(\Gamma) \subseteq I$,
- (2) $i_1 + i_2' \in I \text{ for all } i_1, i_2 \in I$,
- (3) $\gamma + i + \gamma' \in I$ for all $\gamma \in \Gamma$, $i \in I$,
- (4) $s(i+\gamma) + (s\gamma)' \in I$ for all $\gamma \in \Gamma, i \in I$ and $s \in S$,
- (5) If $e + \gamma \in I$ implies $\gamma \in I$ for any $e \in E^+(\Gamma)$.

Theorem 3.1. If a non-empty subset I of an S-semigroup Γ satisfies the conditions (1), (2), (3), (4) and (5) given above then I is the kernel of an S-homomorphism.

Proof. Define the relation ρ on Γ by $a\rho b$ for all $a,b\in\Gamma$ if and only if $i_1+a=i_2+b$ for some $i_1,i_2\in I$. Clearly ρ is reflexive and symmetric. Now we claim that ρ is transitive. Assume that $a\rho b$ and $b\rho c$. Then $i_1+a=i_2+b$ and $i_3+b=i_4+c$ for

some $i_1, i_2, i_3, i_4 \in I$. Now $i_2 + i_3 + b = i_2 + i_4 + c$. Then $i_2 + i_3 + b + b' + b = i_2 + i_4 + c$. Thus $i_2 + b + b' + i_3 + b = i_2 + i_4 + c$. Hence $i_1 + a + i_5 = i_2 + i_4 + c$ for some $i_5 \in I$. Thus $i_1 + a + a' + a + i_5 = i_2 + i_4 + c$. Then $i_1 + a + i_5 + a' + a = i_2 + i_4 + c$. Thus $i_1 + i_6 + a = i_2 + i_4 + c$ for some $i_6 \in I$. Hence $a \rho c$.

Let $\Gamma/_{\rho} = \{[a] \mid a \in \Gamma\}$. Let us define '+' in $\Gamma/_{\rho}$ as [a] + [b] = [a+b] and the map $S \times \Gamma/_{\rho} \to \Gamma/_{\rho}$ as s [a] = [sa] for all $a, b \in \Gamma$ and $s \in S$. Suppose that $[a] = [a_1]$ and $[b] = [b_1]$ for some $a, a_1, b, b_1 \in \Gamma$. Then $i_1 + a = i_2 + a_1$ and $i_3 + b = i_4 + b_1$ for some $i_1, i_2, i_3, i_4 \in I$. Now $i_1 + a + i_3 + b = i_2 + a_1 + i_4 + b_1$. Thus, $i_1 + a + a' + a + i_3 + b = i_2 + a_1 + a'_1 + a_1 + i_4 + b_1$. Hence $i_1 + a + i_3 + a' + a + b = i_2 + a_1 + i_4 + a'_1 + a_1 + b_1$. Then $i_1 + i_5 + a + b = i_2 + i_6 + a_1 + b_1$ for some $i_5, i_6 \in I$. Thus, $[a + b] = [a_1 + b_1]$.

Suppose that $[a] = [a_1]$ for some $a, a_1 \in \Gamma$. Then $i_1 + a = i_2 + a_1$ for some $i_1, i_2 \in I$. Let $s \in S$. Since $s(i_1 + a) + (sa)' \in I$ and $s(i_2 + a_1) + (sa_1)' \in I$, we have $s(i_1 + a) + (sa)' + sa = i_3 + sa$ and $s(i_2 + a_1) + (sa_1)' + sa_1 = i_4 + sa_1$ for some $i_3, i_4 \in I$. Let e = (sa)' + sa and $e_1 = (sa_1)' + sa_1$. Thus, $s(i_1 + a) + e = i_3 + sa$ and $s(i_2 + a_1) + e_1 = i_4 + sa_1$. Since $i_1 + a = i_2 + a_1$, we have $a_2 + e = i_3 + sa$ and $a_2 + e_1 = i_4 + sa_1$ where $a_2 = s(i_1 + a) \in \Gamma$. Therefore, $a_2 + e + e_1 = i_5 + sa$ and $a_2 + e + e_1 = i_6 + sa_1$ for some $i_5, i_6 \in I$. Thus, $i_5 + sa = i_6 + sa_1$. Hence $[sa] = [sa_1]$. Thus, Γ/ρ is an S-semigroup.

Next we define $\Psi: \Gamma \to \Gamma/\rho$ as $\Psi(\gamma) = [\gamma], \ \gamma \in \Gamma$. Clearly Ψ is an S-homomorphism. Let K be the kernel. Take $k \in K$. Then $\Psi(k) = [0]$ implies [k] = [0] implies $k\rho 0$. Hence $i_1 + k = i_2 + 0$ for some $i_1, i_2 \in I$. It follows that $i_1 + k = i_2$. Then $i_1' + i_1 + k = i_1' + i_2$. Let $i_1' + i_2 = i_3$. Hence $i_1' + i_1 + k = i_3$ implies $i_1' + i_1 + k \in I$. Since $i_1' + i_1 \in E^+(\Gamma)$, we have $k \in I$. Therefore, $K \subseteq I$. Clearly $I \subseteq K$. Hence K = I. Therefore, I is the kernel of an S-homomorphism. \square

4. GENERALIZED LINEAR SEQUENTIAL MACHINE

Definition 4.1. A semiautomaton is a triple S = (Q, A, F), where Q is a state set, A is an input set and $F : Q \times A \longrightarrow Q$ is a state-transition function. If Q is an inverse semigroup (we always write it additively), we call S an inverse semigroup-semiautomaton and abbreviate this by ISA.

For $q \in Q$ and $a \in A$ we interpret F(q,a) as the new state obtained from the old state q by means of the input a. We extend A to the free monoid A^* over A consisting of all finite sequences of elements of A, including the empty sequence \wedge .

We define the function $f_a: Q \longrightarrow Q$ by

$$f_{\wedge}(q) = q,$$

 $f_a(q) = F(q, a)$ for all $a \in A$
 $f_{xa}(q) = F(f_x(q), a)$ for all $x \in A^*, a \in A$.

Note that $f_{a_1a_2} = f_{a_2}f_{a_1}, a_1, a_2 \in A^*$.

Now we discuss two special cases.

The homomorphism case: Let Q and A be additive inverse semigroups with 0 and $F: Q \times A \longrightarrow Q$ be a homomorphism. Now $f_a(q) = F(q,a) = F((q,0) + (0_Q,a)) = F(q,0) + F(0_Q,a) = f_0(q) + f_a(0_Q)$. Hence $f_a = f_0 + \overline{f}_a$, where f_0 is a homomorphism (i.e. a distributive element in M(Q)), \overline{f}_a is the map with constant value $f_a(0_Q)$. Then **S** is called a homomorphic ISA.

Proposition 4.1. For $x = a_1 a_2 ... a_n \in A^*$,

$$f_x = f_0^n + (f_0^{n-1}\overline{f}_{a_1} + f_0^{n-2}\overline{f}_{a_2} + \dots + f_0\overline{f}_{a_{n-1}} + \overline{f}_{a_n}),$$

where $\overline{f}_a:Q\longrightarrow Q$ is the constant map with $\overline{f}_a(q)=f_a(0_Q)$ for all $q\in Q$.

Proof. We prove this result by induction on the length of the string x.

Let $a \in A$ and $q \in Q$. Now $f_a(q) = F(q, a) = F(q, 0) + F(0_Q, a) = f_0(q) + f_a(0_Q)$. Then $f_a = f_0 + \overline{f}_a$, so that the result is true for n = 1. Assume that the result is true for n = k-1, i.e., $f_{a_1 a_2 \dots a_{k-1}} = f_0^{k-1} + (f_0^{k-2} \overline{f}_{a_1} + f_0^{k-3} \overline{f}_{a_2} + \dots + f_0 \overline{f}_{a_{k-2}} + \overline{f}_{a_{k-1}})$. Now

$$f_{a_1 a_2 \dots a_k} = f_{a_k} f_{a_1 a_2 \dots a_{k-1}} = (f_0 + \overline{f}_{a_k}) f_{a_1 a_2 \dots a_{k-1}} = f_0 f_{a_1 a_2 \dots a_{k-1}} + \overline{f}_{a_k} f_{a_1 a_2 \dots a_{k-1}}$$

$$= f_0 (f_0^{k-1} + (f_0^{k-2} \overline{f}_{a_1} + f_0^{k-3} \overline{f}_{a_2} + \dots + f_0 \overline{f}_{a_{k-2}} + \overline{f}_{a_{k-1}})) + \overline{f}_{a_k}$$

$$= f_0^k + f_0^{k-1} \overline{f}_{a_1} + f_0^{k-2} \overline{f}_{a_2} + \dots + f_0 \overline{f}_{a_{k-1}} + \overline{f}_{a_k}.$$

Hence the result by induction.

The linear case: The linear case is a special case of the homomorphism case in which Q and A are R-semimodules for some semiring R and F is R-homomorphism.

Let $M = \{f_x | x \in A^*\}$. Clearly M is a submonoid of $M_{aff}(Q)$. Note that $M_d = \{f_0^n | n \ge 1\}$ is the endomorphism part of M.

Definition 4.2. Let S = (Q, A, F) be a ISA. The subnear-semiring N(S) of $M_{aff}(Q)$ generated by M is called the syntactic near-semiring of S.

Theorem 4.1. Every non-zero element of $N(\mathbf{S})$ can be written as $\sum_{i=1}^{n} f_{x_i}$ for $f_{x_i} \in M$.

Proof. Let $f = \sum_{i=1}^{n} f_{x_i}$ and $g = \sum_{j=1}^{m} f_{y_j}$ where f_{x_i} , $f_{y_j} \in M$. Clearly $N(\mathbf{S})$ is closed with respect to addition. Now

$$fg = \left(\sum_{i=1}^{n} f_{x_i}\right) \left(\sum_{j=1}^{m} f_{y_j}\right) = \left(\sum_{i=1}^{n} (f_0^{n_i} + \overline{\overline{f}}_{x_i})\right) \left(\sum_{j=1}^{m} f_{y_j}\right)$$

$$= \sum_{i=1}^{n} (f_0^{n_i} \sum_{j=1}^{m} f_{y_j} + \overline{\overline{f}}_{x_i}) = \sum_{i=1}^{n} (f_0^{n_i} \sum_{j=1}^{m-1} f_{y_j} + f_0^{n_i} f_{y_n} + \overline{\overline{f}}_{x_i})$$

$$= \sum_{i=1}^{n} (f_0^{n_i} \sum_{j=1}^{m-1} f_{y_j} + (f_0^{n_i} + \overline{\overline{f}}_{x_i}) f_{y_n}) = \sum_{i=1}^{n} (f_0^{n_i} \sum_{j=1}^{m-1} f_{y_j} + f_{x_i} f_{y_n}).$$

Since the above expression is a finite sum of elements of M, $N(\mathbf{S})$ is closed with respect to multiplication. Hence the result.

We extend A to the free near-semiring $A^{\#}$ over A. If $a^{\#} = w(a_1, \ldots a_n)$ is a word in $A^{\#}$ we define $f_{w(a_1, \ldots, a_n)} = w(f_{a_1}, \ldots, f_{a_n})$ and $F^{\#}(q, a^{\#}) = f_{a^{\#}}(q)$. Thus, we get an extended simultaneous sequential ISA $\mathbf{S}^{\#} = (Q, A^{\#}, F^{\#})$.

Definition 4.3. Let S = (Q, A, F) be an ISA and $A^{\#}$ the free near-semiring on A. $q_1 \in Q$ is accessible from $q_2 \in Q$ if there is some $\alpha \in A^{\#}$ with $f_{\alpha}(q_2) = q_1$. S is accessible if each state q is accessible from each other state.

 $N(\mathbf{S})$ is not only a near-semiring, but it also operates on Q.

Lemma 4.1. Q is an N(S)-inverse semigroup.

Proof. Define a map $N(\mathbf{S}) \times Q \longrightarrow Q$ as for any $n = \sum_{i=1}^{n} x_i, x_i \in M, q \in Q,$ $(n,q) \mapsto nq$ which satisfies the following conditions:

(1)
$$\left(\sum_{i=1}^{n} x_i + \sum_{j=1}^{n} y_j\right) q = \sum_{i=1}^{n} x_i(q) + \sum_{j=1}^{n} y_j(q), x_i, y_j \in M.$$

(2)
$$\left(\sum_{i=1}^{n} x_i \sum_{j=1}^{n} y_j\right) q = \sum_{i=1}^{n} x_i \left(\sum_{j=1}^{n} y_j(q)\right), x_i, y_j \in M.$$

(3) $0\dot{q} = 0_O$

Proposition 4.2. Let S be an ISA. S is accessible if and only if Q is an S = N(S)-inverse semigroup with $S0_Q = Q$.

Proof. Assume that **S** is accessible. Then Q is an $N(\mathbf{S})$ -inverse semigroup with $S0_Q = Q$. Conversely, suppose that $S0_Q = Q$. Let $q_1, q_2 \in Q$. Since $S0_Q = Q$, there exists $s \in S$ such that $s0_Q = q_1$. Now $s(0q_2) = q_1$. Then $(s0)q_2 = q_1$. Let $s0 = s_1 \in S$. Hence $s_1q_2 = q_1$. Therefore, **S** is accessible.

Definition 4.4. An automaton is a quintuple A = (Q, A, B, F, G), where (Q, A, F) is a semiautomaton, B is an output set and $G : Q \times A \longrightarrow B$ is an output function of A. If Q is an inverse semigroup, A is called an inverse semigroup-automaton and is denoted as A.

 ${\mathcal A}$ is called a homomorphic IA if Q,A,B are inverse semigroups and F,G are homomorphisms. ${\mathcal A}$ is called a linear IA or linear automaton or linear sequential machine if Q,A,B are R-semimodules for some semiring R and F,G are R-homomorphisms.

Since for every automaton $\mathcal{A}=(Q,A,B,F,G)$, $\mathbf{S}=(Q,A,F)$ is a semiautomaton with the same attributes, we define $N(\mathcal{A})$ as $N(\mathbf{S})$.

5. IDEAL THEORY APPLIED TO MACHINES

Let A^* and B^* denote the free monoids over A and B respectively. For $q \in Q$, let $s_q : A^* \longrightarrow B^*$ be defined by $s_q(\wedge) = \wedge$, $s_q(a) = G(q, a)$, $s_q(a_1a_2) = s_q(a_1)s_{F(q,a_1)}(a_2)$ and proceed inductively with

$$s_q(a_1a_2...a_n) = s_q(a_1a_2...a_{n-1})G(F(q, a_1...a_{n-1}), a_n).$$

Definition 5.1. $s_q: A^* \longrightarrow B^*$ is called the sequential (input-output-) function of A at q.

Define the relation \sim on Q by $q_1 \sim q_2$ if $s_{q_1} = s_{q_2}$ for all $q_1, q_2 \in Q$.

Proposition 5.1. Let A be a linear IA. Then \sim is a congruence relation in the N(A)-inverse semigroup Q.

Proof. Clearly \sim is reflexive and symmetric. Assume that $q_1 \sim q_2$ and $q_2 \sim q_3$. Thus, $s_{q_1} = s_{q_2}$ and $s_{q_2} = s_{q_3}$, $q_1, q_2, q_3 \in Q$. Now $s_{q_1}(\wedge) = \wedge = s_{q_3}(\wedge)$, $s_{q_1}(a) = s_{q_3}(a)$ for all $a \in A$,

$$s_{q_1}(a_1a_2) = s_{q_1}(a_1)G(F(q_1, a_1), a_2) = s_{q_3}(a_1)G(F(q_3, a_1), a_2) = s_{q_3}(a_1a_2)$$

for all $a_1, a_2 \in A$, and so on.

Hence $s_{q_1} = s_{q_3}$. Therefore, $q_1 \sim q_3$. Thus, \sim is transitive.

If $q_1 \sim q_2$ then $s_{q_1} = s_{q_2}$. Let $q \in Q$. Then $s_{q_1+q}(\wedge) = \wedge = s_{q_2+q}(\wedge)$.

Let $a \in A$. Now

$$s_{q_1+q}(a) = G(q_1 + q, a) = G(q_1, a) + G(q, a') + G(0_Q, a)$$

= $G(q_2, a) + G(q, a') + G(0_Q, a) = G(q_2 + q, a) = s_{q_2+q}(a).$

Let $a_1, a_2 \in A$. Now

$$\begin{split} s_{q_1+q}(a_1a_2) &= s_{q_1+q}(a_1)G(F(q_1+q,a_1),a_2) \\ &= s_{q_2+q}(a_1)G((F(q_1,a_1),a_2) + (F(q,a_1'),a_2') + (F(0_Q,a_1),a_2)) \\ &= s_{q_2+q}(a_1)G((F(q_2,a_1),a_2) + (F(q,a_1'),a_2') + (F(0_Q,a_1),a_2)) \\ &= s_{q_2+q}(a_1)G(F(q_2+q,a_1),a_2) = s_{q_2+q}(a_1a_2), \end{split}$$

and so on. Hence $s_{q_1+q} = s_{q_2+q}$. Thus, $q_1 + q \sim q_2 + q$.

Let $a \in A$ and $n = f_{a_1 a_2 \dots a_k} \in N(A)$. Suppose that $q_1 \sim q_2$. Now,

$$s_{nq_1}(a) = G(nq_1, a) = G(f_{a_1a_2...a_k}(q_1), a)$$

$$= G(F(q_1, a_1a_2...a_k), a) = G(F(q_2, a_1a_2...a_k), a)$$

$$= G(f_{a_1a_2...a_k}(q_2), a) = s_{nq_2}(a).$$

Assume that
$$s_{nq_1}(a_1a_2\ldots a_{n-1})=s_{nq_2}(a_1a_2\ldots a_{n-1}).$$
 Now, $s_{nq_1}(a_1a_2\ldots a_n)=s_{nq_1}(a_1a_2\ldots a_{n-1})G(F(nq_1,a_1a_2\ldots a_{n-1}),a_n)$ $=s_{nq_2}(a_1a_2\ldots a_{n-1})G(F(f_{a_1a_2\ldots a_k}(q_1),a_1a_2\ldots a_{n-1}),a_n)$ $=s_{nq_2}(a_1a_2\ldots a_{n-1})G(F(F(q_1,a_1a_2\ldots a_k),a_1a_2\ldots a_{n-1}),a_n)$ $=s_{nq_2}(a_1a_2\ldots a_{n-1})G(F(F(q_2,a_1a_2\ldots a_k),a_1a_2\ldots a_{n-1}),a_n)$ $=s_{nq_2}(a_1a_2\ldots a_{n-1})G(F(nq_2,a_1a_2\ldots a_{n-1}),a_n)$ $=s_{nq_2}(a_1a_2\ldots a_n).$

By induction, $s_{nq_1} = s_{nq_2}$. Hence $nq_1 \sim nq_2$.

Let $Q_0 = \{q \in Q | q \sim 0\}$. Hereafter we assume that e + q = q + e for all $e \in E^+(Q), q \in Q$ and $E^+(Q) \subseteq Q_0$. If Q is a group, the above conditions are trivially satisfied.

Theorem 5.1. *If* A *is a linear IA then:*

- (1) $Q_0 = \{ q \in Q | q \sim 0 \} \leq_{N(\mathcal{A})} Q;$
- (2) $G(q,0) = 0_B$ for all $q \in Q_0$.

Proof.

(1) Let $q_1, q_2 \in Q_0$. Then $q_1 \sim 0$ and $q_2 \sim 0$. Since $q_2 \sim 0$, we have $q_2' + q_2 \sim q_2'$. Thus, $q_2' \sim q_2' + q_2 \in E^+(Q) \subseteq Q_0$ implies $q_2' \sim 0$. Hence $q_1 + q_2' \sim 0$. Let $q \in Q$ and

 $q_0 \in Q_0$. Since $q_0 \sim 0$ implies $q_0 + q' \sim q'$. Then $q + q_0 + q' \sim q + q' \in E^+(Q) \subseteq Q_0$. Hence $q + q_0 + q' \sim 0$. Let $q \in Q$, $q_0 \in Q_0$ and $n \in N(\mathcal{A})$. Since $q_0 \sim 0$, $q_0 + q \sim q$. Thus, $n(q_0 + q) \sim nq$. Then $n(q_0 + q) + (nq)' \sim nq + (nq)' \in E^+(Q) \subseteq Q_0$. Hence $n(q_0 + q) + (nq)' \sim 0$. Assume that $e + q \in Q_0$ for some $e \in E^+(Q)$. Then $e + q \sim 0$ implies $e + q + q' \sim q'$. Let q + q' = f. Then $e + f \sim q'$. Since $e + f \in E^+(Q) \subseteq Q_0$, we have $e + f \sim 0$. Thus, $q' \sim 0$ implies $(q')' \sim 0$. Hence $q \sim 0$.

(2) Let $q \in Q_0$. Then $q \sim 0$. Now $G(q,0) = G(0,0) = 0_B$. Hence $G(q,0) = 0_B$ for all $q \in Q_0$.

Theorem 5.2. Let A be a linear IA and $g_0 : Q \to B$, $q \mapsto g_0(q) = G(q, 0)$. If $(g_0 f_0^k)(q) = (g_0 f_0^k)(q_1)$ for all $k \ge 0$ then $q \sim q_1$.

Proof. We prove this result by induction on the length of the string $a \in A^*$. If k = 0 then $G(q, 0) = G(q_1, 0)$ for all $q, q_1 \in Q$. Let $a \in A$.

Now, $s_q(a) = G(q,a) = G(q,0) + G(0_Q,a) = G(q_1,0) + G(0_Q,a) = G(q_1,a) = s_{q_1}(a)$. Assume the result is true for k-1, i.e. $s_q(a_1a_2...a_{k-1}) = s_{q_1}(a_1a_2...a_{k-1})$. Then

$$G(f_{a_1 a_2 \dots a_{k-1}}(q), a_k) = G\left((f_0^{k-1} + (f_0^{k-2}\overline{f}_{a_1} + \dots + \overline{f}_{a_{k-1}}))(q), a_k\right)$$

$$= G(f_0^{k-1}(q), 0) + G\left((f_0^{k-2}\overline{f}_{a_1} + \dots + \overline{f}_{a_{k-1}})(q), 0\right) + G(0_Q, a_k)$$

$$= G(f_0^{k-1}(q_1), 0) + G(f_0^{k-2}\overline{f}_{a_1} + \dots + \overline{f}_{a_{k-1}}(q_1), 0) + G(0_Q, a_k)$$

$$= G(f_{a_1 a_2 \dots a_{k-1}}(q_1), a_k).$$

Now,

$$s_{q}(a_{1}a_{2} \dots a_{k}) = s_{q}(a_{1}a_{2} \dots a_{k-1})G(F(q, a_{1}a_{2} \dots a_{k-1}), a_{k})$$

$$= s_{q_{1}}(a_{1}a_{2} \dots a_{k-1})G(f_{a_{1}a_{2} \dots a_{k-1}}(q), a_{k})$$

$$= s_{q_{1}}(a_{1}a_{2} \dots a_{k-1})G(f_{a_{1}a_{2} \dots a_{k-1}}(q_{1}), a_{k})$$

$$= s_{q_{1}}(a_{1}a_{2} \dots a_{k}).$$

Hence $q \sim q_1$.

Definition 5.2. An IA A = (Q, A, B, F, G) is reduced if \sim is the equality. If A is accessible (i.e. if (Q, A, F) is accessible) and reduced then A is called minimal.

Theorem 5.3. Let A be a linear IA. Then A is reduced if and only if N(A)Q has no non-zero ideals P with $g_0P = \{0_B\}$.

Proof. Assume that $_{N(\mathcal{A})}Q$ has no such ideals. By Theorem 5.1, Q_0 is an ideal of $_{N(\mathcal{A})}Q$ with $g_0Q_0=\{0_B\}$. Then $Q_0=\{0\}$. Hence \mathcal{A} is reduced.

Conversely suppose that \mathcal{A} is reduced and that $P \leq_{N(\mathcal{A})} Q$ has $g_0P = \{0_B\}$. Then $G(p,0) = g_0(p) = 0_B$ for all $p \in P$. Since $f_0^k(p+0) + (f_0^k(0))' \in P$ for all $p \in P$, we have $f_0^k(p) \in P$. Then $(g_0 f_0^k)(p) = 0_B$ for all $p \in P, k \ge 0$. Therefore, $(g_0 f_0^k)(p) = 0_B = (g_0 f_0^k)(0_Q)$ for all $k \ge 0$. Thus, $p \sim 0_Q$ by Theorem 5.2. Hence $p = 0_Q$. Then $P = \{0_Q\}$.

From Proposition 4.2 and Theorem 5.3 we get

Theorem 5.4. Let A be a linear IA. Then A is minimal if and only if N(A)Q is zero generated and does not contain non-zero ideals which are annihilated by g_0 .

Thus, in an Automata, if Q is not necessarily group but inverse semigroup, we have extended the result obtained for group Automata to check the minimality.

REFERENCES

- [1] H. J. BANDELT, PETRICH: Subdirect products of rings and distributive lattices, Proc. Edinburgh Math. Soc., **25** (1982), 155–171.
- [2] K. V. KRISHNA, N. CHATTERJEE: A necessary condition to test the minimality of generalized linear sequential machines using the theory of near-semirings, Algebra and Discrete Mathematics, 3 (2005), 30–45.
- [3] G. PILZ: Near-rings, North-Holland, Amsterdam, 1983.
- [4] M. K. SEN, S. K. MAITY: Regular additively inverse semirings, Acta Math Univ. Comenianae, LXXV(1) (2006), 137–146.

DEPARTMENT OF MATHEMATICS
HOLY CROSS COLLEGE (AUTONOMOUS)
NAGERCOIL - 629 004, INDIA
Email address: jenilac201@gmail.com

DEPARTMENT OF MATHEMATICS
ANNAMALAI UNIVERSITY
ANNAMALAINAGAR - 608 002, INDIA
Email address: dheenap@yahoo.com