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ENHANCED DELAY DEPENDENT STABILITY CRITERIA
FOR NEURAL NETWORKS WITH TIME VARYING DELAY

R. JEETENDRA1 AND G. UMA

ABSTRACT. This paper is concerned with stability analysis of neural networks
with time varying delay in a given range. The relationship between time vary-
ing delay and its lower and upper bounds are taken into consideration while
calculating upper bound of the Lyapunov functional derivative. By constructing
more general type of Lyapunov functional and employing integral limits con-
taining the lower and upper bound of time delay on activation function, some
new less conservative stability criteria are developed in terms of Linear matrix
inequality. Finally two numerical examples are used to show the effectiveness
and less conservatism of the proposed theorem.

1. INTRODUCTION

Neural networks have found applications in many fields such as as signal
processing, image decryption, pattern recognition, associative memories, fixed-
point computations, optimization, feedback control, medical diagnosis, and fi-
nancial applications [1]. Time-delays will be often the source of instability. So,
the stability analysis of neural networks with time varying delays has drawn
considerable attention. According to the information on delays the stability cri-
teria can be classified as delay dependent or delay independent. Since delay
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independent stability criteria tends to more conservative than the delay depen-
dent many efforts have been paid to derive delay-dependent stability criteria
for neural networks with time-delays. For the delay-dependent stability criteria
of neural networks with time delays, the main purpose is to obtain a maximum
value of the admissible delay such that the concerned systems are asymptotically
stable.

One of the important methods to analyze the stability of Neural network is
Lyapunov krasovskii method. So for most of the derived results have been based
on the Lyapunov stability theory. There are mainly two ways to reduce the
conservatism of the derived stability criteria through the Lyapunov approach.
The first is based on constructing suitable Lyapunov functionals, and the other
is on estimating the derivatives of the Lyapunov functionals as tight as possi-
ble [11-14]. For the later one, researchers have mainly focused on developing
new techniques such as free-weighting matrices techniques [6], Park’s inequal-
ity [16], multiple integral approach [17], model transformation [18], convex
combination technique [19], reciprocally convex optimization and delay par-
titioning approach [3, 9, 15]. This paper investigates the stability analysis of
neural network with constructing new Lyapunov functional which contains in-
formation on the lower bound of delay h1 and upper bound h2. Some new delay
dependent stability criteria derived in terms of linear matrix inequality. The
newly derived criteria gives less conservatism, finally two numerical examples
are given to demonstrate the effectiveness of the proposed method.

Notations:
In this paper, Rn denotes the n-dimensional Euclidean space and Rnxm is the set
of real Matrices. X>0 denotes that the matrix X is a real positive semi definite
matrix. * in a matrix represents the elements below the main diagonal of a
symmetric matrix. SymX = X +XT . The superscript ’T’ denotes the transpose
of the matrix. diag{. . . } denotes the block diagonal matrix.

2. PROBLEM FORMULATION

Consider the following neural network with an interval time varying delay:

(2.1) ẋ (t) = −Ax (t) +B1f (x (t)) +B2f (x (t− h (t))) ,
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where

x (t) = [x1 (t) , x2 (t) , . . . xn (t)]
T , f (x (t)) = [f (x1 (t)) , f (x2 (t)) , . . . , f (xn (t))]

T

represents the neuron state vector and neuron activation function respectively.
A = diag(a1, a2, . . . .an) and B1, B2εR

n×n are the known interconnection weight
matrices and the time delay h(t) is a continuous differentiable function satis-
fying h1 ≤ h(t) ≤ h2, ḣ(t) ≤ µ where h1, h2 and µ are known constants. The
neuron activation function is assumed to be bounded and satisfy the following
assumption.

Assumption 2.1: The activation function fi (.), i=1, 2,....n is continuous and
satisfies the condition

(2.2) l−i ≤
fi (s1)− fi (s2)

s1 − s2
≤ l+i ,∀s1 6= s2, i = 1, 2, . . . , n,

where l−i and l+i are constants.

Lemma 2.1. : (Auxillary function based integral inequality [4]) Let x be a differ-
entiable signal in [a, b]→ Rn for a positive definite matrix RεRn×n , the following
inequality holds:

(b− a)
∫ b

a

ẋT (s)Rẋ(s)ds ≥ χT
1Rχ1 + χT

2Rχ2 + χT
3Rχ3,

where χ1, χ2 and χ3 are defined as

χ1 = x(b)− x(a), χ2 = x(b) + x(a)− 2

b− a

∫ b

a

x(s)ds

and

χ3 = χ1 +
6

b− a

∫ b

a

x(s)ds− 12

(b− a)2

∫ b

a

∫ b

u

x(s)dsdu.

Theorem 2.1. For given scalars h1 , h2 and µ the system (2.1) is asymptotically
stable if there exists positive definite symmetric matrices P ε Rn×n, E,F,Gε R2n×2n,
R1, R2 ε R

n×n and diagonal matrices Hi, Ui, λiεR
n×n(i = 1, 2, 3, 4) such that the
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following LMI hold:
(2.3)

where∏
1,1 = sym {−PA+ Lm (λ1 + λ3 + λ5)A− Lp (λ2 + λ4 + λ6)A}+ E11

+ AT (h21R1 + h212R2)A− Lm (H1 + U1 + U4)Lp − 9R1∏
1,2 = 3R1 − LmU1Lp − (LmU1Lp)

T ;
∏

1,3 = −LmU4Lp − (LmU4Lp)
T ;∏

1,5 = PB1 + E12 − Lm(λ1 + λ3 + λ5)B1 + Lp(λ2 + λ4 + λ6)B1

−AT (h21R1 + h212R2)B1 + Lm(H1 + U1 + U4) + Lp(H1 + U1 + U4)

−(λ1 + λ3 + λ5)A+ (λ2 + λ4 + λ6)A∏
1,6 = −LmU1 − LpU1;∏
1,7 = PB2 − Lm (λ1 + λ3 + λ5)B2 + Lp (λ2 + λ4 + λ6)B2

−AT (h21R1 + h212R2)B2 − LmU4 − LpU4;∏
1,9 = −24R1;

∏
1,12 = 60R1;∏

2,2 = F11 − E11 − 9R1 − 9R2 − Sym {Lm(H2 + U1 + U2)Lp};∏
2,3 = 3R2 + LmU2Lp + (LmU2Lp)

T ;
∏

2,5 = −LmU1 − LpU1;∏
2,6 = F12 − E12 + Lm(H2 + U1 + U2) + Lp(H2 + U1 + U2);∏
2,7 = −LmU2 − LpU2;

∏
2,9 = 36R1;

∏
2,10 = −24R2;∏

2,12 = −60R1;
∏

2,14 = 60R2;∏
3,3 = (1− µ)(G11 − F11)− 18R2 − Sym {Lm(H3 + U2 + U3 + U4)Lp}∏
3,4 = 3R2 − LmU3Lp − (LmU3Lp)

T ;
∏

3,5 = −LmU4 − LpU4;
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3,6 = −LmU2 − LpU2;∏
3,7 = (1−µ)(G12−F12)+Lm(H3+U2+U3+U4)+Lp(H3+U2+U3+U4);∏
3,8 = −LmU3 − LpU3;

∏
3,10 = 36R2;

∏
3,11 = −24R2;

∏
3,13 = 60R2;∏

3,14 = −60R2;
∏

4,4 = −G11 − 9R2 − Sym {Lm(H4 + U3)} ;∏
4,7 = −LmU3 − LpU3;

∏
4,8 = −G12 + Lm(H4 + U3) + Lp(H4 + U3)∏

4,11 = 36R2;
∏

4,13 = −60R2;∏
5,5 = Sym {B1(λ1 + λ3 + λ5)−B1(λ2 + λ4 + λ6)− (H1 + U1 + U4)}

+BT
1 (h

2
1R1 + h212R2)B1 + E22;∏

5,6 = 2U1;∏
5,7 = B2(λ1 + λ3 + λ5) − B2(λ2 + λ4 + λ6) + BT

1 (h
2
1R1 + h212R2)B2 + 2U4;∏

6,6 = F22 − E22 −H2 −HT
2 − U1 − UT

1 − U2 − UT
2 ;
∏

6,7 = 2U2;∏
7,7 = BT

2 (h
2
1R1+h

2
12R2)B2−Sym(H3+U2+U3+U4)+ (1−µ)(G22−F22);∏

7,8 = 2U3;
∏

8,8 = −Sym(H4 + U3)−G22;
∏

9,9 = −192R1;
∏

9,12 = 360R1;∏
10,10 = −192R2;

∏
10,14 = 360R2;

∏
11,11 = −192R2;

∏
11,13 = 360R2;∏

12,12 = −720R1;
∏

13,13 = −720R2;
∏

14,14 = −720R2;

where h12 = h2 − h1; h̃2 = h2 − h(t); h̃1 = h(t)− h1.

Proof. Consider the following Lyapunov Krasovskii Functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t),

where
V1(t) = xT (t)Px(t)

V2(t) = 2
∑n

i=1

{
λ1i
∫ xi(t)

0
(fi(s)− l−i )ds+ λ2i

∫ xi(t)

0
(fi(s)− l+i )ds

}
+2
∑n

i=1

{
λ3i
∫ xi(t−h1)

0
(fi(s)− l−i )ds+ λ4i

∫ xi(t−h1)

0
(fi(s)− l+i )ds

}
+2
∑n

i=1

{
λ5i
∫ xi(t−h2)

0
(fi(s)− l−i )ds+ λ6i

∫ xi(t−h2)

0
(fi(s)− l+i )ds

}
V3(t) =

∫ t

t−h1
ηT (s)Eη(s)ds+

∫ t−h1

t−h(t)
ηT (s)Fη(s)ds+

∫ t−h(t)

t−h2
ηT (s)Gη(s)ds

where
η(t) = col [x(t), f(x(t))]

V4(t) = h1
∫ t

t−h1

∫ t

u
ẋT (s)R1ẋ(s)dsdu+ h12

∫ t−h1

t−h2

∫ t

u
ẋT (s)R2ẋ(s)dsdu.

Calculating the time derivative of V(t) along the given system yields

V̇1(t) = 2xT (t)P [−Ax(t) +B1f(x(t)) +B2f(x(t− h(t)))](2.4)

(2.5)
V̇2(t) = 2

[
fT (x(t)) [(λ1 + λ3 + λ5)− (λ2 + λ4 + λ6)] ẋ(t)

]
+2
[
xT (t)[Lp(λ2 + λ4 + λ6)− Lm(λ1 + λ3 + λ5)]ẋ(t)

]
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(2.6)
V̇3(t) = ηT (t)Eη(t) + ηT (t− h1)(F − E)η(t− h1)− ηT (t− h2)

Gη(t− h2) + (1− h.(t))ηT (t− h(t))(G− F )η(t− h(t))

(2.7)
V̇4(t) = h21ẋ

T (t)R1ẋ(t)− h1
∫ t

t−h1

ẋT (s)R1ẋ(s)ds+

h212ẋ
T (t)R2ẋ(t)− h12

∫ t−h1

t−h2

ẋT (s)R2ẋ(s)ds

By utilizing the lemma 2.1 to the above integrals we have

−h1
∫ t

t−h1
ẋT (s)R1ẋ(s)ds ≤ −


x(t)

x(t− h1)
2
h1

∫ t

t−h1
x(s)ds

12
h2
1

∫ t

t−h1

∫ t

u
x(s)dsdu


T

(2.8)


9R1 −3R1 12R1 −5R1

∗ 9R1 −18R1 5R1

∗ ∗ 48R1 −15R1

∗ ∗ ∗ 5R1




x(t)

x(t− h1)
2
h1

∫ t

t−h1
x(s)ds

12
h2
1

∫ t

t−h1

∫ t

u
x(s)dsdu


Observe that

−h12
∫ t−h1

t−h2

ẋT (s)R2ẋ(s)ds ≤ −h12
∫ t−h(t)

t−h2

ẋT (s)R2ẋ(s)ds

−h12
∫ t−h1

t−h(t)

ẋT (s)R2ẋ(s)ds.

Since h12 ≥ h2 − h(t) and by Lemma 2.1,

−h12
∫ t−h(t)

t−h2
ẋT (s)R2ẋ(s)ds ≤ −


x(t− h(t))
x(t− h2)

2
h̃2

∫ t−h(t)

t−h2
x(s)ds

12
h̃2
2

∫ t−h(t)

t−h2

∫ t−h(t)

u
x(s)dsdu


T

(2.9)


9R2 −3R2 12R2 −5R2

∗ 9R2 −18R2 5R2

∗ ∗ 48R2 −15R2

∗ ∗ ∗ 5R2




x(t− h(t))
x(t− h2)

2
h̃2

∫ t−h(t)

t−h2
x(s)ds

12
h̃2
2

∫ t−h(t)

t−h2

∫ t−h(t)

u
x(s)dsdu


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In the same manners one infers that

−h12
∫ t−h1

t−h(t)
ẋT (s)R2ẋ(s)ds ≤ −


x(t− h1)
x(t− h(t))

2
h̃1

∫ t−h1

t−h(t)
x(s)ds

12
h̃2
1

∫ t−h1)

t−h(t)

∫ t−h1

u
x(s)dsdu


T

(2.10)


9R2 −3R2 12R2 −5R2

∗ 9R2 −18R2 5R2

∗ ∗ 48R2 −15R2

∗ ∗ ∗ 5R2




x(t− h1)
x(t− h(t))

2
h̃1

∫ t−h1

t−h(t)
x(s)ds

12
h̃2
1

∫ t−h1)

t−h(t)

∫ t−h1

u
x(s)dsdu


By the assumption of activation function (2.2) we have

αi(S) : 2[Lmx(s)− f(x(s))]THi[f(x(s))− Lpx(s)] ≥ 0

ui(S1, S2) : 2[Lm(x(s1)− x(s2))− (f(x(s1))− f(x(s2)))]T

Ui[(f(x(s1))− f(x(s2)))− Lp(x(s1)− x(s2))] ≥ 0,

whereHi = diag[α1i, α2i, ....., αni] ≥ 0, Ui = diag[u1i, u2i, . . . , uni] ≥ 0, i = 1, 2, 3, 4.

Then the following inequalities hold

(2.11) α1(t) + α2(t− h1) + α3(t− h(t)) + α4(t− h2) ≥ 0

(2.12) u1(t, t−h1)+u2(t−h1, t−h(t))+u3(t−h(t), t−h2)+u4(t, t−h(t)) ≥ 0

combining the equations (2.4)-(2.12) we get V̇ (t) ≤ ξT (t)
∏
ξ(t), where

∏
is

defined in (2.3) and
ξT (t) = [xT (t), xT (t − h1), x

T (t − h(t)), xT (t − h2), f
T (x(t)), fT (x(t − h1)),

fT (x(t− h(t))), fT (x(t− h2)),
1

h1

∫ t

t−h1

xT (s)ds,
1

h̃1

∫ t−h1

t−h(t)

xT (s)ds,

1

h̃2

∫ t−h(t)

t−h2

xT (s)ds,
1

h21

∫ t

t−h1

∫ t

u

xT (s)dsdu,

1

h̃22

∫ t−h(t)

t−h2

∫ t−h(t)

u

xT (s)dsdu,
1

h̃21

∫ t−h1

t−h(t)

∫ t−h1

u

xT (s)dsdu].

Thus, if
∏

< 0, the system (2.1) is asymptotically stable. This completes the
proof. �

3. NUMERICAL EXAMPLES

This section provides two numerical examples to show that the proposed re-
sults are less conservative than some existing ones.
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Example 1. Consider the system ẋ(t) = −Ax(t) + B1f(x(t)) + B2f(x(t − h(t))),
where

A =

[
1 0

0 1

]
B1 =

[
−1 0.5

0.5 −1.5

]
B2 =

[
−2 0.5

0.5 −2

]
.

Neuron activation function are assumed to satisfy with Lm = diag(0, 0) Lp =

diag(0.4, 0.8). The maximum delay bounds for guaranteeing the asymptotic sta-
bility of the given system with various h1 and µ are listed in Table1 including the
results of [7], [8] and our method.

Example 2. Consider the system ẋ(t) = −Ax(t) + B1f(x(t)) + B2f(x(t − h(t))),
where

A =

[
2 0

0 2

]
B1 =

[
1 1

−1 −1

]
B2 =

[
0.88 1

1 1

]
.

Neuron activation function are assumed to satisfy with Lm = diag(0, 0) Lp =

diag(0.4, 0.8). It is seen from Table 2 that the results obtained by our method are
less conservative than those of [2] ,[5] and [8].

TABLE 1. Upper bounds h2 for various h1 and µ
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TABLE 2. Upper bounds h2 for various h1 and µ

4. CONCLUSION

This paper investigates stability problem of neural networks with time vary-
ing delay in a given range. By constructing more general type of Lyapunov
functional and employing integral limits containing the lower and upper bound
of delay on activation function some new less conservative stability criteria are
developed in terms of Linear matrix inequality. Finally two numerical examples
are given to show the effectiveness of the proposed theorem.
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