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DIFFERENCE EQUATIONS
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AND GEORGE N. MILIARAS

ABSTRACT. The aim in this work is to investigate the oscillation of solutions
for a class of fractional partial difference equations subject to the Robin bound-
ary condition. We establish some new sufficient conditions for the oscillation
of fractional partial difference equations based on discrete Gaussian formula,
generalized Riccati technique and some inequalities. Examples are presented
to show the validity of the theoretical results.

1. INTRODUCTION

Fractional calculus has garnered phenomenal interest because of its various
applications in multiple areas of science and engineering ranging from electric
circuits, signal and image processing to viscoelasticity, industrial robotics and
numerous other branches of both physical and biological sciences. Fractional
differential equations have been established as an apt tool to depict the hered-
itary properties of various materials and real processes. Presently, fractional
calculus and in particular the theory of fractional differential equations has be-
come a prevalent gambit, see the monographs and papers [8,9].

1corresponding author
2010 Mathematics Subject Classification. 34A08, 34B15, 39A12, 39A14, 39A21.
Key words and phrases. Oscillation, Fractional Partial Difference Equations, Discrete Frac-

tional Calculus, Riccati Technique, Boundary Value Problem.
3603



3604 G. E. CHATZARAKIS, A. G. M. SELVAM, R. DHINESHBABU, AND G. N. MILIARAS

The study of oscillation theory as part of the qualitative theory of the solutions
for various equations like ordinary and partial differential equations, dynamic
equations on time scales, difference equations and fractional differential equa-
tions is an exciting field of investigation with wide scope for research. Recently,
the fundamental theory of fractional partial differential equations with different
arguments has undergone intensive development [5,10,11,15].

The theory of discrete fractional equations has been explored by very few re-
searchers [3,6,12]. In recent years, the research on the oscillation theory of so-
lutions of nonlinear fractional difference equations has gained momentum and
some important results have been established, see [2,4,13]. Nevertheless, very
little is known to the best of the authors’ knowledge about the oscillatory be-
havior of fractional partial difference equations with boundary conditions which
involve the Riemann-Liouville fractional partial difference operator [7]. In this
paper, we aim to study some new oscillation criteria for a class of nonlinear
fractional partial difference equations of the form

∆ [b(θ)g (p(θ) + r(θ)∆α
θ v(y, θ))] + q(y, θ)f

θ−1+α∑
τ=θ0

(θ − τ − 1)(−α)v(y, τ)

 = k(θ)Lv(y, θ),

(1.1)

for (y, θ) ∈ Ω × Na, where α ∈ (0, 1] is the fractional order, Ω is a convex con-
nected solid net, L is the discrete Laplacian on Ω (for the details on Ω and L, we
refer to [7, 14]), ∆α

θ v(y, θ) denotes the Riemann-Liouville fractional difference
operator of order α of v with respect to θ, Na = {a, a+ 1, · · · } and a ≥ 0 is a real
number.

The following assumptions hold throughout this paper:

(A1) b(θ), k(θ) and r(θ) are positive sequences on θ ∈ [θ0,∞) for a certain
θ0 > 0 and p(θ) is a nonpositive sequence on θ ∈ [θ0,∞) for a certain
θ0 > 0. There exists a constant M > 0 such that r(θ) ≤M for θ0 > 0;

(A2) ∆

[
−p(θ)
r(θ)

]
6= 0 for θ ∈ [θ0,∞) and lim

θ→∞

θ−1∑
τ=θ0

[
−p(τ)

r(τ)

]
<∞;

(A3) The functions f, g : R → R are continuous functions with vf(v) > 0,
vg(v) > 0 for v 6= 0, there exist positive constants µ, β such

that
f(v)

v
≥ µ,

v

g(v)
≥ β for all v 6= 0;
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(A4) g−1 ∈ C (R,R) is a continuous function with vg−1(v) > 0 for v 6= 0, there
exists a positive constant d such that g−1(uv) ≤ dg−1(u)g−1(v) for uv < 0

and g−1(uv) ≥ dg−1(u)g−1(v) for uv > 0;
(A5) q(y, θ) ≥ 0 and Q(θ) = min

y∈Ω
q(y, θ), for (y, θ) ∈ Ω× Na;

Consider the following Robin boundary condition

(1.2) ∆Nv(y − 1, θ) + γ(y, θ)v(y, θ) = 0, (y, θ) ∈ ∂Ω× Na,

where N is the exterior unit normal vector to ∂Ω and γ(y, θ) ≥ 0,
(y, θ) ∈ ∂Ω × Na. For the details on ∂Ω and ∆Nv(y − 1, θ), we refer to the
monograph [1] and paper [14], respectively.

A solution v(y, θ) of (1.1) - (1.2) is said to be oscillatory in Ω×Na if it is neither
eventually positive nor eventually negative; otherwise, it is nonoscillatory.

2. MATERIALS AND METHODS

In this section, we give some background materials from discrete fractional
calculus, which are used throughout this paper.

Definition 2.1. [3,7] Let α > 0. The α-th fractional sum f is defined by

∆−αf(θ) =
1

Γ(α)

θ−α∑
τ=a

(θ − τ − 1)(α−1) f(τ),

where f is defined for τ = a mod(1), ∆−αf is defined for θ = (a + α) mod(1)

and θ(α) =
Γ(θ + 1)

Γ(θ − α + 1)
. The fractional sum ∆−αf maps functions defined on

Na = {a, a+ 1, · · · } to functions defined on Na+α = {a+ α, a+ α + 1, · · · }, where
Γ is the gamma function.

Definition 2.2. [7] Let α > 0. The α-th fractional sum with respect to θ of v(y, θ)

is defined by

∆−αθ v(y, θ) =
1

Γ(α)

θ−α∑
τ=a

(θ − τ − 1)(α−1) v(y, τ).

Lemma 2.1. [7] For θ0 ∈ Na, let

(2.1) Ψ(θ) =
θ−1+α∑
τ=θ0

(θ − τ − 1)(−α) v(τ), for θ ∈ Na.
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Then

∆Ψ(θ) = Γ(1− α)∆αv(θ).

Lemma 2.2. (Discrete Gaussian formula) [14] Let Ω be a convex connected solid
net. Then ∑

y∈Ω

Lv(y, θ) =
∑
y∈∂Ω

∆Nv(y − 1, θ).

3. OSCILLATION OF BOUNDARY VALUE PROBLEM

In this section, we obtain some new oscillation criteria by using discrete
Gaussian formula, generalized Riccati technique and some inequalities. For the
sake of convenience, we introduce the following notations:

V (θ) =
∑
y∈Ω

v(y, θ), z(θ) = p(θ) + r(θ)∆αV (θ).

Theorem 3.1. Suppose that (A1) - (A5) hold. If the fractional difference inequality

(3.1) ∆ [b(θ)g(z(θ))] +Q(θ)f [Ψ(θ)] ≤ 0,

has no eventually positive solution, then every solution of (1.1) - (1.2) is oscillatory
in Ω× Na.

Proof. On the contrary, suppose that (1.1) - (1.2) has a nonoscillatory solution
v. Then, without loss of generality we may assume that v(y, θ) > 0 in Ω×Na for
some θ0 ≥ a. Summing up (1.1) with respect to y over Ω, we have

∆

b(θ)g
p(θ) + r(θ)∆α

θ

∑
y∈Ω

v(y, θ)

+
∑
y∈Ω

q(y, θ)f

θ−1+α∑
τ=θ0

(θ − τ − 1)(−α)v(y, τ)


= k(θ)

∑
y∈Ω

Lv(y, θ), θ ∈ Na.

(3.2)

The discrete Gaussian formula and (1.2) yield

(3.3)
∑
y∈Ω

Lv(y, θ) =
∑
y∈∂Ω

∆Nv(y − 1, θ) =
∑
y∈∂Ω

−γ(y, θ)v(y, θ) ≤ 0, θ ∈ Na.
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By applying Jensen’s inequality and (A5), we have

∑
y∈Ω

q(y, θ)f

θ−1+α∑
τ=θ0

(θ − τ − 1)(−α)v(y, τ)

 ≥ Q(θ)f

θ−1+α∑
τ=θ0

(θ − τ − 1)(−α)V (τ)

 .
(3.4)

From (2.1), (3.2), (3.3) and (3.4), we have

∆ [b(θ)g(z(θ))] +Q(θ)f [Ψ(θ)] ≤ 0, θ ∈ Na.

Therefore, V (θ) is an eventually positive solution of (3.1), which contradicts our
hypothesis. The proof is complete.

Theorem 3.2. Assume that (A1)− (A5) hold, and
∞∑
τ=θ0

g−1

(
1

b(τ)

)
=∞.(3.5)

Furthermore, suppose that there exists a positive function c(θ) such that

lim sup
θ→∞

θ−1∑
τ=θ0

[
µc(τ)Q(τ)− Mb(τ) [∆c(τ)]2

4βc(τ)Γ(1− α)

]
=∞,(3.6)

where µ and β are defined in (A3). Then every solution of (3.1) is oscillatory in
Ω× Na.

Proof. On the contrary, suppose that (3.1) has a nonoscillatory solution V (θ).
Then, without loss of generality we may assume that V (θ) is an eventually pos-
itive solution of (3.1). Then there exists Ψ(θ) > 0, θ ∈ [θ1,∞), where Ψ(θ) is
defined as in Lemma 2.1. Consequently, it is obvious that

∆ [b(θ)g(z(θ))] ≤ −Q(θ)f [Ψ(θ)] ≤ 0, θ ∈ [θ1,∞).(3.7)

Thus, b(θ)g(z(θ)) is strictly decreasing on [θ1,∞) and (A3), we see that z(θ) is
eventually of one sign. We claim that z(θ) > 0 for θ ∈ [θ1,∞). Otherwise,
assume that z(θ) < 0 and there exists θ2 ≥ θ1 such that z(θ2) < 0. Since
b(θ)g(z(θ)) is strictly decreasing on [θ1,∞) and it is obvious that b(θ)g(z(θ)) ≤
b (θ2) g (z (θ2)) = δ < 0, where δ is a constant for θ ∈ [θ2,∞). Therefore, we have

z(θ) ≤ g−1

(
δ

b(θ)

)
.
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Due to r(θ) > 0 and g−1(δ) < 0, we get

p(θ)

r(θ)
+ ∆αV (θ) ≤

dg−1 (δ) g−1

(
1

b(θ)

)
M

.

From Lemma 2.1, the above inequality becomes

p(θ)

r(θ)
+

∆Ψ(θ)

Γ(1− α)
≤
dg−1 (δ) g−1

(
1

b(θ)

)
M

.
(3.8)

Now summing up (3.8) from θ2 to θ − 1, we obtain

Ψ(θ) ≤ Ψ(θ2) + Γ(1− α)

[
dg−1 (δ)

M

θ−1∑
τ=θ2

g−1

(
1

b(τ)

)
+

θ−1∑
τ=θ2

(
−p(τ)

r(τ)

)]
.

By (A1) and (3.5), letting θ →∞, we obtain lim
θ→∞

Ψ(θ) = −∞, which contradicts

Ψ(θ) > 0. Therefore, z(θ) > 0 for θ ∈ [θ1,∞) holds. From Lemma 2.1,

z(θ) = p(θ) + r(θ)∆αV (θ) = p(θ) + r(θ)
∆Ψ(θ)

Γ(1− α)
.

Therefore

∆Ψ(θ) = Γ(1− α)
z(θ)− p(θ)

r(θ)
≤ Γ(1− α)

z(θ)

M
.(3.9)

Let us define the following generalized Riccati transformation:

(3.10) ω(θ) = c(θ)
b(θ)g(z(θ))

Ψ(θ)
for θ ∈ [θ1,∞).

Then we have ω(θ) > 0 for θ ∈ [θ0,∞).

∆ω(θ) = ∆

[
c(θ)

b(θ)g(z(θ))

Ψ(θ)

]
= ∆c(θ)

b(θ)g(z(θ))

Ψ(θ)
+
c(θ + 1)∆[b(θ)g(z(θ))]

Ψ(θ + 1)
− b(θ)c(θ + 1)g(z(θ))

Ψ(θ)Ψ(θ + 1)
∆Ψ(θ).

Now applying (A1), (3.7), (3.9) and (3.10), we obtain

∆ω(θ) ≤ ∆c(θ)
ω(θ)

c(θ)
− µc(θ)Q(θ)− βΓ(1− α)

Mc(θ)b(θ)
ω2(θ)(3.11)
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i.e., ∆ω(θ) ≤ −µc(θ)Q(θ) +
Mb(θ)[∆c(θ)]2

4βc(θ)Γ(1− α)
.

Summing up the last inequality from θ0 to θ − 1, we get

θ−1∑
τ=θ0

[
µc(τ)Q(τ)− Mb(τ)[∆c(τ)]2

4βc(τ)Γ(1− α)

]
≤ ω(θ0)− ω(θ) ≤ ω(θ0).

Now taking limit as θ →∞, we have

lim sup
θ→∞

θ−1∑
τ=θ0

[
µc(τ)Q(τ)− Mb(τ)[∆c(τ)]2

4βc(τ)Γ(1− α)

]
≤ ω(θ0) <∞,

which contradicts (3.6). The proof is complete.
For the following theorem, we introduce the double sequence H(θ, τ) satisfy-

ing the conditions [11]

H(θ, θ) = 0 for θ ≥ θ0; H(θ, τ) > 0 for θ > τ ≥ θ0;

∆τH(θ, τ) = H(θ, τ + 1)−H(θ, τ) ≤ 0 for θ > τ ≥ θ0.

Theorem 3.3. Assume that (A1) - (A5) and (3.5) hold. Furthermore, suppose that
there exists a positive function c(θ) such that,

(3.12) lim sup
θ→∞

1

H(θ, θ0)

θ−1∑
τ=θ0

[
µc(τ)Q(τ)H(θ, τ)−

Mb(τ)c(τ)h2
+(θ, τ)

4βΓ(1− α)H(θ, τ)

]
=∞,

where µ, β and c(θ) are defined as in Theorem 3.2. Then every solution of (3.1) is
oscillatory in Ω× Na.

Proof. On the contrary, suppose that (3.1) has a nonoscillatory solution V (θ).
Then, without loss of generality, we can assume that V (θ) is an eventually pos-
itive solution of (3.1). Proceeding as in the proof of Theorem 3.2 and from
assumption (A3), we arrive at the inequality (3.11). Now

µc(θ)Q(θ) ≤ −∆ω(θ) + ∆c(θ)
ω(θ)

c(θ)
− βΓ(1− α)

Mb(θ)c(θ)
ω2(θ).
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Let us multiply the above inequality by H(θ, τ) on both sides and take summa-
tion from θ2 to θ − 1, to get

θ−1∑
τ=θ2

[µc(τ)Q(τ)H(θ, τ)] ≤ −
θ−1∑
τ=θ2

∆ω(τ)H(θ, τ) +
θ−1∑
τ=θ2

∆c(τ)
ω(τ)

c(τ)
H(θ, τ)

−
θ−1∑
τ=θ2

βΓ(1− α)

Mb(τ)c(τ)
ω2(τ)H(θ, τ).(3.13)

Using summation by parts formula, we get

−
θ−1∑
τ=θ2

∆ω(τ)H(θ, τ) < ω(θ2)H(θ, θ2) +
θ−1∑
τ=θ2

ω(τ + 1)∆τH(θ, τ).(3.14)

Substituting (3.14) in (3.13), we obtain

θ−1∑
τ=θ2

[
µc(τ)Q(τ)H(θ, τ)−

h2
+(θ, τ)

4
· Mb(τ)c(τ)

βΓ(1− α)H(θ, τ)

]
≤ H(θ, θ0)ω(θ2),

where h+(θ, τ) = ∆τH(θ, τ) +
∆c(τ)

c(τ)
H(θ, τ). Since, 0 < H(θ, τ) ≤ H(θ, θ0) for

θ > τ ≥ θ0 and 0 <
H(θ, τ)

H(θ, θ0)
≤ 1 for θ > τ ≥ θ0, we have

1

H(θ, θ0)

θ−1∑
τ=θ0

[
µc(τ)Q(τ)H(θ, τ)−

h2
+(θ, τ)

4
· Mb(τ)c(τ)

βΓ(1− α)H(θ, τ)

]

≤
θ2−1∑
τ=θ0

µc(τ)Q(τ) + ω(θ2).

For θ →∞, we obtain

lim sup
θ→∞

1

H(θ, θ0)

θ−1∑
τ=θ0

[
µc(τ)Q(τ)H(θ, τ)−

Mb(τ)c(τ)h2
+(θ, τ)

4βΓ(1− α)H(θ, τ)

]

≤
θ2−1∑
τ=θ0

µc(τ)Q(τ) + ω(θ2) <∞,

which contradicts (3.12) and the proof is complete.
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4. APPLICATIONS

As applications of our main results, we consider the following examples.

Example 1. Consider the nonlinear discrete partial fractional equation

∆

[
θ

1
3

(
−1

θ
+ θ−3∆α

θ v(y, θ)

)]
+

2θ

y
·
θ−1+α∑
τ=1

(θ − τ − 1)(−α)v(y, τ) = θ
1
3Lv(y, θ),(4.1)

for (y, θ) ∈ N(1, 2)× N0, with boundary condition

(4.2) ∆Nv(0, θ) = ∆Nv(3, θ) = 0, θ ∈ N0,

where α ∈ (0, 1]. In equation (1.1), we take b(θ) = θ
1
3 , p(θ) = −1

θ
, r(θ) = θ−3,

q(y, θ) =
2θ

y
, k(θ) = θ

1
3 and f(v) = g(v) = v.

Also we set
f(v)

v
≥ µ = 1,

v

g(v)
≥ β = 3, M = 4, c(θ) = θ.

The assumptions (A1)-(A5) hold and moreoverQ(θ) = min
y∈N(1,2)

q(y, θ) = θ, ∆

[
−p(θ)
r(θ)

]
=

∆ [θ2] 6= 0, lim
θ→∞

θ−1∑
τ=θ0

[
−p(τ)

r(τ)

]
= lim

θ→∞

θ−1∑
τ=1

τ 2 <∞ and ∆c(θ) = 1.

Furthermore,
∞∑
τ=θ0

g−1

[
1

b(τ)

]
=
∞∑
τ=1

1

b(τ)
=
∞∑
τ=1

1

τ
1
3

=∞

and
∞∑
τ=θ0

[
µc(τ)Q(τ)− Mb(τ) [∆c(τ)]2

4βc(τ)Γ(1− α)

]
=
∞∑
τ=1

[
τ 2 − 1

3τ
2
3 Γ(1− α)

]
=∞.

Using Theorem 3.2, every solution of (4.1)-(4.2) is oscillatory in N(1, 2)× N0.

Example 2. Consider the fractional partial difference equation

∆

[
θ

(
−1

θ
+ θ

1
3 ∆α

θ v(y, θ)

)]
+
θ

y
·
θ−1+α∑
τ=1

(θ − τ − 1)(−α)v(y, τ) = θ
2
3Lv(y, θ),(4.3)

for (y, θ) ∈ N(1, 3)× N0, with boundary condition

(4.4) ∆Nv(0, θ) = ∆Nv(4, θ) = 0, θ ∈ N0.

where α ∈ (0, 1]. By taking b(θ) = θ, p(θ) = −1

θ
, r(θ) = θ

1
3 , q(y, θ) =

θ

y
, k(θ) = θ

2
3

and f(v) = g(v) = v in equation (1.1), we get the above equation.

Also we take
f(v)

v
≥ µ = 1,

v

g(v)
≥ β = 3, M = 2, c(θ) = 1. Obviously

assumptions (A1)-(A5) hold. Moreover Q(θ) = min
y∈N(1,3)

q(y, θ) = θ
3
, ∆

[
−p(θ)
r(θ)

]
=
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∆
[
θ−

4
3

]
6= 0, lim

θ→∞

θ−1∑
τ=θ0

[
−p(τ)

r(τ)

]
= lim

θ→∞

θ−1∑
τ=1

[
τ−

4
3

]
<∞ and ∆c(θ) = 0.

Furthermore,
∞∑
τ=θ0

g−1

[
1

b(τ)

]
=
∞∑
τ=1

1

b(τ)
=
∞∑
τ=1

1

τ
=∞.

The double sequence H(θ, τ) is defined as follows:
H(θ, τ) = (θ − τ)2 > 0 for θ > τ > 1; H(θ, 1) = (θ − 1)2 > 0 for θ > τ = 1;
∆τH(θ, τ) = [θ − (τ + 1)]2 − (θ − τ)2 = 2τ − 2θ + 1 < 0 for θ > τ ≥ 1.
Also

h+(θ, τ) = ∆τH(θ, τ) +
∆c(τ)H(θ, τ)

c(τ)
= (2τ − 2θ + 1).

Then

1

H(θ, θ0)

θ−1∑
τ=θ0

[
µc(τ)Q(τ)H(θ, τ)−

h2
+(θ, τ)Mb(τ)c(τ)

4βΓ(1− α)H(θ, τ)

]

=
1

(θ − 1)2

θ−1∑
τ=1

[
τ(θ − τ)2

3
− τ(2τ − 2θ + 1)2

6(θ − τ)2Γ(1− α)

]
.

(4.5)

It follows from (4.5) that

lim sup
θ→∞

1

H(θ, θ0)

θ−1∑
τ=θ0

[
µc(τ)Q(τ)H(θ, τ)−

h2
+(θ, τ)Mb(τ)c(τ)

4βΓ(1− α)H(θ, τ)

]
=∞.

From Theorem 3.3, every solution of (4.3)-(4.4) is oscillatory in N(1, 3)× N0.

5. CONCLUDING REMARKS

In this paper, by using a suitable generalized Riccati transformation and
Riemann-Liouville difference operator, we obtained new sufficient conditions
for the oscillation of nonlinear fractional partial difference equations in the pres-
ence of Robin boundary condition. With the support of basic theory of discrete
fractional calculus, discrete Gaussian formula and fractional difference operator,
the proofs are presented in a descriptive manner. The findings include some new
methods for examining the oscillation of solutions of fractional partial difference
equations with boundary conditions.
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