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ON SOME FUNCTIONS OF FAST INCREASE
K. SANTOSH REDDY! AND M. RANGAMMA

ABSTRACT. This article looks at some theorems of functions which satisfy the

1
condition lim Y 0. This function is labelled function of fast increase.
v—ooln ¢(v)

To show the applicability of such functions, some general results on a sequence
sy, of positive integers that satisfy the asymptomatic rule s,, ~ n" In ¢(n) where
¢(v) is a function of fast increase are derived.

1. INTRODUCTION

Drawing inspiration from functions of slow increase in [1, 2] the function of
fast increase is defined as follows.

Definition 1.1. Let ¢(v) be a function from [a,c0) (where a > 0) to (0,00) and
o(v) > 0 with continuous derivative ¢'(v) > 0 and lim ¢(v) = oo. The function
V—r00

¢(v) is said to be function of fast increase if limyﬁm% =0. ie,

toeveryo > 03k, >v > k, and ’mlgé’u)

<o
& |lnv| <ollne(v)|, Yo > k,

& <o) yy > L where (Inv, Ing(v) > 0).

Lcorresponding author
2010 Mathematics Subject Classification. 11Y40, 11Z05.
Key words and phrases. Function of fast increase, asymptotically equivalent, sequence of pos-
itive integers.
3675



3676 K. SANTOSH REDDY AND M. RANGAMMA

Some functions of fast increase are ¢(v) = e”, ¢(v) = e, ¢(v) = a” (a > 2),

F (o]
and ¢(v) = o ((VV)) where T (v) = /0 t"“te~tdt etc.
Note. 1) If ¢(v) is function of fast increase, then lim, ., oW .

v¢!(v)
2) Write F' = {¢|¢p isf.f.i}.

Theorem 1.1. Let ¢, € F and let a,,d > 0 be two constants, then ¢ + d, ¢ — d,
do, o, %, ¢ o), e and ¢ + 1 all lies in F.

The proof is immediate consequence from the definition.

Theorem 1.2. Let ¢,v € F and p(v) = ¢(v*) and n(v) = ¢(v*¢(v)) for each v
and o > 1, then pu,n € F.

Proof. (i) As y satisfies the conditions of a function of fast increase, we have
) o)
vooovp! (V) vooovav® ¢ (v®)
= lim o)
v—oo v (1)
Therefore = ¢(v®) € F.
(ii) As p satisfies the conditions of a function of fast increase, we have

=0 (since v — oo then v* — o)

o) P(vh(v))
0 R T ) | P P R )
< ulir?oyazigzézzzlu)) =0 (since v — oo and ¥ (v) — oo then v*1(v) — o0)

Therefore n = ¢(v*(v)) € F. O
Theorem 1.3. Let ¢,v € F such that Vli%ozig = oo and if dif/ (ln Z((Zi) > 0,
then g eF.

Proof. Let p = % where ¢,v € F and y' = W . Then

S o 12
T A T B

vosoupl v=sou(¢) — i) ”*%(M)

]
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Therefore pu = ki e F. O

(4
Theorem 1.4. Let ¢(v) be a function from [a,o0) (a > 0) to (0,00) such that
¢(v) > 0 with continuous derivative ¢'(v) > 0 and lim,_,,,¢(v) = 0.

(1) Define pu(v) = ¢(Inv), then p € F < lim, q‘f,((”)) -0

(ii) Define n(v) = e®™), thenn € F < lim,_ 00—~ ¢,(V) =0.
Proof. (i) Suppose p € F = lim, vu((i) =0 = lim,_ . qf,((llnyy)) =0.Ify=Inv
and v — oo then y — oo then lim,_, (f,(( )) 0 or lim, . 2% T = =0.
Converse follows from the above proof.
(ii) Suppose n € F = limyﬁm% =0= limyﬁm% =0.
Converse follows from the above proof. O

Theorem 1.5. Let ¢ be the function of fast increase if and only if to every o > 0

then there exist v, such that i MU)} >0, Vv >vu,.
dv | v®
Proof. We have
o 4] _adw) [1_ o) ]
dv | v | v la v (v)
o(v) .
Suppose ¢ € F. Then lim =0,ie. foreverya >03y, > Vv >y,
u—>ooy¢/(y)
and 9 l, Vv > v,
v
1
:>——£>0, Yv >y,
a v
= i {(b(y)} >0, Vv >v,,
dv | ve
from (1.1). Converse follows from the above proof. O
o)
Theorem 1.6. If ¢ € F then lim —5 =%, V3 >0.
v—oo I

Proof follows from the definition.
Note. We know that every ¢ € F'is an increasing function. Moreover by the

above theorem it is clear that lim KZ) =00, VB8>0.
v—oo I

This shows that the increasing nature of ¢ is fast.
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Corollary 1.1. If ¢ € F then lim () = oo and lim,_,o, ¢'(v) = 0.

V—00 1%

The proof is immediate consequence of Theorem 1.6.

Theorem 1.7. If ¢ € F, for any then a > —land § € R*, the series Y °° | j*¢(j)°
diverges to co.

o0

Proof. Write Y~ j*¢(j)° = _ [/*"'¢(j)"] } . We know that ) 1 diverges to oo

=1 =1 j=1
Givena > —1=a+1>0 and 8 € R", = lim;_,.j*™¢(j)’ = <.

Therefore Z §%¢(4)? diverges to oo . O
j=1
Theorem 1.8. Let ¢ € F for any « > —land 8 € R* Then
- Jy avo(@) ¢ (x)da
lim ~*—— =1
Vo0 U (v)?

Proof. From Theorem 1.7., lim $v*¢(v)’ = o0, a > —1, § € R" and
V—>00
> o) =00
v=1

= lim [ 2%¢(z)"7'¢/(2)dr = 00
V—00 a

Jo 200 (2)°" ¢/ () da vo(v)’ e (v)

= lim T = lim =1,
TR gyt ) [5.52 1]
by L’'Hospital’s Rule and ¢ € F. O

Corollary 1.2. If ¢ € F, then the following results holds.
(1) / 2% (x)dx ~ v (V).
(i) / (bix)dx 2w

v

Proof is a particular case of Theorem 1.8.

/ 1 k
Theorem 1.9. If ¢ € F and lim,,_,, % = M then lim M = 1 for every

®) v—00 1n¢(y)
ke R.
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Proof. Let ¢)(v) =In¢(v), Suppose k > 0, Iz € (v,v + k) such that
Y(v+k)—y)=(v+k—v)y(z)(By LMVT)

Ytk k()
T 0w T W)
im —w(y—l—k) —1=Fklim o) ! =
= hm =y kulﬁoo<¢(V) - 1n¢(1/)) v
. lno(v+k) B
= ey &

Suppose k < 0, 3z € (v+k,v) such that ¢Y(v) — (v + k) = (v —v — k) ¢'(z)(By

LMVT)
Y +k) o (V) 1 _
= lim ——% —1=—klim (gb(y) X lngb(y)) =0
Ing(v+ k)
P 1Ing(v)

=1

2. APPLICATIONS OF FUNCTIONS OF FAST INCREASING TO SOME SEQUENCES
OF INTEGERS

Definition 2.1. Let ¢ € F, (s,) be a sequence of positive integers and is strictly
increasing such that s; > 1 and
2.1 nh_)rgom =1 for somer > 1

i.e. s, ~n"lng(n), see reference [3].

For example, (i) (s,) =n? é(v) =e” and r = 1
(ii) (s,) = ne™, ¢(v) = e "andr = 1

Definition 2.2. Let (s,) be the sequence defined as above and v > 0 then
fv)= Z 1, i.e. the member of (s,) and is not exceeding v .

sp<v

Theorem 2.1. Let (s,,) be the sequence satisfying and ¢, € F then

(1) Spn+1 ™~ Sp
Sn

.. . S -
(i) lim 24t —°n
n—oo STL
(iii) Ins,;; ~Ins,

=0



3680 K. SANTOSH REDDY AND M. RANGAMMA

(IV) ¢ (Sn-l-l) ~ ¢ (Sn)
(v) lim M =0.
v—oo UV
Proof. The proofs are immediate consequence of (2.1) and Theorem 1.9. O

Theorem 2.2. Let (s,,) be the sequence satisfying 2.1 and ) € F and p > 1 then
(o) ~ P () 6 (F0) ~ 2 0 0)
Proof. Let ¢ (f(1) ~ 14 (v)
= Do) ~ 5 (5 = 6 (s) g () () =)

Conversely, let

(2.2) ¥ (sp) ~p(n) = lim ¢

n—o0

(since  f(s,) =n).

~~ 3 |—
—~
»
<
IN
<
~
—~
S

If s, < v < s,41 then ¥(
})w (50) < %w v) < Z—l,w (5ur1)

¥ (f (sn))

< ¥ (f(sny1)) , and

) O ()

I 1 !
Tt T () e L) e L0 (s)
= 1< w;j ((:;) <1 (Snt1 ~ Sn)

and from (2.2),

i

Lemma 2.1. Let >~ °  ayand )" b, be series of positive terms and lim §= =1. If
n—oo "
ZZ:] g =1
ZL b
Theorem 2.3. Let (s,) be the sequence satisfying (2.1) ¢ € F space, p > 1,
¥ (sy) ~ 1 (n)and ' (s,) ~ ' (n) then

an%w(n)@f(u)Niﬁ(u)@f(y)N/V@Z)/(x)dx@ka,(szw(y) |

14 T v

> 02 by is divergent then

s <v
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Y ()

P(sn)
R n) ~ ,
== (sa)

Y (Sn)

n

Proof. Suppose f (v) ~

=n e~

= Sy ~ %Qﬁ (n) (Since f (s,) =n).

Conversely, suppose

= lim < < lim ———~
n—00 (¢(Sn+1)> V—00 (d)(l/)) n—00 <¢(Sn)>
Sn+l1 v Sn

We have

Ty

14 T
Also we have [ z4/(z)dx ~ vy (v)and /() is increasing

= Zk¢,(k) = /Vmb' (z)dx + h(n)
k=1

a

é/vxw'(x)dx—i-h(n)wyw(u) :

From Lemma 2.1., we can write Z k' (s1) ~ Z k' (k)
k=1 k=1

= Y k' (si) ~ np (n)

= > kY (si) ~nib (s,)

= ST R (s0) ~  (50) ¥ (50)
(2.3) ~ i T (50) —1.

n—oo (Zskgsn kw,(sk))
b(sn)
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Ifs, <v<s,then f(s,) < f(v) < f(sns1) , and

:>Zk¢sk<2kwsk kaska

SE<Sn sp<x $E<Sn+1
. S (5n) . f) . S (8n+1)
= ey, S (&kgkw/(m) < fm <zsk§5n kwsw)
< ¥(sn) ) ) P(snt1)
=1< hml,_ﬂmw <1 (Since Sp41 S'n,) and from (2.3)
»(v)
L )~ Dz R )
W (v)
w (V) Zskgzx k’l/}, (Sk)
= ~
v ¥ (v)
@)’
= kv’ ~—.
Z< Y’ (k) y
SEpSV

Theorem 2.4. Let (s,) be the sequence satisfying (2.1) ;v € F,p>1,1> 1,
b (0) ~ 1 (n) and ¢/ (s,) ~ 1y (n) then

1 ) (e (@) ;.
s~ s () @ F )~ e f )~ [P
1

IO
N Z; k' (si) EIVv

w v l/p s 1/p

Proof. Suppose f (v) ~ llgpgl/pj f(sy) ~ ;ffpsil/p

w Sn, 1/p .
:>n~l1§%—)l/p (Since f (s,) =n)

= su~e g (n)  (Since v (s,) ~ 1 (n))
Conversely, suppose s,, ~ i¢ (n)
npkP
2.9 = lim M =1

n—00 ( P (85)1/P >

ll/Psnl/P
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If s, <v<s,then f(s,) < f(v) < f(sns1) , and Y (sn) < ¥ (v) < Y (Sp41) .

Sp, vV T Sptl
S 1% S
= lim —f( nl) < lim —f<1) < lim —f( ni1)
n— 00 ( PV(Spt1) /p > V—00 ('d)(zz) /p> n—00 <¢(sn)l/p)
11/P3n+11/p 11/pyl/p 11/pg,1/p
v .
= 1< lim f ) <1 (Since s,41 ~ Sy)

V—00 <w(u)1/p )
ll/Pyl/P
and from (2.4)

¢ 1/p
= )~ ST

We have /U 2 ()P~ (x)dr ~ %vo‘w(u)ﬁ

o1 g 1 b(z)p "Y' (x)
By taking o = 29 B = then we get f (v 7 / i dz .
—+1
The proof that ), _, kv’ (s) ~ % is the same as in Theorem 2.3. O

3. CONCLUSIONS

The results discussed in this article are employed in examples to show their
applicability in number theory.
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