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COMPARATIVE ANALYSIS OF DEEP LEARNING METHODS FOR OBJECT
DETECTION

K. GILL AND V. MANGAT!

ABSTRACT. Object detection is a vital field involving machine learning and
computer vision. Recent object detectors dependent on deep learning meth-
ods are showing assuring results for object detection in images, videos and
real-time environment. This paper compares the working of two famous deep
learning methods for object detection viz. RCNN and MobileNets SSD. R-CNN
uses combination of region proposals and CNNs. Selective search method is
used in RCNN technique. Whereas MobileNets SSD is based on depthwise sep-
arable convolutions that uses single filter enforced to every input and outputs
are combined by using pointwise convolution. A comparative analysis of these
two techniques is presented over benchmark and validation datasets.

1. INTRODUCTION

Detecting and tracking objects, [1], is an essential task in the field of com-
puter vision which detects, recognizes and tracks objects in the given set of im-
ages. Object detection applications include human interactive games, content-
based indexing, security, traffic monitoring and many more. Recent trend in
object detection is deep learning which is part of machine learning that includes
algorithms inspired by artificial neural network. Convolution neural network
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(CNN) is popular in deep learning for object detection. Many techniques ex-
ist that are based on CNN as RCNN, Fast RCNN, Mask RCNN. RCNN works on
obtaining number of candidate regions, [2], and calculation of convolutional
networks, [3], on each region. Advanced work on CNN network includes Mo-
bileNets and Single Shot MultiBox Detector (SSD). MobileNets SSD is a tech-
nique that uses depthwise separable convolution. This technique is really fast
and more accurate than RCNN and YOLO technique, [4] (You Only Look Once).
This paper presents a deep learning algorithm combining MobileNets and Sin-
gle Shot Detector and its comparison with RCNN. Section 2 discusses the prior
work done on object detection. Section 3 describes R-CNN technique. Section 4
explains MobileNets, depthwise separable convolutions, network structure and
training. Section 5 presents experimental results when MobileNets SSD tech-
nique is applied to the images (RGB and thermal) and its comparison with R-
CNN technique. Section 6 presents the conclusion.

2. RELATED WORK

There are two main types of object detection techniques, viz. sliding windows
and region proposal classifiers. Before convolutional neural systems, the main
core of these two methodologies: Selective Search, [2], and Deformable Part
Model (DPM), [5], were almost identical. After the improvements expedited by
R-CNN, [6] region proposal, object recognition techniques became powerful by
combining selective search region proposals with convolutional network-based
classification. One of the most known pedestrian detector that does not use
deep learning features is Integrate Channel Features (ICF) detector, [7] which is
based on Viola- Jones framework, [8]. This ICF detector requires boosted clas-
sifiers and feature pyramids. Boosting classifiers are building blocks for pedes-
trian detection. The feature pyramids of ICF have been enhanced in a few ways,
that includes ACF, [9], LDCF, [10], SCF, [11], and numerous others. Based on
the popularity of R-CNN, [12]; a object detection method that is based on deep
learning features; a series of strategies, [11-13], were built for pedestrian detec-
tion using two-stage pipeline. SCF detector [11], is utilised to propose regions,
trailed by a R-CNN for classification; TA-CNN, [12], utilizes the ACF identi-
fier, [14] to create proposals, and trains a R-CNN-style system to jointly advance
pedestrian detection; DeepParts technique, [13], applies LDCF detector, [10],



COMPARATIVE ANALYSIS OF DEEP LEARNING METHODS FOR OBJECT DETECTION 3761

to produce proposition and takes in an arrangement of corresponding parts by
neural systems. These proposers remain stand-alone pedestrian identifiers com-
prising of hand-made highlights and boosted classifiers. R-CNN approach, [16],
is a deep learning technique in object detection to obtain a specific number of
candidate object regions and calculate convolutional networks on each region.
R-CNN approach has been enhanced in many ways. First methodology enhances
the speed and quality of post-classification using SPPnet, [17], by presenting a
spatial pyramid pooling layer. Fast R-CNN, [18], expands SPPnet with the goal
that it can adjust all layers by limiting loss for confidences and bounding box
regression, which was first presented in MultiBox, [19]. Faster R-CNN, [20], ex-
tended RCNN with a Region Proposal Network. It has been shown to be flexible
and robust, [21].

Second methodology enhances the nature of proposal generation using deep
neural systems. In MultiBox [19], [22] the Selective Search proposals are aided
by proposition created from a different deep neural system. This enhances the
identification precision however it results in complex setup. Faster R-CNN, [20],
replaces selective search proposals by ones gained from region proposal network
(RPN) and introduces a strategy to coordinate RPN with Fast R-CNN by rotating
between finetuning shared convolutional layers. SSD is same as region proposal
network (RPN) in Faster R-CNN that utilizes a settled arrangement of (default)
boxes for expectation. Rather than utilizing these to pool features and assess
another classifier, a score is created for each object classification in each case.
In this manner, SSD avoids the complexity of combining RPN with Fast R-CNN
and is simpler to implement and faster. Other techniques that are related with
SSD avoid the first step and foresee bounding boxes and confidences for various
classes specifically. OverFeat, [23], a version of the sliding window strategy, pre-
dicts a bounding box specifically from every area of the highest component after
knowing the confidences of basic object categories. YOLO, [4], utilizes the entire
feature map to predict confidences for numerous classes and bounding boxes.
SSD approach is more flexible than the current techniques as it utilizes default
boxes of various perspectives. If we utilize only one default box for each area
from the feature map, SSD would have related architecture to OverFeat, [23],
and if we utilize the entire feature map and include a completely associated
layer for predictions rather than our convolutional indicators, we can reproduce
YOLO, [24].
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MobileNets use depthwise separable convolutions presented in [25] and uti-
lize as a part of Inception models [26] to decrease the calculation in the initial
couple of layers. Flattened systems, [27], build a system out of completely
factorized convolutions and demonstrate the capability of factorized systems.
Another system Squeezenet, [28] utilizes a bottleneck way to plan a small sys-
tem. An alternate approach for getting small systems is contracting, factorizing
or packing pretrained systems. Also different factorizations have been proposed
to accelerate pretrained systems [29,30]. Another strategy for preparing small
networks is distillation, [2], which utilizes a bigger system to train a smaller
system and it is correlated to our approach. In recent studies an automatic traf-
fic density estimation technique is used, [34], Mobilenet SSD for car counting
and performed quantitative analysis between Mobilenet SSD and SSD. Another
recent technique is based on convolutional neural network for ground object
detection, [35], used for disaster response and recovery.

3. RECURRENT CONVOLUTIONAL NEURAL NETWORK (R-CNN)

R-CNN approach, [16], is a deep learning technique in object detection to ob-
tain a specific number of candidate object regions and calculate convolutional
networks on each region. The aim of R-CNN is to take in an image as input and
recognise the objects in the image by using bounding box with labels for each
object as shown in figure 1. To find these bounding boxes R-CNN uses a number
of boxes in the image and check whether and any of them actually matches an
object. As R-CNN can be challenging to a particular region proposal technique,
selective search is used to allow a limited comparison with previous detection
as in [2], [31]. R-CNN uses a Selective Search process to find out bounding
boxes (also called region proposals) by using sliding window with CNN. Selec-
tive search [2] approach analyses the image by using windows of various sizes
and for each window it attempts to gather neighbour pixels by color, intensity
or texture in order to identify the objects. After creating the proposals R-CNN
encloses the region to a fixed unit size and moves it from a revised version
of AlexNet. Feature extraction is done by using 4096-dimensional feature vec-
tor, [32].

At the last layer training and testing is done using SVM (Support Vector Ma-
chine) with negative mining that identifies the object and its type i.e. to classify
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FIGURE 1. R-CNN: Regions with CNN features

objects. It uses shared CNN parameters with low dimensional features.
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For the final result, the objects in the bounding boxes the box can be made more
secure to fit the real dimensions of object and this can be done by using linear
regression on bounding box. For this regression model a set of proposals are
generated for bounding boxes, after that it passes the images in the region pro-
posals from a pre-trained AlexNet. Then the SVM classifies the type of object
and at last linear regression model is applied.

Figure 2 depicts that object detection by R-CNN approach has three modules:

- First module creates region proposals, [33], that defines the set for can-

didate detection.

- Second module is based on feature extraction using large convolutional

neural network.
- Third module has class of linear support vector machines.

4. MOBILENETS SSD MULTIBOX DETECTOR MULTIBOX

In SSD, the bounding box regression technique is based on MultiBox, [22].
MultiBox as shown in figure 3, is a technique used for quick class-agnostic
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bounding box coordinate proposals. MultiBox uses an Inception-style convo-
lutional network in which 1x1 convolutions helps in dimensionality reduction
keeping the height and width same.

1. Pre-Train CNN for Image Classification

— TrainCNN\
emen >

Large auxiliary dataset

2. Fine-tune CNN for object detection

Fine-tune CNN ‘:[

Small target dataset

3. Train linear prediction for object detection .T, :
D
CNN features > Per class
SVM

~2000
I Region proposals Warp ed
windows/
images Training labels

Small target datasets

FIGURE 2. R-CNN Training (1) Pre-Train CNN for Image Classi-
fication (2) Fine-tune CNN for object detection (3) Train linear
prediction for object detection

The main motive is to train convolution network which gives the coordinates
of object bounding box. MultiBox loss is computed by weighted sum of confi-
dence loss and location loss, given as:

multibox_loss = confidence loss + alpha * location_loss,

where confidence and location losses are given as:
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- Confidence Loss: a logistic loss on the estimates of a proposal corre-
sponding to an object of interest.

- Location Loss: a loss corresponding to some similarity measure between
the objects and the closest matching object box predictions. By default
we used L2 distance.

- Alpha balances the contribution of location loss.

The parameter values are estimated in such a way to optimally reduce the loss
function to make the predictions near to the ground truth.

3x3x44 || 3x3x4 || 2x2x44 || 2x2x4
LOC CONF LOC CONF
BxBx44 || BxBx4 B6x6x44 BxBx4 4x4x44 || 4x4x4 Ix3x96 2x2x96
LOC CONF LOC CONF LOC CONF (2x2 conv) (3x3 conv)
8xBx96 B6x6x96 4x4x128 4x4x128 4x4x128
(3x3 conv) (3x3 conv) (3x3 conv) (1x1 conv) (1x1 conv)
4 $ R
8xBx96 8xB8x96 4x4x256
{1x1 conv) (3x3 conv) (3x3 conv)
8x8x2048

FIGURE 3. MultiBox Multiscale convolution of confidences and locations.

4.1. MobileNets. MobileNets is the latest approach in deep learning convolu-
tion neural network. They are really fast and small that gives results with very
high precision. This approach is based on streamlined architecture which is
helpful in making light weight neural network that is based on intensity distin-
guishable convolutions, [2].

Depthwise Separable Convolution is a type of factorised convolution, [5], that
is useful in separating standard convolution into intensity wise convolution for
which a single filter is applied to each input channel. Output of depthwise
convolution is called pointwise convolution that is calculated by combining the
outputs with 1*1 convolution. In case of standard convolution layer the input
is considered as feature map I i.e. (C; * C; * P) and output as feature map O
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i.e. (Co * Co * Q). Here, C; is spatial width along with the height of a square
input component feature, P shows number of input channels, Co shows spatial
width along with the height of a square output component feature, Q shows
number of output channels. Then the output standard layer is parameterized by
convolution kernel K which has size equivalent to Cx * Cx * P * Q. Here, Dy is
the spatial coordinate of the kernel which is assumed to be a square. The output
is computed as (4.1):

4.1) Okin = Z Kijmmn * Teti-11+j—1,m

1,J,m

Depthwise separable convolution is made up of two layers i.e. pointwise con-
volutions and depthwise convolutions. Batchnorm and Rectified Linear Unit
(ReLU) are the nonlinearities used for these two layers. Figure 4 shows how a
standard convolution 4(a) can be reconstructed into a depthwise convolution
4(b) and a pointwise convolution 4(c).
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FIGURE 4. Standard Convolution Filters shown in (a) are recon-
structed by two layers consisting depthwise convolution filters
shown in (b) and pointwise convolution (1*1 Convolution filters)
shown in (c) in context of depthwise separable filter.
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For one filter per input channel depthwise convolution can be shown by the
equation (4.2):

(4.2) 5k,z,n = Z fA{zgmn i1 045—1,m;

irjm
where K is the depthwise convolutional kernel having size C'; . C, . P where
the m filter in K is applied to the p channel in I to produce the ph channel of
the filtered output feature map O.

Network Structure. All layers are trailed by a batchnorm, [10] and ReLU
nonlinearity except for the last completely associated layer which has no non-
linearity and goes into a softmax layer. Figure 5 shows standard convolution
layer and depthwise convolutions with Batchnorm and ReLU. MobileNets has
28 layers in total, combining depthwise and pointwise convolutions as individ-
ual layers.

3*3 Convolution |— Batchnorm | ReLU

(a) Standard Convolution Layer

3*3 Depthwise
Convolution

| Batchnorm l { ReLU [ 1*I Convolution [ Batchnorm | —1 ReLU

(b) Depthwise Convolutional Filters

FIGURE 5. (a): Standard convolution layer with batchnorm and
ReLU (b): Depthwise separable convolutions with depthwise and
pointwise layers followed by batchnorm and ReLU.

Detection and Default Boxes. Every feature layer can produce a fixed model
of detection prediction using a model of convolutional channels. With m chan-
nels for a feature layer of size p*q the component for finding parameters is
a 3*3*m kernel that gives a point for classification. This technique is similar
to YOLO, [12] which uses a midway technique of completely associated layer
rather than convolution channel. For multiple feature maps of the topmost point
of the system a combination of default bounding boxes with each feature cell is
related. For each component level the offsets related to default boxes of the
cells are predicted. Also, the per-component score that shows the closeness of
the class in each of these boxes are predicted.

Data augmentation. In order to make the model powerful to multiple input
objects, each processing image is randomly sampled using any of the following
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methods: — Utilize the whole original input image. — Plot an area in order that
the minimum jaccard overlap with the objects is between 0.1 - 0.9. — Randomly
plot an area. The limit to which each sampled area is [0.1, 1] comparative to
the original image size and the aspect proportion is in between 1/2 and 2. If the
focal point is calculated fixed than the covered piece of the ground truth box is
kept. After the testing step, each calculated fix is resized to settled size and is
on a level plane flipped with likelihood of 0.5.

4.2. Single shot multibox detector (SSD). SSD approach is dependent on
feed-forward convolutional network that yields a fixed size group of bound-
ing boxes and calculated the precision of object classes in those boxes. Figure 6
shows the architecture of SSD MultiBox detector.

Extra Feature Layers
A

VGG-16

r
Classifier : Conv: 3x3x(4x(Classes+4))

Classifier : Conv: 3x3x(Bx(Classas+4))

74.3mAP

Conv: 3x3x(4x(Classes+4))

I Detections:8732 per Class ‘

59FPS

Non-Maximum Suppression ‘

o 2 512
Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x258 Conw: 1x1x128 Conv: 1x1x128

Conv: 1x1x128
Conv: 3x3x512-s2 Conv. 3x3x256-s2 Conv: 3x3x256-51 Conv: In3x256-s1

FIGURE 6. Architecture of Single Shot MultiBox Detector (input is 300*300*3).

Many improvements were done on SSD to make it more efficient for localizing
and classifying objects. Fixed Priors: Each feature map is linked with a group
of default bounding boxes of multiple aspect ratios and dimensions. They are
chosen based on value more than 0.5 of IoU with respect to ground truth as
shown in figure 7. This helps SSD to formulise for each input with pre-training.
For example, assume we have calculated two diagonally opposed values (al,b1)
and (a2,b2) for each d default bounding boxes per feature map and m classes
to classify on a feature map of size f= p*q, SSD computed value for this feature
map is f*d*(4+m).

Location Loss: To calculate location loss, SSD uses smooth L1-Norm. It is
highly effective and gives more space for operation but not as accurate as L2-
Norm. This is accetable as difference of few pixels would not affect the re-
sults. Classification: SSD performs classification where as MultiBox does not.
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FIGURE 7. Feature Map.

Therefore, for every predicted bounding box a group of m class predictions are
calculated for each class in dataset.

5. EXPERIMENTAL RESULTS

MobileNets SSD Multibox detector method can be used for super-fast, real-
time object detection on resource constrained devices. This will enable us to
pass input images through the network and obtain the output bounding box
(x, y)-coordinates of each object in the image. Finally, we present the results
of applying the MobileNet Single Shot Detector to input images and compare
results with R-CNN.

5.1. Own dataset. In this paper we have discussed about the efficiency of Mo-
bilenets SSD in detecting objects and now we will see its results as compared to
HOG plus SVM results which is popular algorithm for pedestrian detection. We
have used 145 images for testing from our dataset. When Mobilenets SSD is ap-
plied to an image it shows detected persons in bounding boxes. Bounding box
boundary is coloured according to detected accuracy of objects, along with it
shows the calculated confidence of the persons detected in the image. Figure 8
shows the output images when this technique is applied to own dataset on RGB
images. And Figure 9 shows the output when RCNN is applied on the images.
It predicts the objects with help of red coloured bounding boxes with computed
accuracy.
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(a) (b)

FIGURE 8. (a) 2 persons detected (calculated confidence: bicy-
cle: 98.32%, person: 76.42% and person: 25.63%) (b) 2 per-
sons and 1 dog detected (calculated confidence: person:85.19%,
person:87.51%, dog:26.67%) (c) 4 persons and 3 cars detected
(calculated confidence: person:49.80%, person:90.06%, per-
son:29.74%, person:88.68%, car:97.5%, car:95.4%, car:94.5%).

(a) i (b) (c)

FIGURE 9. (a) A person and two cars are detected (b) Two person,
a bicycle and a car are detected (c) A person and a dog are de-
tected.

Confusion Matrix:

Table 1: Confusion matrix of MobileNet SSD on per-
sonal dataset.

108 (TP) | 13 (TN)
23 (FN) 0 (FP)

5.2. Pascal Voc 2012 dataset. PASCAL VOC dataset provides standardised im-
ages for object detection and also provides a general set of tools for datasets and
their annotation that allows to evaluate and compare multiple methods. PASCAL
VOC 2012 has 20 classes containing 11,530 images having 6,929 segmentations
and 27,450 ROI annotated objects. We have taken pedestrian images from this
dataset for our results.



COMPARATIVE ANALYSIS OF DEEP LEARNING METHODS FOR OBJECT DETECTION 3771

FIGURE 10. (a) 3 persons are present and are detected with
99.9%, 97.4% and 88.7% accuracy. (b) 2 persons present and
1 is detected with 91.5% accuracy.

Confusion Matrix:

Table 2: Confusion matrix of RCNN on personal dataset.

80 (TP) | 10 (TN)
52 (FN) | 2 (FP)

Figure 10 shows the results by applying MobileNets SSD to this dataset. Table
3 shows the resultant confusion matrix for MobileNet SSD. Figure 11 shows the
results by applying RCNN to this dataset.

Confusion Matrix:

Table 3: Confusion matrix of MobileNet SSD on PASCAL
VOC 2012 dataset.

126 (TP) | 10 (TN)
60 (FN) 4 (FP)
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FIGURE 11. (a) 1 person is detected (b) 1 dog is detected (c) 1
car and 2 bicycles are detected.

Confusion Matrix:

Table 4: Confusion matrix of RCNN on PASCAL VOC
2012 dataset.

125 (TP) | 06 (TN)
64 (FN) 05 (FP)

6. CONCLUSION

This paper compares MobileNet MultiBox SSD with RCNN. R-CNN uses region
proposals with CNNs based on Selective search method. And MobileNets SSD
is based on depthwise separable convolutions which uses a single filter which is
applied to each input and outputs are combined by using pointwise convolution.
Based on the results computed by applying techniques on same datasets, we
can observe that both the techniques are accurate and fast in detecting objects
whether a person, an animal or a car. MobileNets SSD is relatively faster than
RCNN and also has better accuracy in terms of true positives and true negatives.
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