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IDEAL THEORY IN NEAR-SEMIRINGS AND ITS APPLICATION TO
AUTOMATA

C. JENILA! AND P. DHEENA

ABSTRACT. In this paper we develop ideal theory in near-semirings. We use the
ideal theory to find the necessary and sufficient conditions for a linear sequen-
tial machine to be minimal.

1. INTRODUCTION

It has been shown that a homomorphic group-automaton A = (Q, A, B, F, G),
where () is a state set, A is an input set and B is an output set are groups
and FF : Q x A —» Q and G : Q x A — B, the state-transition function and
output function respectively, are homomorphisms, is minimal if and only if the
N(A)-group @ is generated by 0 and does not contain non-zero ideals which are
annihilated by g, where gq : Q — B ( [3], Theorem 9.259). Pilz [3] considered
linear sequential machines in which the state set forms a group.

Krishna and Chatterjee [2] considered a generalized linear sequential ma-
chine M = (Q, A, B, F,G) where (), A, B are semigroups and R-semimodules
for some semiring R and F' : Q x A — Q and G : Q x A — B are R-
homomorphisms. They have obtained a necessary condition for the above gen-
eralized sequential machine to be minimal. So naturally one is interested to
find a necessary and sufficient conditions for the above generalized linear se-
quential machine to be minimal. To achieve that, we develop ideal theory in a
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S-semigroup ', where S is a near-semiring. Using this ideal theory we find the
necessary and sufficient conditions for a generalized linear sequential machine
to be minimal. For the terminology and notation used in this paper we refer to
Pilz [3], Krishna and Chatterjee [2].

2. NEAR-SEMIRINGS

A near- semiring is a nonempty set S with two binary operations ‘+’and ‘.’ such
that

(1) (S,+) is a semigroup with identity O,

(2) (S,.) is a semigroup ,

3) (r+y)z=xz+yzforall x,y,z € S, and
(4) 0s=0forallse S.

In the near-semiring (.5, +, .), if (S, .) has identity then S is a near-semiring with
identity. Now we give a natural example of the near-semiring. Let (I",+) be
a semigroup with identity 0. If M(I") is the set of all mappings from I" into T
then M(T') is a near-semiring under pointwise addition and composition. M (I")
is neither a ring, nor a near-ring, nor a semiring. A semigroup (S,+) is an
inverse semigroup if for each a € S, there exists a unique element o’ € S such
that a + ¢’ + a = a and @ + a + o’ = . Then d' is the additive inverse of
a. A near-semiring (S, +,.) is an additive inverse near-semiring if (S,+) is an
inverse semigroup. If A and B are any two non-empty sets of S, we define
AB = {abla € A,be B}. Forz,y € S,z = (2'), (x+y) =y +2" and (zy) = 2'y.
We have E7(S)={a€S:a+a=a}.

The properties of additive inverse semiring were obtained by Bandelt and
Petrich [1] and the properties of regularity in an additive inverse semiring were
obtained by Sen and Maity [4]. They have assumed the three conditions.

(1) ala+d) =(a+d)
(2) a(b+V)=(b+V)a
3) a+ab+1?V)=a.

An element of M (I") is said to be an affine mapping if it is a sum of an en-
domorphism and a constant map on I'. The set of affine mappings on I is a
subsemigroup of M (I"), denoted by M,¢(I'). Throughout this paper S denotes
a near-semiring unless otherwise specified.
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3. IDEAL THEORY
Now we develop ideal theory in a S-semigroup I'.

Definition 3.1. Let S be a near-semiring. A semigroup (I',+) is said to be an S-
semigroup if there exists a mapping (z,7) — xy of S x I' — T" such that for all
r,ye S, yel,

D) (z+y)y =27+,

(2) (zy)y = z(yy), and
(38) 0y = O, where Or is the zero of T".

Definition 3.2. A subsemigroup A of sI" with SA C A is said to be an S-
subsemigroup of I.

Definition 3.3. Let sI';, 'y be S-semigroups. A map f : sI'y — sI's is called an

S-homomorphism if /(7 +71) = f(7) + f(31) and f(s7) = sf(7) for all 7,7, €
SF1 and s € S.

Note that f(Or,) = Or,.

Definition 3.4. If f is an S-homomorphism of I'; into I'y, then the kernel of f is
deﬁned by K= {’}/1 € Fl’f(")/l) = 0{*2} .

Hereafter (I', +) is assumed to be inverse semigroup with £ (T") in the center
of (T, +).

Definition 3.5. A non-empty subset I of an S-semigroup I is an ideal of sI" (I g
D) if

(1) EH() C I,

(2) iy + iy € I forall iy, iy € 1,

B)y+i+y €lforallyeT,icl,

(4) s(i+~)+(sy) €lforallyeTl,iclandsec S,

(5) Ife+~ € I implies vy € I for any e € E+(T').

Theorem 3.1. If a non-empty subset I of an S-semigroup I satisfies the conditions
(1),(2),(3),(4) and (5) given above then I is the kernel of an S-homomorphism.

Proof. Define the relation p on I" by apb for all a,b € I if and only if i1 +a = is+b
for some iy,is € I. Clearly p is reflexive and symmetric. Now we claim that p is
transitive. Assume that apb and bpc. Then iy + a = i, + b and i3 + b = iy + ¢ for
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Some iy, is, 3,94 € I. NOW ig+i3+b = is+is+c. Then is+is+b+b +b = is+is+c.
Thus is + b+ b + i3+ b = iy + iy + c. Hence i; + a + i5 = iy + iy + ¢ for some
is € I.Thusii+a+d +a+is =is+is+c. Theniy+a+is+a +a =iy +is+c.
Thus iy + ig + a = iy + i4 + ¢ for some ig € I. Hence apc.

LetT'/, = {[a]|a € T'} . Let us define ‘+’in I'/, as [a]+ [b] = [a + b] and the map
SxI'/, = T/,ass[a| = [sa] foralla,b € I"and s € S. Suppose that [a] = [a;] and
[b] = [b1] for some a, ay,b,b; € I'. Then i;+a = is+ay and i3+b = i4+b; for some
01,09, 03,14 € I. NOW i1 +a—+1i3+b=1is+a; +is+by. Thus, i; +a+d +a+iz+b=
is+ay+a;+a;+ig+by. Hence iy +a+iz+a +a+b=ir+a+is+a;+a,+b.
Then i; +i5+a+b = iy +ig+ a; + by for some is,ig € I. Thus, [a + b] = [ag + by].

Suppose that [a] = [a;] for some a,a; € T'. Then i; + a = iy + a; for some
i1, € I. Let s € S. Since s(i; +a)+ (sa) € I and s(iy+a;)+ (sa;) € I, we have
s(iy 4+ a) + (sa)" + sa = i3 + sa and s(iy + a1) + (sa1) + sa; = iy + sa; for some
is,is € 1. Let e = (sa) + sa and e; = (sa;) + sa;. Thus, s(i; +a) + e = i3 + sa
and s(is + a1) + e; = i4 + Say. Since iy + a = iy + a;, we have ay + e = i3 + sa
and ay + e; = i4 + sa; where as = s(i; + a) € I'. Therefore, as + ¢ + ¢; = i5 + sa
and a, + e + e; = ig + sa; for some i5,i5 € I. Thus, i5s + sa = ig + sa;. Hence
[sa] = [saq]. Thus, I'/, is an S-semigroup.

Next we define W : I' — I'/, as ¥(v) = [7], v € I. Clearly V¥ is an .S- homo-
morphism. Let K be the kernel. Take k£ € K. Then V(k) = [0] implies [k] = [0]
implies kp0. Hence i, + k = iy + 0 for some iy, i, € I. It follows that iy + k = is.
Then i\ +i,+k = i} +14y. Let i, +iy = i5. Hence i} +i,+k = i3 implies i, +i,+k € I.
Since i, + i, € E*(I'), we have k € I. Therefore, K C I. Clearly I C K. Hence
K = I. Therefore, I is the kernel of an S-homomorphism. g

4. GENERALIZED LINEAR SEQUENTIAL MACHINE

Definition 4.1. A semiautomaton is a triple S = (Q, A, F'), where Q) is a state set,
A'is an input set and F' : Q x A — @ is a state-transition function. If () is an
inverse semigroup (we always write it additively), we call S an inverse semigroup-
semiautomaton and abbreviate this by ISA.

For ¢ € @ and a € A we interpret F'(q,a) as the new state obtained from the
old state ¢ by means of the input a. We extend A to the free monoid A* over A
consisting of all finite sequences of elements of A, including the empty sequence
A.
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We define the function f, : Q — Q by

fale) =g,
fa(q) = F(q,a) foralla € A

fra(@) = F(fu(q),a) forall z € A*,a € A.

Note that fu 4, = fu, fays 01,02 € A*.

Now we discuss two special cases.

The homomorphism case: Let () and A be additive inverse semigroups with
0Oand F : Q@ x A — @ be a homomorphism. Now f,(q) = F(q,a) = F((¢q,0) +

(0g,a)) = F(g,0) + F(0g,a) = fo(q) + fa(0q). Hence f, = fo + f,, where f,
is a homomorphism (i.e. a distributive element in M (Q)), f, is the map with
constant value f,(0g). Then S is called a homomorphic ISA.

Proposition 4.1. For © = ajas...a,, € A*,

Jo= T+ (8 s + 0 fay+ ot foSa, + o)

where f, : Q — Q is the constant map with f,(q) = f.(0g) for all q € Q.

Proof. We prove this result by induction on the length of the string x.

Leta € A and_q € Q.Now f,(q) = F(q,a) = F(q,0)+F(0g,a) = fo(q)+f.(0g).
Then f, = fo + f,, so that the result is true for n = 1. Assume that the result is
true forn = k—1,1.e., foa0..0p, = §_1+( (’)“_27(11+f(’f_37a2+...+fofak72+7ak71).
Now

falag...ak = fakfalag...ak,l = (fO +?ak>fa1a2...ak,1 = fOfalag...ak,l +7akfa1a2...ak,1

= folfe ™ + (o™ Fas + So 7 Fay + o foFay + Fa )+ Fa
= féﬁ + fég_lfal + f§_27a2 + tte + fo?ak,_l +7ak

Hence the result by induction. O

The linear case: The linear case is a special case of the homomorphism
case in which @) and A are R-semimodules for some semiring R and F' is R-
homomorphism.

Let M = {f.;|x € A*}. Clearly M is a submonoid of M,;(Q). Note that M, =
{f¢In > 1} is the endomorphism part of M.

Definition 4.2. Let S = (Q), A, F') be a ISA. The subnear-semiring N(S) of M,;(Q)
generated by M is called the syntactic near-semiring of S.
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Theorem 4.1. Every non-zero element of N(S) can be written as >’ f,., for

=1
fz € M.

Proof. Let f = Z fz, and g = Z fy, where f,., f,. € M. Clearly N(S) is closed

=1
with respect to addition. Now

() (£)- (B0 ) 54

=> e ny] + /) Z nyj T Ly Tn)
=1

=1

= Sinyj+<5“+7xi>fyn> Z nyﬁf%fyn)

=1
Since the above expression is a finite sum of elements of M, N(S) is closed with
respect to multiplication. Hence the result. O

We extend A to the free near-semiring A# over A. If a* = w(ay,...a,) is a
word in A# we define f,,, ., = W(fays -, fa,) and F#(q,a®) = f,4(q). Thus,
we get an extended smmltaneous sequential ISA S* = (Q, A#, F#).

Definition 4.3. Let S = (Q, A, F') be an ISA and A¥ the free near-semiring on A.
q1 € Q is accessible from ¢, € Q if there is some o € A% with fo(q) = q1. S is
accessible if each state g is accessible from each other state.

N(8S) is not only a near-semiring, but it also operates on Q.

Lemma 4.1. ) is an N(S)-inverse semigroup.

Proof Define a map N(S) x Q — Q asforanyn = > x;, z; € M, q € Q,
=1
(n, q) — nq which satisfies the following conditions:

(1) (ilw + i yj> q= ixi(q) + ilyj(q% T, y; € M.
1= 1= 1=

(Z i Z y])
(3) Oq = OQ

-

j=



IDEAL THEORY IN NEAR-SEMIRINGS AND ITS APPLICATION TO AUTOMATA 4299

Proposition 4.2. Let S be an ISA. S is accessible if and only if ) is an S = N(S)-
inverse semigroup with S0 = Q.

Proof. Assume that S is accessible. Then () is an N(S)-inverse semigroup with
S0g = Q. Conversely, suppose that S0y = Q. Let ¢1,¢2 € (). Since S0g = @,
there exists s € S such that s0g = ¢1. Now s(0g2) = ¢1. Then (s0)ga = ¢;. Let
s0 = s; € S. Hence s,q» = ¢;. Therefore, S is accessible. O

Definition 4.4. An automaton is a quintuple A = (Q, A, B, F, G), where (Q, A, F')
is a semiautomaton, B is an output set and GG : () x A — B is an output function
of A. If Q) is an inverse semigroup, A is called an inverse semigroup-automaton
and is denoted as IA.

A is called a homomorphic IA if ), A, B are inverse semigroups and F, G are
homomorphisms. A is called a linear IA or linear automaton or linear sequential
machine if @), A, B are R-semimodules for some semiring R and F,G are R-
homomorphisms.

Since for every automaton A = (Q, A, B, F,G), S = (Q, A, F) is a semiau-
tomaton with the same attributes, we define N(.A) as N(S).

5. IDEAL THEORY APPLIED TO MACHINES

Let A* and B* denote the free monoids over A and B respectively. For
q € Q,lets,: A* — B* be defined by s,(A) = A, s,(a) = G(q,a), s,(ar1a2) =
5q4(a1)sF(q,a1)(a2) and proceed inductively with
sq(aray ... a,) = sq(aray ... an_1)G(F(q,a1...an-1),an).

Definition 5.1. s, : A* — B* is called the sequential (input-output-) function of
Aatq.

Define the relation ~ on @ by ¢; ~ ¢» if s,, = s,, for all ¢, ¢ € Q.

Proposition 5.1. Let A be a linear IA. Then ~ is a congruence relation in the
N (A)-inverse semigroup Q.

Proof. Clearly ~ is reflexive and symmetric. Assume that ¢; ~ ¢ and ¢, ~ ¢s.
Thus, s,, = Sq, and sg, = Sy, ¢1, G2, 93 € Q. NOW 54, (A) = A = 54,(A), S (a) =
Sg(a) forall a € A,

g (a1a2) = 84, (a1)G(F(q1,a1), az) = 845(a1)G(F (g3, a1), az) = sgy(ar1a2)
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for all a,a, € A, and so on.
Hence s,, = s,,. Therefore, ¢; ~ ¢5. Thus, ~ is transitive.
If 1 ~ ¢o then s, = s4,. Let g € Q. Then s, (A) = A = 5g,44(A).
Let a € A. Now
Sura(a) = Glay + q,a) = Glay, a) + Gla,0) + G0g, a)
= G(q,a) +G(g,d) +G(0g,a) = G(gz + q,a) = 54y44(a).
Let a;,a, € A. Now
Sq1+q(@102) = 84, 1+4(a1)G(F(q1 + ¢, a1), a2)
= Sga14(a)G((F(q1, a1), a2) + (F(q,d)), a5) + (F(0g, a1), a2))
= SQ2+Q(CL1)G((F(QQ7 a’l)v a’Q) + (F(Q7 a’/l)’ a/Q) + (F(0Q> a’l)v a’Z))
= Sgo+g(a1)G(F(g2 + ¢, a1), a2) = Sgp1q(a102),
and so on. Hence s,, 1, = s4,+4. Thus, ¢; +q ~ ¢2 + q.
Leta € Aand n = f4,4,..0, € N(A). Suppose that ¢; ~ ¢2. Now,
Sus (a) = G141, 0) = Cfura. (@), )
=G(F(q1,aaz...ax),a) = G(F(q,a1ay . ..a;),a)
= G(faraz..0x (@), 0) = Snga (a).
Assume that s,,,, (a1a2 ... an—1) = Spg, (@102 . . . ay,—1). Now,

Sng (@102 ... @) = Spg (@102 . .. ay—1)G(F(ng1, a10z . .. apn_1),ay)

= Spg (@102 ... an_1)G(F(faras...ap (@1), 0102 . .. an_1), ay)
Snga(@1G2 - .. An—1)G(F(F(q1, a10z . . . ag), @10z . . . Gp_1), ay)
= Sng (@102 ... ap—1)G(F(F(q2,a102 .. .ak), 103 . .. Gp_1), Qp)
= Spg (@102 . .. an_1)G(F(nga, a1as . .. ap_1), an)
= Spgp (@102 ... ay).
By induction, s,,, = sn,,. Hence ng; ~ ngs. O

Let Qo = {q € Q|q ~ 0}. Hereafter we assume that e + ¢ = ¢ + e for all
e € ET(Q), ¢ € Q and ET(Q) C Q. If @ is a group, the above conditions are
trivially satisfied.

Theorem 5.1. If A is a linear IA then:
(1) Qo ={q € Qlg~ 0}y @
(2) G(q,0) = 0 for all q € Qo.

Proof.
(1) Let g1, g2 € Qo. Then ¢; ~ 0 and ¢, ~ 0. Since g, ~ 0, we have g, + ¢ ~ ¢s.
Thus, ¢, ~ ¢, +¢, € E1(Q) C Q, implies ¢, ~ 0. Hence ¢, +¢, ~ 0. Let ¢ € Q and
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qo € Q. Since gy ~ 0 implies go+¢ ~ ¢'. Then g+qo+¢ ~ q+¢ € ET(Q) C Qo.
Hence ¢+qy+q ~0.Letq € Q, qo € Qo and n € N(A). Since gy ~ 0, o +q ~ q.
Thus, n(qo + q) ~ ng. Then n(qy + q) + (ng)" ~ ng+ (nq)’ € E¥(Q) C Qo. Hence
n(qo+¢q) + (nqg)" ~ 0. Assume that e +¢q € Q, for some e € E*(Q). Thene+q ~ 0
implies e+ ¢+¢ ~¢.Letg+q = f. Thene+ f ~ ¢ . Since e+ f € EY(Q) C Q,
we have e 4 f ~ 0. Thus, ¢ ~ 0 implies (¢')" ~ 0. Hence ¢ ~ 0.

(2) Let ¢ € Qo. Then ¢ ~ 0. Now G(q,0) = G(0,0) = 0. Hence G(q,0) = 0p
for all ¢ € Q. O
Theorem 5.2. Let A be a linear IA and gy : Q — B, ¢ — go(q) = G(q,0). If
(90/5)(a) = (90.f5) (@) for all k > 0 then q ~ qi.

Proof. We prove this result by induction on the length of the string a € A*. If
k = 0 then G(q,0) = G(q1,0) for all ¢,¢q; € Q. Leta € A.

Now, s,(a) = G(g,a) = G(¢,0) + G(0g, a) = G(q1,0) + G(0g, a) = G(q,a) =
54, (a). Assume the result is true for k—1, i.e. s,(araz ... ax_1) = sS4 (a1a2 ... ax_1).
Then

Cforanans (@) a) = G (57 + (57 44 T @) )

= GUE™@),0)+ G ((f5F0, + -+ Fur)(@).0) + Gl0g, a1)
= G( é{:_l(Ql% 0) + G(fg_QTal +.. fak,l (ql)7 O) + G(0Q7 ak)
= G(falag...ak_l((h)a ak)-

Now,
sq(aray ... ar) = sg(aras ... ax—1)G(F(q,a1az . .. ag_1), ax)
=S¢ (a1az .. ar—1)G(fayas...ap_, (@), ar)
= 8¢, (a1a2 .. ak—1)G(fayas...ap_, (@1); Q)
= 5q (may ... a).
Hence g ~ q¢;. ]
Definition 5.2. An IA A = (Q, A, B, F,G) is reduced if ~ is the equality. If A is
accessible (i.e. if (Q, A, F) is accessible) and reduced then A is called minimal.

Theorem 5.3. Let A be a linear IA. Then A is reduced if and only if y(4)@ has no
non-zero ideals P with goP = {0p}.

Proof. Assume that y(4)@ has no such ideals. By Theorem 5.1, @, is an ideal of
v @ with goQo = {0p}. Then @y = {0}. Hence A is reduced.

Conversely suppose that A is reduced and that P <y, @ has goP” = {0z}
Then G(p,0) = go(p) = 0p for all p € P. Since f¥(p + 0) + (f£(0)) € P for all
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p € P, we have ff(p) € P. Then (g,f¥)(p) = 05 for all p € P,k > 0. Therefore,
(9of8)(p) = 0B = (9o fF)(0g) for all k > 0. Thus, p ~ 0g by Theorem 5.2. Hence
p:OQ.ThenP: {OQ} |

From Proposition 4.2 and Theorem 5.3 we get

Theorem 5.4. Let A be a linear IA. Then A is minimal if and only if y()@ is zero
generated and does not contain non-zero ideals which are annihilated by gy.

Thus, in an Automata, if () is not necessarily group but inverse semigroup, we
have extended the result obtained for group Automata to check the minimality.
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