

Advances in Mathematics: Scientific Journal 9 (2020), no.6, 3675-3684

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.6.45

ON SOME FUNCTIONS OF FAST INCREASE

K. SANTOSH REDDY¹ AND M. RANGAMMA

ABSTRACT. This article looks at some theorems of functions which satisfy the condition $\lim_{\nu\to\infty}\frac{\ln\nu}{\ln\phi(\nu)}=0$. This function is labelled function of fast increase. To show the applicability of such functions, some general results on a sequence s_n of positive integers that satisfy the asymptomatic rule $s_n\sim n^r\ln\phi(n)$ where $\phi(\nu)$ is a function of fast increase are derived.

1. Introduction

Drawing inspiration from functions of slow increase in [1, 2] the function of fast increase is defined as follows.

Definition 1.1. Let $\phi(\nu)$ be a function from $[a,\infty)$ (where a>0) to $(0,\infty)$ and $\phi(\nu)>0$ with continuous derivative $\phi'(\nu)>0$ and $\lim_{\nu\to\infty}\phi(\nu)=\infty$. The function $\phi(\nu)$ is said to be function of fast increase if $\lim_{\nu\to\infty}\frac{\ln\nu}{\ln\phi(\nu)}=0$. i.e.,

to every
$$\sigma > 0 \; \exists \; k_{\sigma} \ni \nu > \; k_{\sigma} \; \text{and} \; \left| \frac{\ln \nu}{\ln \phi(\nu)} \right| < \sigma$$

$$\Leftrightarrow |\ln \nu| < \sigma |\ln \phi(\nu)|, \ \forall v > k_{\sigma}$$

$$\Leftrightarrow e^{\ln \nu} < e^{\sigma \ln \phi(\nu)}, \ \forall \nu > k_{\sigma}, \text{where } (\ln \nu, \ln \phi(\nu) > 0).$$

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 11Y40, 11Z05.

Key words and phrases. Function of fast increase, asymptotically equivalent, sequence of positive integers.

Some functions of fast increase are $\phi(\nu)=e^{\nu},\ \phi(\nu)=e^{e^{\nu}},\ \phi(\nu)=a^{\nu}\ \ (a\geq 2),$ and $\phi(\nu)=\frac{\Gamma\left(\nu\right)}{\Gamma'\left(\nu\right)}$ where $\Gamma\left(\nu\right)=\int_{0}^{\infty}t^{\nu-1}e^{-t}dt$ etc.

Note. 1) If $\phi(\nu)$ is function of fast increase, then $\lim_{\nu \to \infty} \frac{\phi(\nu)}{\nu \phi'(\nu)} = 0$. 2) Write $F = \{\phi | \phi \text{ is f.f.i.} \}$.

Theorem 1.1. Let $\phi, \psi \in F$ and let $\alpha, d > 0$ be two constants, then $\phi + d, \phi - d, d\phi, \phi\psi, \phi^{\alpha}, \phi \circ \psi, e^{\phi}$ and $\phi + \psi$ all lies in F.

The proof is immediate consequence from the definition.

Theorem 1.2. Let $\phi, \psi \in F$ and $\mu(\nu) = \phi(\nu^{\alpha})$ and $\eta(\nu) = \phi(\nu^{\alpha}\psi(\nu))$ for each ν and $\alpha > 1$, then $\mu, \eta \in F$.

Proof. (i) As μ satisfies the conditions of a function of fast increase, we have

$$\lim_{\nu \to \infty} \frac{\mu(\nu)}{\nu \mu'(\nu)} = \lim_{\nu \to \infty} \frac{\phi(\nu^{\alpha})}{\nu \alpha \nu^{\alpha - 1} \phi'(\nu^{\alpha})}$$
$$= \lim_{\nu \to \infty} \frac{\phi(\nu^{\alpha})}{\nu^{\alpha} \phi'(\nu^{\alpha})} = 0 \quad \text{(since } \nu \to \infty \text{ then } \nu^{\alpha} \to \infty\text{)}$$

Therefore $\mu = \phi(\nu^{\alpha}) \in F$.

(ii) As μ satisfies the conditions of a function of fast increase, we have

$$0 \leq \lim_{\nu \to \infty} \frac{\eta(\nu)}{\nu \eta'(\nu)} = \lim_{\nu \to \infty} \frac{\phi(\nu^{\alpha} \psi(\nu))}{\nu \phi'(\nu^{\alpha} \psi(\nu)) \left[\alpha \nu^{\alpha - 1} \psi(\nu) + \nu^{\alpha} \psi'(\nu)\right]}$$

$$\leq \lim_{\nu \to \infty} \frac{\phi(\nu^{\alpha} \psi(\nu))}{\nu^{\alpha} \psi(\nu) \phi'(\nu^{\alpha} \psi(\nu))} = 0 \text{ (since } \nu \to \infty \text{ and } \psi(\nu) \to \infty \text{ then } \nu^{\alpha} \psi(\nu) \to \infty)$$
Therefore $\eta = \phi(\nu^{\alpha} \psi(\nu)) \in F$.

Theorem 1.3. Let $\phi, \psi \in F$ such that $\lim_{\nu \to \infty} \frac{\phi(\nu)}{\psi(\nu)} = \infty$ and if $\frac{d}{d\nu} \left(\ln \frac{\phi(\nu)}{\psi(\nu)} \right) > 0$, then $\frac{\phi}{\psi} \in F$.

Proof. Let
$$\mu=\frac{\phi(\nu)}{\psi(\nu)}$$
 where $\phi,\psi\in F$ and $\mu'=\frac{\phi'\psi-\phi\psi'}{\psi^2}$. Then
$$\lim_{\nu\to\infty}\frac{\mu}{\nu\mu'}=\lim_{\nu\to\infty}\frac{\frac{\phi}{\psi}\times\psi^2}{\nu(\phi'\psi-\phi\psi')}=\lim_{\nu\to\infty}\frac{1}{\nu\left(\frac{\phi'\psi-\phi\psi'}{\phi\psi}\right)}=0$$

$$\left(\frac{d}{dx}\left(\ln\frac{\phi(\nu)}{\nu(\nu)}\right)=\frac{\phi'\psi-\phi\psi'}{\phi\nu'}>0\right).$$

Therefore
$$\mu = \frac{\phi}{\psi} \in F$$
.

Theorem 1.4. Let $\phi(\nu)$ be a function from $[a,\infty)$ (a>0) to $(0,\infty)$ such that $\phi(\nu) > 0$ with continuous derivative $\phi'(\nu) > 0$ and $\lim_{\nu \to \infty} \phi(\nu) = \infty$.

(i) Define
$$\mu(\nu)=\phi(\ln\nu), \ \ then \ \mu\in F\Leftrightarrow \lim_{\nu\to\infty}\frac{\phi(\nu)}{\phi'(\nu)}=0$$
 (ii) Define $\eta(\nu)=e^{\phi(\nu)}, \ \ then \ \eta\in F\Leftrightarrow \lim_{\nu\to\infty}\frac{1}{\nu\phi'(\nu)}=0$.

(ii) Define
$$\eta(\nu) = e^{\phi(\nu)}$$
, then $\eta \in F \Leftrightarrow \lim_{\nu \to \infty} \frac{1}{\nu \phi'(\nu)} = 0$.

Proof. (i) Suppose $\mu \in F \Rightarrow \lim_{\nu \to \infty} \frac{\mu(\nu)}{\nu \mu'(\nu)} = 0 \Rightarrow \lim_{\nu \to \infty} \frac{\phi(1n\nu)}{\phi'(1n\nu)} = 0$. If $y = \ln \nu$ and $\nu \to \infty$ then $y \to \infty$ then $\lim_{y \to \infty} \frac{\phi(y)}{\phi'(y)} = 0$ or $\lim_{\nu \to \infty} \frac{\phi(\nu)}{\phi'(\nu)} = 0$.

Converse follows from the above proof.

(ii) Suppose
$$\eta \in F \Rightarrow \lim_{\nu \to \infty} \frac{\eta(\nu)}{\nu \eta'(\nu)} = 0 \Rightarrow \lim_{\nu \to \infty} \frac{1}{\nu \phi'(\nu)} = 0$$
.

Converse follows from the above proof.

Theorem 1.5. Let ϕ be the function of fast increase if and only if to every $\alpha > 0$ then there exist ν_{α} such that $\frac{d}{d\nu} \left\lceil \frac{\phi(\nu)}{\nu^{\alpha}} \right\rceil > 0, \ \forall \nu > \nu_{\alpha}$.

Proof. We have

(1.1)
$$\frac{d}{d\nu} \left[\frac{\phi(\nu)}{\nu^{\alpha}} \right] = \frac{\alpha \phi'(\nu)}{\nu^{\alpha}} \left[\frac{1}{\alpha} - \frac{\phi(\nu)}{\nu \phi'(\nu)} \right] .$$

Suppose $\phi \in F$. Then $\lim_{\nu \to \infty} \frac{\phi(\nu)}{\nu \phi'(\nu)} = 0$, i.e. for every $\alpha > 0 \; \exists \nu_{\alpha} \; \ni \; \forall \nu > \nu_{\alpha}$

and
$$\left| \frac{\phi}{\nu \phi} \right| < \frac{1}{\alpha}, \quad \forall \, \nu > \nu_{\alpha}$$

$$\Rightarrow \frac{1}{\alpha} - \frac{\phi}{\nu \phi} > 0, \quad \forall \nu > \nu_{\alpha}$$

$$\Rightarrow \frac{d}{d\nu} \left[\frac{\phi(\nu)}{\nu^{\alpha}} \right] > 0, \ \forall \nu > \nu_{\alpha} \,,$$

from (1.1). Converse follows from the above proof.

Theorem 1.6. If
$$\phi \in F$$
 then $\lim_{\nu \to \infty} \frac{\phi(\nu)}{\nu^{\beta}} = \infty$, $\forall \beta > 0$.

Proof follows from the definition.

Note. We know that every $\phi \in F$ is an increasing function. Moreover by the above theorem it is clear that $\lim_{\nu\to\infty}\frac{\phi(\nu)}{\nu^\beta}=\infty,\ \ \forall \beta>0$. This shows that the insert

This shows that the increasing nature of ϕ is fast.

Corollary 1.1. If $\phi \in F$ then $\lim_{\nu \to \infty} \frac{\phi(\nu)}{\nu} = \infty$ and $\lim_{\nu \to \infty} \phi'(\nu) = \infty$.

The proof is immediate consequence of Theorem 1.6.

Theorem 1.7. If $\phi \in F$, for any then $\alpha \ge -1$ and $\beta \in R^+$, the series $\sum_{j=1}^{\infty} j^{\alpha} \phi(j)^{\beta}$ diverges to ∞ .

Proof. Write
$$\sum_{j=1}^{\infty} j^{\alpha} \phi(j)^{\beta} = \sum_{j=1}^{\infty} \left[j^{\alpha+1} \phi(j)^{\beta} \right] \frac{1}{j}$$
. We know that $\sum_{j=1}^{\infty} \frac{1}{j}$ diverges to ∞ . Given $\alpha \geq -1 \Rightarrow \alpha + 1 \geq 0$ and $\beta \in R^+, \Rightarrow \lim_{j \to \infty} j^{\alpha+1} \phi(j)^{\beta} = \infty$. Therefore $\sum_{j=1}^{\infty} j^{\alpha} \phi(j)^{\beta}$ diverges to ∞ .

Theorem 1.8. Let $\phi \in F$, for any $\alpha \ge -1$ and $\beta \in R^+$ Then

$$\lim_{v \to \infty} \frac{\int_a^v x^{\alpha} \phi(x)^{\beta - 1} \phi'(x) dx}{\frac{1}{\beta} v^{\alpha} \phi(\nu)^{\beta}} = 1.$$

Proof. From Theorem 1.7., $\lim_{v\to\infty}\frac{1}{\beta}v^{\alpha}\phi(v)^{\beta}=\infty,\ \alpha\geq -1,\ \beta\in R^+$ and

$$\begin{split} \sum_{v=1}^{\infty} v^{\alpha} \phi(\nu)^{\beta} &= \infty \\ \Rightarrow \lim_{v \to \infty} \int_{a}^{v} x^{\alpha} \phi(x)^{\beta - 1} \phi'(x) dx &= \infty \\ \Rightarrow \lim_{v \to \infty} \frac{\int_{a}^{v} x^{\alpha} \phi(x)^{\beta - 1} \phi'(x) dx}{\frac{1}{\beta} v^{\alpha} \phi(v)^{\beta}} &= \lim_{v \to \infty} \frac{v^{\alpha} \phi(v)^{\beta - 1} \phi'(v)}{v^{\alpha} \phi(v)^{\beta - 1} \phi'(v) \left[\frac{\alpha}{\beta} \frac{\phi(v)}{\nu \phi'(v)} + 1\right]} &= 1 \,, \end{split}$$

by L'Hospital's Rule and $\phi \in F$.

Corollary 1.2. If $\phi \in F$, then the following results holds.

(i)
$$\int_{a}^{v} x^{\alpha} \phi'(x) dx \sim \nu^{\alpha} \phi(\nu).$$
(ii)
$$\int_{a}^{v} \frac{\phi'(x)}{x} dx \sim \frac{\phi(\nu)}{\nu}.$$

Proof is a particular case of Theorem 1.8.

Theorem 1.9. If $\phi \in F$ and $\lim_{\nu \to \infty} \frac{\phi'(\nu)}{\phi(\nu)} = M$ then $\lim_{\nu \to \infty} \frac{1n\phi(\nu+k)}{1n\phi(\nu)} = 1$ for every $k \in R$.

Proof. Let $\psi(\nu) = \ln \phi(\nu)$, Suppose k > 0, $\exists x \in (\nu, \nu + k)$ such that $\psi(\nu + k) - \psi(\nu) = (\nu + k - \nu) \psi'(x) \text{(By LMVT)}$

$$\Rightarrow \frac{\psi(\nu+k)}{\psi(\nu)} - 1 = \frac{k\psi'(x)}{\psi(\nu)}$$

$$\Rightarrow \lim_{\nu \to \infty} \frac{\psi(\nu+k)}{\psi(\nu)} - 1 = k \lim_{\nu \to \infty} \left(\frac{\phi'(\nu)}{\phi(\nu)} \times \frac{1}{1n\phi(\nu)}\right) = 0,$$

$$\Rightarrow \lim_{\nu \to \infty} \frac{1n\phi(\nu+k)}{1n\phi(\nu)} = 1.$$

Suppose $k < 0, \ \exists \ x \in (\nu + k, \nu)$ such that $\psi(\nu) - \psi(\nu + k) = (\nu - \nu - k) \ \psi'(x)$ (By LMVT)

$$\Rightarrow \lim_{\nu \to \infty} \frac{\psi(\nu + k)}{\psi(\nu)} - 1 = -k \lim_{\nu \to \infty} \left(\frac{\phi'(\nu)}{\phi(\nu)} \times \frac{1}{\ln \phi(\nu)} \right) = 0$$
$$\Rightarrow \lim_{\nu \to \infty} \frac{\ln \phi(\nu + k)}{\ln \phi(\nu)} = 1.$$

2. Applications Of Functions Of Fast Increasing To Some Sequences OF INTEGERS

Definition 2.1. Let $\phi \in F$, (s_n) be a sequence of positive integers and is strictly increasing such that $s_1 \ge 1$ and

(2.1)
$$\lim_{n\to\infty} \frac{s_n}{n^r \ln \phi(n)} = 1 \text{ for some } r \ge 1$$

i.e. $s_n \sim n^r \ln \phi(n)$, see reference [3].

For example, (i)
$$(s_n)=n^2$$
, $\phi(\nu)=e^{\nu}$ and $r=1$ (ii) $(s_n)=ne^n$, $\phi(\nu)=e^{e^{\nu}}$ and $r=1$

Definition 2.2. Let (s_n) be the sequence defined as above and $\nu > 0$ then $f(
u) = \sum_{s_k \leq
u} 1$, i.e. the member of (s_n) and is not exceeding u .

Theorem 2.1. Let (s_n) be the sequence satisfying and $\phi, \psi \in F$ then

(i)
$$s_{n+1} \sim s_n$$

$$\begin{array}{l} \text{(i)} \ \ s_{n+1} \sim s_n \\ \text{(ii)} \ \ \lim_{n \to \infty} \frac{s_{n+1} - s_n}{s_n} = 0 \\ \text{(iii)} \ \ \ln s_{n+1} \sim \ln s_n \end{array}$$

(iii)
$$\ln s_{n+1} \sim \ln s_n$$

(iv)
$$\psi(s_{n+1}) \sim \psi(s_n)$$

(v) $\lim_{\nu \to \infty} \frac{f(\nu)}{\nu} = 0$.

Proof. The proofs are immediate consequence of (2.1) and Theorem 1.9.

Theorem 2.2. Let (s_n) be the sequence satisfying 2.1 and $\psi \in F$ and $p \ge 1$ then

$$\psi(s_n) \sim p \psi(n) \Leftrightarrow \psi(f(\nu)) \sim \frac{1}{p} \psi(\nu)$$
.

Proof. Let $\psi(f(\nu)) \sim \frac{1}{p} \psi(\nu)$

$$\Rightarrow \psi(f(s_n)) \sim \frac{1}{p} \psi(s_n) \Rightarrow \psi(s_n) \sim p\psi(n) \quad (f(s_n) = n) .$$

Conversely, let

(2.2)
$$\psi(s_n) \sim p \, \psi(n) \Rightarrow \lim_{n \to \infty} \frac{\psi(f(s_n))}{\frac{1}{n} \, \psi(s_n)} = 1$$
 (since $f(s_n) = n$).

If $s_n \leq \nu \leq s_{n+1}$ then $\psi\left(f\left(s_n\right)\right) \leq \psi\left(f\left(\nu\right)\right) \leq \psi\left(f\left(s_{n+1}\right)\right)$, and $\frac{1}{p}\psi\left(s_n\right) \leq \frac{1}{p}\psi\left(\nu\right) \leq \frac{1}{p}\psi\left(s_{n+1}\right)$.

$$\Rightarrow \lim_{n \to \infty} \frac{\psi\left(f\left(s_{n}\right)\right)}{\frac{1}{p}\psi\left(s_{n+1}\right)} \le \lim_{\nu \to \infty} \frac{\psi\left(f\left(\nu\right)\right)}{\frac{1}{p}\psi\left(\nu\right)} \le \lim_{n \to \infty} \frac{\psi\left(f\left(s_{n+1}\right)\right)}{\frac{1}{p}\psi\left(s_{n}\right)}$$
$$\Rightarrow 1 \le \frac{\psi\left(f\left(\nu\right)\right)}{\frac{1}{p}\psi\left(\nu\right)} \le 1 \qquad (s_{n+1} \sim s_{n})$$

and from (2.2),

$$\Rightarrow \psi(f(\nu)) \sim \frac{1}{p} \psi(\nu)$$
.

Lemma 2.1. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series of positive terms and $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$. If $\sum_{n=1}^{\infty} b_n$ is divergent then $\frac{\sum_{k=1}^{n} a_k}{\sum_{k=1}^{n} b_k} = 1$.

Theorem 2.3. Let (s_n) be the sequence satisfying (2.1) $\psi \in F$ space, $p \geq 1$, $\psi(s_n) \sim \psi(n)$ and $\psi'(s_n) \sim \psi'(n)$ then

$$s_n \sim \frac{1}{n} \psi(n) \Leftrightarrow f(\nu) \sim \frac{\psi(\nu)}{\nu} \Leftrightarrow f(\nu) \sim \int_a^{\nu} \frac{\psi'(x)}{x} dx \Leftrightarrow \sum_{s_k \leq \nu} k \psi'(s_k) \sim \frac{\psi(\nu)^2}{\nu}.$$

Proof. Suppose
$$f(\nu) \sim \frac{\psi(\nu)}{\nu} \Rightarrow f(s_n) \sim \frac{\psi(s_n)}{s_n}$$
,

$$\Rightarrow n \sim \frac{\psi(s_n)}{s_n} \Rightarrow s_n \sim \frac{1}{n} \psi(n) \quad \text{(Since } f(s_n) = n).$$

Conversely, suppose

$$s_n \sim \frac{1}{n} \psi(n) \Rightarrow \lim_{n \to \infty} \frac{f(s_n)}{\left(\frac{\psi(s_n)}{s_n}\right)} = 1.$$

If
$$s_n \le \nu \le s_{n+1}$$
 then $f(s_n) \le f(\nu) \le f(s_{n+1})$, and $\frac{\psi(s_n)}{s_n} \le \frac{\psi(\nu)}{\nu} \le \frac{\psi(s_{n+1})}{s_{n+1}}$.

$$\Rightarrow \lim_{n \to \infty} \frac{f(s_n)}{\left(\frac{\psi(s_{n+1})}{s_{n+1}}\right)} \le \lim_{\nu \to \infty} \frac{f(\nu)}{\left(\frac{\psi(\nu)}{\nu}\right)} \le \lim_{n \to \infty} \frac{f(s_{n+1})}{\left(\frac{\psi(s_n)}{s_n}\right)}$$
$$\Rightarrow 1 \le \lim_{\nu \to \infty} \frac{f(\nu)}{\left(\frac{\psi(\nu)}{\nu}\right)} \le 1(s_{n+1} \sim s_n) \Rightarrow f(\nu) \sim \frac{\psi(\nu)}{\nu}.$$

We have

$$\int_{a}^{v} \frac{\psi'(x)}{x} dx \sim \frac{\psi(\nu)}{\nu} \Rightarrow f(\nu) \sim \int_{a}^{\nu} \frac{\psi'(x)}{x} dx.$$

Also we have $\int_a^v x \, \psi'(x) dx \sim \nu \, \psi(\nu)$ and $\psi'(x)$ is increasing

$$\Rightarrow \sum_{k=1}^{n} k \psi'(k) = \int_{a}^{\nu} x \psi'(x) dx + h(n)$$
$$\Rightarrow \int_{a}^{\nu} x \psi'(x) dx + h(n) \sim \nu \psi(\nu).$$

From Lemma 2.1., we can write $\sum_{k=1}^{n} k \psi'(s_k) \sim \sum_{k=1}^{n} k \psi'(k)$

$$\Rightarrow \sum_{k=1}^{n} k \psi'(s_{k}) \sim n \psi(n)$$

$$\Rightarrow \sum_{s_{k} \leq s_{n}} k \psi'(s_{k}) \sim n \psi(s_{n})$$

$$\Rightarrow \sum_{s_{k} \leq s_{n}} k \psi'(s_{k}) \sim f(s_{n}) \psi(s_{n})$$

$$\Rightarrow \lim_{n \to \infty} \frac{f(s_{n})}{\left(\frac{\sum_{s_{k} \leq s_{n}} k \psi'(s_{k})}{\phi(s_{n})}\right)} = 1.$$

$$(2.3)$$

If
$$s_n \le \nu \le s_{n+1}$$
 then $f(s_n) \le f(\nu) \le f(s_{n+1})$, and

$$\Rightarrow \sum_{s_{k} \leq s_{n}} k \psi'(s_{k}) \leq \sum_{s_{k} \leq x} k \psi'(s_{k}) \leq \sum_{s_{k} \leq s_{n+1}} k \psi'(s_{k}) ,$$

$$\Rightarrow \lim_{n \to \infty} \frac{f(s_{n})}{\left(\frac{\sum_{s_{k} \leq s_{n+1}} k \psi'(s_{k})}{\psi(s_{n})}\right)} \leq \lim_{\nu \to \infty} \frac{f(\nu)}{\left(\frac{\sum_{s_{k} \leq \nu} k \psi'(s_{k})}{\psi(\nu)}\right)} \leq \lim_{n \to \infty} \frac{f(s_{n+1})}{\left(\frac{\sum_{s_{k} \leq s_{n}} k \psi'(s_{k})}{\psi(s_{n+1})}\right)}$$

$$\Rightarrow 1 \leq \lim_{\nu \to \infty} \frac{f(\nu)}{\left(\frac{\sum_{s_{k} \leq \nu} k \psi'(s_{k})}{\psi(\nu)}\right)} \leq 1 \text{ (since } s_{n+1} \sim s_{n}) \text{ and from (2.3)}$$

$$\Rightarrow f(\nu) \sim \frac{\sum_{s_{k} \leq \nu} k \psi'(s_{k})}{\psi(\nu)}$$

$$\Rightarrow \frac{\psi(\nu)}{\nu} \sim \frac{\sum_{s_{k} \leq \nu} k \psi'(s_{k})}{\psi(\nu)}$$

$$\Rightarrow \sum_{s_{k} \leq \nu} k \psi'(s_{k}) \sim \frac{\psi(\nu)^{2}}{\nu} .$$

Theorem 2.4. Let (s_n) be the sequence satisfying (2.1) , $\psi \in F$, $p \ge 1$, $l \ge 1$, $\psi(s_n) \sim l\psi(n)$ and $\psi'(s_n) \sim l\psi'(n)$ then

$$s_n \sim \frac{1}{n^p} \psi(n) \Leftrightarrow f(\nu) \sim \frac{\psi(\nu)^{1/p}}{l^{1/p} \nu^{1/p}} \Leftrightarrow f(\nu) \sim \frac{1}{p l^{1/p}} \int_a^v \frac{\psi(x)^{\frac{1}{p} - 1} \psi'(x)}{x^{1/p}} dx$$
$$\Leftrightarrow \sum_{s_k < \nu} k \psi'(s_k) \sim \frac{\psi(\nu)^{\frac{1}{p} + 1}}{l^{1/p} \nu^{1/p}}.$$

Proof. Suppose
$$f(\nu) \sim \frac{\psi(\nu)^{1/p}}{l^{1/p}\nu^{1/p}} \Rightarrow f(s_n) \sim \frac{\psi(s_n)^{1/p}}{l^{1/p}s_n^{1/p}}$$

$$\Rightarrow n \sim \frac{\psi(s_n)^{1/p}}{l^{1/p}s_n^{1/p}} \qquad (\text{Since } f(s_n) = n)$$

$$\Rightarrow s_n \sim \frac{1}{n^p}\psi(n) \quad (\text{Since } \psi(s_n) \sim l\psi(n)) .$$

Conversely, suppose $s_n \sim \frac{1}{n^p} \psi(n)$

$$(2.4) \qquad \Rightarrow \lim_{n \to \infty} \frac{f(s_n)}{\left(\frac{\psi(s_n)^{1/p}}{l^{1/p}s_n^{1/p}}\right)} = 1.$$

If
$$s_{n} \leq \nu \leq s_{n+1}$$
 then $f(s_{n}) \leq f(\nu) \leq f(s_{n+1})$, and $\frac{\psi(s_{n})}{s_{n}} \leq \frac{\psi(\nu)}{\nu} \leq \frac{\psi(s_{n+1})}{s_{n+1}}$.

$$\Rightarrow \lim_{n \to \infty} \frac{f(s_{n})}{\left(\frac{\psi(s_{n+1})^{1/p}}{l^{1/p}s_{n+1}^{1/p}}\right)} \leq \lim_{\nu \to \infty} \frac{f(\nu)}{\left(\frac{\psi(\nu)^{1/p}}{l^{1/p}\nu^{1/p}}\right)} \leq \lim_{n \to \infty} \frac{f(s_{n+1})}{\left(\frac{\psi(s_{n})^{1/p}}{l^{1/p}s_{n}^{1/p}}\right)}$$

$$\Rightarrow 1 \leq \lim_{\nu \to \infty} \frac{f(\nu)}{\left(\frac{\psi(\nu)^{1/p}}{l^{1/p}\nu^{1/p}}\right)} \leq 1 \text{ (Since } s_{n+1} \sim s_{n})$$

and from (2.4)

$$\Rightarrow f(\nu) \sim \frac{\psi(\nu)^{1/p}}{l^{1/p}\nu^{1/p}}.$$

We have $\int_a^v x^{\alpha} \psi(x)^{\beta-1} \psi'(x) dx \sim \frac{1}{\beta} v^{\alpha} \psi(\nu)^{\beta}$.

By taking
$$\alpha=\frac{1}{p},\;\beta=-\frac{1}{p}$$
 then we get $f\left(\nu\right)\sim\frac{1}{pl^{1/p}}\int_{a}^{v}\frac{\psi(x)^{\frac{1}{p}-1}\psi'\left(x\right)}{x^{1/p}}dx$.

The proof that $\sum_{s_k \leq \nu} k \psi'(s_k) \sim \frac{\psi(\nu)^{\frac{1}{p}+1}}{l^{1/p}\nu^{1/p}}$ is the same as in Theorem 2.3.

3. Conclusions

The results discussed in this article are employed in examples to show their applicability in number theory.

ACKNOWLEDGMENT

The author is very grateful for the support provided to him by Department of Mathematics, Osmania University and Vardhaman College of Engineering, Hyderabad.

REFERENCES

- [1] R. JAKIMCZUK: Functions of slow increase and integer sequences, Journal of Integer Sequences, 13 (2010), ArticleID 10.1.1.
- [2] K. SANTOSH REDDY, V. KAVITHA, V. L. NARAYANA: *Slow Increasing Functions and their Applications to some Problems in Number Theory*, ARPN Journal of Engineering and Applied Sciences, **8**(7) (2015), 33–44.
- [3] G. H. HARDY, E. M. WRIGHT: An Introduction to the Theory of Numbers, Fourth Edition, 1960.

DEPARTMENT OF MATHEMATICS
UNIVERSITY COLLEGE OF SCIENCE
OSMANIA UNIVERSITY
HYDERABAD -500007, TELANGANA, INDIA
AND

DEPARTMENT OF HUMANITIES AND SCIENCES VARDHAMAN COLLEGE OF ENGINEERING

SHAMSHABAD, HYDERABAD-501 218, TELANGANA, INDIA

E-mail address: santureddyk@gmail.com

Department of Mathematics
University college of Science
Osmania University
Hyderabad -500007, Telangana, India

E-mail address: rangamma1999@gmail.com