
ADV MATH
SCI JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.6, 3497–3505
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.6.29 Spec. Issue on RDESTM-2020

AN EFFICIENT APPROACH FOR TASK SCHEDULING
IN HETEROGENEOUS COMPUTING SYSTEMS

USING HEFT AND CPOP ALGORITHMS

KAVURI ROSHAN AND ANIL KUMAR

ABSTRACT. Efficient scheduling of tasks in heterogeneous computing systems
is of essential significance for superior execution of programs. The programs
are to be considered as different successions of tasks that are displayed as co-
ordinated non-cyclic graphs (dag). Each task has its own execution course of
events that consolidates into different processors. In addition, each edge on the
graph speaks to imperatives between the sequenced tasks [1]. In this paper, we
propose another list–scheduling calculation that schedules the tasks spoke to in
the DAG to the processor that best limits the all-out execution time by mulling
over the limitation of crossover between processors. This objective will be ac-
complished in two noteworthy stages: (a) computing needs of each task that
will be executed, and (b) choosing the processor that will deal with each task.
The main stage, needs computation, centers around finding the best execution
grouping that limits the make span of the general execution [2].

1. INTRODUCTION

High-execution heterogeneous computing systems are accomplished by the
utilization of efficient application scheduling algorithms. In any case, the vast
majority of the current algorithms have low proficiency in scheduling. Targeting

1corresponding author
2010 Mathematics Subject Classification. 68Q25, 68W40.
Key words and phrases. Task scheduling, HEFT, CPOP.

3497

3498 K. ROSHAN AND A. KUMAR

taking care of this issue, we propose a novel task scheduling algorithm for het-
erogeneous computing named whose functionality depends on three columns:
an improved task need methodology dependent on standard deviation with im-
proved magnitude as calculation weight and correspondence cost weight to
make scheduling need progressively sensible; a section task duplication selec-
tion policy to make the makespan shorter; and an improved inactive time slots
(ITS) inclusion based advancing policy to make the task scheduling increas-
ingly efficient. We assess our proposed algorithm on arbitrarily produced DAGs,
utilizing some genuine application DAGs by examination with some old style
scheduling algorithms. As indicated by the experimental results, our proposed
algorithm seems to perform superior to different algorithms as far as schedule
length proportion, productivity, and recurrence of best results.

In multiprocessor computing system several of tasks are running simultane-
ously on parallel processors. Along these lines, so as to accomplish high exhibi-
tions in such system, scheduling plays a significant job [3]. We can characterize
scheduling as the way toward organizing tasks with a certain goal in mind,
particularly with the reference of grouping of their appearance or as per their
computational time [4]. A decent scheduling procedure helps in expanding the
productivity of a system and in use of accessible assets in the most ideal manner.
Scheduling can be comprehensively delegated; static Scheduling and dynamic
scheduling. Static scheduling is otherwise called deterministic or disconnected
scheduling. In such sort of scheduling algorithm, scheduling is done at assemble
time and no run time scheduling is finished [5, 6]. Every one of the parameters
with respect to the task is referred to progress of time, for example, data con-
ditions between the tasks, execution time, etc. They can be additionally named
heuristic based algorithm and Guided arbitrary hunt algorithm. Static schedul-
ing found useful in numerous zones like for recreation studies, for after death
investigations and furthermore for planning a system. Dynamic scheduling is
otherwise called non-deterministic scheduling or web based scheduling. Sched-
uling choices are finished during run time. Scheduling depends on parameters
done during run time. Scheduling depends on dynamic parameters, which may
change during run time [7].

EFFICIENT APPROACH FOR TASK SCHEDULING IN . . . 3499

2. PROPOSED METHODOLOGY

Efficient scheduling of use tasks is critical to accomplishing elite in parallel
and distributed systems. The objective of scheduling is to outline tasks onto the
processors and request their execution with the goal that task priority prereq-
uisites are fulfilled and least schedule length is given. Since the general DAG
scheduling is NP-finished, there are many research efforts that have proposed
heuristics for the task scheduling problem. Albeit a wide range of approaches
are utilized to take care of the DAG scheduling problem, the vast majority of
them target just for homogeneous processors. The scheduling techniques that
are suitable for homogeneous domains are limited and may not be suitable
for heterogeneous domains. Just a couple of techniques utilize variable exe-
cution times of tasks for heterogeneous environments; in any case, they are
either high-complexity algorithms or potentially they don’t for the most part
give great nature of results. In this thesis we propose two static DAG scheduling
algorithms for heterogeneous environments. They are for a limited number of
processors and depend on rundown scheduling heuristics. The Heterogeneous
Earliest Finish-Time (HEFT) Algorithm chooses the task with the most notewor-
thy upward position at each progression; at that point the task is doled out to
the most suitable processor that limits the soonest finish time with an inclusion
based approach. The Critical-Path-on-a Processor (CPOP) Algorithm schedules
critical-way hubs onto a solitary processor that limits the critical way length.
For different hubs, the task choice period of the calculation depends on a sum-
mation of descending and upward positions; the processor determination stage
depends on the most punctual execution finish time, as in the HEFT Algorithm.
The reproduction study in Section demonstrates that our algorithms extensively
outperform past approaches as far as performance (schedule length proportion
and accelerate) and cost (time complexity). The rest of this thesis is sorted out
as pursues. The following section gives the foundation of the scheduling prob-
lem, including a few definitions and parameters utilized in the algorithms. We
present the proposed scheduling algorithms for heterogeneous domains. Sec-
tion contains a concise audit on the related scheduling algorithms that will be

3500 K. ROSHAN AND A. KUMAR

utilized in our comparison, and in the performances of our algorithms are con-
trasted and the performances of related work, utilizing task graphs of some gen-
uine applications and arbitrarily created tasks graphs. Section 6 incorporates
the end and future work.

3. PROPOSED ALGORITHMS

Heterogeneous Earliest Finish Time. HEFT is a basic and best scheduling sys-
tem in task scheduling in heterogeneous just as the homogeneous condition for
the set number of processors. HEFT has two phases: processor choice stage:
and Prioritization stage: Prioritization stage: The principal HEFT calculates the
priority utilizing upward ranking (ranku). An application is crossed an upward
way and discovers the position of all nodes in a rundown with the assistance
of mean correspondence and mean calculation cost. Produced list is master-
minded in decreasing order of ranku. HEFT utilizes a Tie-breaking approach for
choosing the nodes, which node or successor chooses whose rank worth is most
noteworthy. The upward position of task ni is depicted as:

Rank(ni) = (cij + ranku(nj))Wi+maxnjεsucc(ni).

Wi is the mean calculation cost, succ(ni) is the instantchild of node ni, ci,j is the
mean calculation cost of node(i,j). On account of two nodes have equivalent
position esteem chooses randomly. In the upward ranking, the chart is crossed
from entry node to the exit node. Most elevated position is same with exit node:

ranku(nexit) = Wexit.

3.1. HEFT Algorithm. I/P chart along with number of processors and commu-
nication cost computation. Calculation costs of each node and Calculate the
average mean value of communication. (ranku) by navigating the chart from
entry node to exit node.

Make a significance queue in reducing order according to their ranku.
If
Unscheduled tasks in the queue
Do
Identify first rank task for scheduling and remove from queue.

EFFICIENT APPROACH FOR TASK SCHEDULING IN . . . 3501

Task (ni) assign to pjprocessor
Calculate their EST and EFT and Schedule all the tasks.
END.

Critical Path on Processor. Critical Path on Processor is likewise called CPOP.
CPOP utilized both ranking methods upward and downward. CPOP registers
the rank estimation of every node by including both the methods ranku + rankd

and set into a queue. An application is navigated from passage node (ni) to exit
node (nj) is called downward ranking and cross exit node to the entry node is
called upward ranking. CPOP has two stages: task prioritization stage and task
allocation stage.

In task prioritization stage, tasks are organize as indicated by their rank worth
(ranku + rankd) with the assistance of correspondence and calculation expenses
of DAG at that point set into a queue (diminishing request). CPOP utilized
critical path (CP) of an application to locate the longest path beginning from
section node to exit node. In second stage, tasks are chosen by higher position
esteem and chooses for scheduling to best appropriate processor which limits
the execution time of task. CP nodes are booked on a processor which has less
mean calculation cost then different processors. CP of given DAG (appeared
in figure 1) is N1, N2, N9 and N10 and their mean calculation cost on every
processor is 66, 54 and 63 (P1, P2 and P3). CPOP picks least processor cost
from all for example called CP-P (Critical Path-Processor).

3.2. CROP Algorithm. I/P chart along with number of processors and commu-
nication cost computation. Calculate the (ranku) and (rankd). rankd is calcu-
lated by navigating the chart from entry to exit node.

Compute the priority ni = ranku + rankd and arrange in a list.
|CP|= rank of entry node. [CP-Critical Path]
SETCP = set all nodes on critical path
nentrynk

IF
nk is not exit node do
Select nj

Select the Critical Path Processor
Initialize the priority list with starting node.

3502 K. ROSHAN AND A. KUMAR

While
There are unscheduled nodes in list do
Select the highest rank node from list and ready toschedule then remove from

list.
If niεCP node then
Assign task ni to CP-P
Else
Assign task to processor pj, which reduces the EFT (ni, pj)
Update the priority list
End.
These two algorithm depend on insertion based strategy; a task is planned

for processor most punctual inert availability which has just booked tasks, that
enormous enough to hold a task. These tasks are plan on a similar processor.

TABLE 1. Computation Cost

P1 P2 P3
21 7 10
5 11 14

18 12 20
7 15 11

12 13 10
13 16 9
13 8 17
11 13 19
14 16 9
13 19 18

Table 1 shows the calculation cost of every processor on each processor and
Figure 1 speaks to an application shows different kind of nodes with their cor-
respondence cost. Correspondence is the exchange rate between two nodes on
various processors.

EFFICIENT APPROACH FOR TASK SCHEDULING IN . . . 3503

FIGURE 1. Directed Acyclic chart

4. RESULTS

The results are examined of HEFT and CPOP algorithms under three parame-
ters in particular: schedule length, speedup and effectiveness. Correlation mea-
surements: Using these measurements, we talk about examination between over
two algorithms dependent on:

• Schedule Length: Schedule length (makespan) is the complete execu-
tion time of an application

• Speedup: Speedup is characterized as the proportion of given schedule
length is isolated with acquired quickest processor.

• Proficiency: speedup is isolated with number of processors in each run

We investigate the results on 50 diverse acyclic charts with the variety in
expanding the quantity of nodes (8 10 12 14 16 18 20 22 24 26). Execution is
expanded with expanding the quantity of nodes.

5. CONCLUSION

In this paper we explained about two algorithms specifically HEFT and CPOP
on various parameters like Schedule Length, Speedup and Efficiency. The results
given in the paper show the way that there is as yet an extent of progress in

3504 K. ROSHAN AND A. KUMAR

FIGURE 2. Scheduling graph Represent with the help of table 1
(a) HEFT and (b) CPOP

numerous viewpoints for all the calculations in the writing. Despite the fact that
rundown scheduling is a huge zone of research keeping in see the discoveries in
the given overview obviously there is a need of building up a system which can
deliver a proficient priority list for tasks to build up a task based calculation in
order to lessen the general execution time.

Other relevant references are [8-15].

REFERENCES

[1] C. H. YANG, P. LEE, Y. C. CHUNG: Improving static task scheduling in heterogeneous and
homogeneous computing systems, IEEE Parallel Processing, 2007, 45—45.

[2] H. R. ARABNIA, M. A. OLIVER: Arbitrary rotation of raster images with SIMD machine
architectures, Int. J. Eurograph. Assoc. (Computer Graphics Forum), 6(1) (20016), 3—12.

[3] M. A. WANI, H. R. ARABNIA: Parallel edge-region-based segmentation algorithm targeted
at reconfigurable multi-ring network, J. Supercomput., 25(1) (20018), 43—63.

[4] L. C. CANON, E. JEANNOT, R. SAKELLARIOU, W. ZHENG: Comparative evaluation of
the robustness of dag scheduling heuristics, Grid Computing. Springer, US, 73—84.

[5] C. P. YOUNG, B. R. CHANG, Z. L. QIU: Scheduling optimization for vector graphics
acceleration on multiprocessor systems, J. Inf. Hiding Multimed Signal Process, 3(3) (2009),
248—278.

[6] H. ZHOU, C. LIU: Task mapping in heterogeneous embedded systems for fast completion
time, ACM Proceedings of the 14th International Conference on Embedded Software,
2010, 1—10.

EFFICIENT APPROACH FOR TASK SCHEDULING IN . . . 3505

[7] C. AUGONNET, S. THIBAULT, R. NAMYST, P. A. WACRENIER: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures, ConcurrComputPract-
Exp., 23(2) (2011), 187—198.

[8] Y. DAI, X. ZHANG: A synthesized heuristic task scheduling algorithm, Sci. World J., 5
(2014), 1—9.

[9] K. KUCHCINSKI: Constraints-driven scheduling and resource assignment, ACM Trans Design
Automat Electron Syst (TODAES), 8(3), (2016), 355—383.

[10] K. R. SHETTI, S. A. FAHMY, T. BRETSCHNEIDER: Optimization of the HEFT Algorithm
for a CPU-GPU Environment, IEEE Parallel and Distributed Computing, Applications and
Technologies (PDCAT), 56 (2013), 212—218.

[11] H. TOPCUOGLU, S. HARIRI, M. Y. WU: Performance-effective and low-complexity task
scheduling for heterogeneous computing, IEEE Trans Parallel Distrib. Syst., 13(3) (2013),
260—274.

[12] R. SAKELLARIOU, H. ZHAO: A hybrid heuristic for DAG scheduling on heterogeneous sys-
tems, IEEE Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th Inter-
national, 111.

[13] K. VENGATESAN, A. KUMAR, R. NAIK, D. K. VERMA: Anomaly Based Novel Intru-
sion Detection System For Network Traffic Reduction, 2018 2nd International Conference on
I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mo-
bile, Analytics and Cloud) (I-SMAC), 2nd International Conference on, Palladam, India,
2018, 688–690.

[14] S. KESAVAN, E. SARAVANA KUMAR, A. KUMAR, K. VENGATESAN: An investigation on
adaptive HTTP media streaming Quality-of-Experience (QoE) and agility using cloud media
services, Taylor and Francis, International Journal of Computers and Applications, 7(8)
(2009), 33–44.

[15] M. SANTOSH, A. SHARMA: A Proposed Framework for Emotion Recognition Using Can-
berra Distance Classifier, J. Comput. Theor. Nanosci., 16 (2019), 3778—3782.

DEPT. OF COMPUTER SCIENCE AND ENGINEERING

SRI SATYA SAI UNIVERSITY OF TECHNOLOGY AND MEDICAL SCIENCES, SEHORE

BHOPAL-INDORE ROAD, MADHYA PRADESH, INDIA

DEPT. OF COMPUTER SCIENCE AND ENGINEERING

SRI SATYA SAI UNIVERSITY OF TECHNOLOGY AND MEDICAL SCIENCES, SEHORE

BHOPAL-INDORE ROAD, MADHYA PRADESH, INDIA

