
ADV MATH
SCI JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.6, 3783–3788
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.6.56 Spec Issiue on ICAML-2020

TOWARDS AN APPROACH TO RECOMMEND AND RANK CLONES FOR
REFACTORING

M. KAUR1 AND D. RATTAN

ABSTRACT. Management of code clones has become a popular research area in
recent years. Clones can be managed through tracking and refactoring. But
there exists a gap between clone detection and clone refactoring due to lack of
techniques which filter important clones for refactoring from large clone detec-
tion results. Since it is not feasible to manually check the suitability of each
detected clone for applying refactoring, it is required to filter clones suitable for
refactoring. In this paper, we proposed an approach to filter and rank impor-
tant clones for refactoring. The approach is based on set of features that can be
extracted from cloned code and clone evolution study.

1. INTRODUCTION

A software can contain duplicate code fragments in same source code file or
in different source code files. Existence of such duplicate fragments are called
code clones, [7]. Developers copy existing source code from one place and paste
it at different places with or without changes. There can be many reasons, [7],
behind such behavior of developer.

Presence of clones can increase maintenance cost, [1]. If there is a bug in
cloned fragment, then during corrective maintenance, the bug needs to be re-
moved from all the copies of cloned fragment. If developer missed change in

1corresponding author
2010 Mathematics Subject Classification. 68N30, 68T35.
Key words and phrases. software clone, clone refactoring, clone recommendation, clone

maintenance.
3783

3784 M. KAUR AND D. RATTAN

any one cloned fragment, it will lead to bug propagation, [8]. So, detection of
clones from software is very much required during software maintenance phase.

There exists many clone detection tools, [9], like CCFinderX, ConQat, Nicad
etc. which find clones from source code written in different languages like Java,
C, C++ and Python. These tools return clone results in different formats. To
use these results in maintenance related task is also challenging. Firstly, all
detected clones are not suitable for every type of maintenance task. Some can
be removed using suitable refactoring technique and others may not be feasible
to refactor and presence of such clones need to be tracked so that if one clone
changes, similar copies of that clone also get changed. Second problem to use
results of clone detection tools is that it is difficult for maintainer to identify
subset of clones from existing clones that are suitable for refactoring or tracking.
Here, maintainer need to evaluate each clone manually to check its suitability
whether it can be refactored or tracked. Third problem is related to set priority
of clone maintenance task. Clones which contain bug need to refactored first
as compared to other clones. So, there is a need to rank clones so that critical
clones in terms of maintenance can be handled on priority. The current paper
focus on solution for problems mentioned above.

The rest of the paper is organized as follows. The section 2 gives the detail
of solution that focus on filtering suitable clones for clone maintenance related
tasks. The related work has been discussed in Section 3. Section 4 concludes
the paper.

2. PROPOSED METHOD

Large number of techniques have been developed to detect clones from soft-
ware system. Tools are freely available to detect clones from desired source
code. But detecting clones is not enough, management of clones is also re-
quired. Clones can be removed from source code through refactoring. But it is
not feasible to examine each detected clone manually to test whether it is suit-
able for refactoring or not from large clone detection results reported by a clone
detection tool. The work of maintainer can become easy if he can have subset of
detected clones on which refactoring can be applied. Our current approach aims
to develop a system which can filter important clones for refactoring and also
assign rank to clones so that most critical clones can be managed on priority.
The following subsections discussed the proposed approach.

TOWARDS AN APPROACH TO RECOMMEND.... 3785

2.1. Clone detection. Detection of clones from source code is the prime task
that need to be done for managing clones. Since many tools are available for
clone detection, we are using the existing tools for clone detection. Literature
review of clone refactoring depicts that most of research [3,4,6] related to clone
refactoring has used the tool CCFinderX and NICAD. Our current approach will
also use the same tools for clone detection. CCFinderX is token based tool and it
can detect Type-1 and Type-2 clones whereas NICAD is text-based tool and can
detect Type-1, Type-2 and Type-3 clones. Both tools have more than 90% recall
for Type-1, Type-2 and Type-3 clones, [9].

2.2. Extract clone features. The second step is to extract the features of clones
that can help to filter clones which are important for refactoring. Table 1 lists
the feature of a clone [11–13] that can be extracted.

Table 1: Clone Features

Feature Name Explanation

Clone Size Size of clone in LOC. It helps to know whether clone is small or large.

More the size of clone, more it can be beneficial for clone management.

Type of clone statement Identify whether clone contains loop, conditional statement or arithmetic

statement.

Clone location Specify whether the clone fragments of a clone group exist in same

method, same file or same class hierarchy.

Clone Type Tell about whether clone is Type-1, Type-2, Type-3 and Type-4 clone.

Cyclomatic Complexity of cloned code. Defines the complexity of the program. More the value of cyclomatic com-

plexity, more are the chances to refactor the code.

Size of Clone Class Size of clone class specifies the number of clone fragments in the clone

class. More the size of clone class, more clone fragments will be refac-

tored.

Life expectancy of clone If clones are short lived then such clones do not require immediate refac-

toring.

Bug-Proneness of a clone If a clone contain bug then it needs to be refactored on priority.

Frequency of clone Change Specifies the change-proneness of a clone. If a clone is changing very

frequently, it can be refactored to avoid inconsistent changes to clones.

Clone Age It specifies how long the clone exists in the software. As the clone becomes

older, it becomes more stable and therefore, requires less refactoring.

Frequency of file changes containing

clone

If a file containing clone is changing very frequently then higher are the

chances of inconsistent changes to clones. So, refactoring can be applied

to remove clones.

Size of cloned code out of total size of a

method

If a cloned code is contained in a method and there is more size of the

cloned code than non-cloned code. Then, it is easier to apply refactoring.

Percentage of method calls in cloned

code

If cloned code contains method calls, then it is difficult to refactor clone.

3786 M. KAUR AND D. RATTAN

Number of referenced variables in a

cloned code

More external variables are referenced in a cloned code, more will be the

dependency of code on external variables and it requires more effort to

refactor the clone.

Percentage of differences in clone peers

of a clone group

If clone fragments of a clone class have large number of differences, then

more refactoring effort is required to remove clones.

2.3. Calculate Maintenance Overhead. Maintenance overhead is based on the
values of features extracted from cloned code. Maintenance Overhead for a
clone can be calculated after assigning weightage to features extracted in pre-
vious step. A weight assigned to a feature depends on the role of feature in
maintainace related task.

2.4. Assign Rank to clones. Ranks are assigned to each clone based on the
value of Maintenance overhead. The clone with highest maintenance overhead
is assigned highest rank so that it can be refactored on priority.

3. RELATED WORK

Choi et al. in [2] proposed a method to extract clones from the output of clone
detection tool, CCFinder, for refactoring. The method selects those clone sets
for refactoring having higher combined clone metrics values. Tairas and Gray
in [10] unified the process of clone detection and refactoring. Their tool CeDAR
takes input from clone detection tools and filter the group of clones which are
suitable for extract method refactoring. To filter clones, the pre-conditions are
checked which are required to be fulfilled before apply extract method refactor-
ing.

Higo et al. in [4] developed refactoring support tool, Aries, for removing
code clones. It uses the tool CCFinder to detect clones from software. Fontana
et al. in [3] developed tool, DCRA, that suggests the refactoring type that can
be applied to a clone pair so that duplication can be removed. The tool uses
NICAD to detect clones.

Clone refactoring tool, Jdeodorant in [6], can import the clone detection re-
sults of CCFinder, NICAD, ConQat, CloneDR and Deckard. It supports Extract
Method, Pull-Up Method and Extract Utility Method refactoring techniques to
remove clones from source code. Tool SPCP-Miner, [5], identifies clones that are
important candidates for refactoring and tracking among large set of detected

TOWARDS AN APPROACH TO RECOMMEND.... 3787

clones from a software and also rank these important clones according to their
priority in fixing through refactoring or tracking.

Venkatasubramanyam et al. in [11] proposed an approach to prioritize code
clones to find the order of fixing of clones. They considered several factors
like clone maintenance overhead, bug-proneness of the clone and refactoring
magnitude for prioritizing clones for management related tasks.

Wang and Godfrey in [12] proposed an approach to recommend clones for
refactoring by training decision tree based classifier. The classifier was trained
from features of source code, context and history of clones. The results show
that clone recommendation for refactoring can be done with high precision by
learning from features of clones.

Yue et al. in [13] developed learning based approach that recommends clones
for Extract method refactoring of clones. The approach is based on 34 features
that are extracted from current status and past history of software. The results
show that their approach recommends refactoring with 83% F-score within-
project and 76% F-score cross-project settings.

4. CONCLUSION

In this paper, we reviewed studies related to clone refactoring and proposed
an approach that can be used to filter important clones for refactoring from large
clone detection results returned by clone detection tool. Clones can be assigned
ranks so that critical clones can be given higher priority during maintenance
tasks.

REFERENCES

[1] D. CHATTERJI, J. C. CARVER, N. A. KRAFT, J. HARDER: Effects of cloned code on
software maintainability: A replicated developer study, Proc. Work. Conf. Reve. Engi., WCRE
(2013), 112–121.

[2] E. CHOI, N. YOSHIDA, T. ISHIO, K. INOUE, T. SANO: Extracting code clones for refactor-
ing using combinations of clone metrics, Proc. International Workshop on Software Clones,
IWCS (2011), 7–13.

[3] F. A. FONTANA, M. ZANONI, F. ZANONI: A duplicated code refactoring advisor, Proc. Int.
Conference on Agile Software Development, (2015), 3-14.

3788 M. KAUR AND D. RATTAN

[4] Y. HIGO, S. KUSUMOTO, K. INOUE: A metric-based approach to identifying refactoring
opportunities for merging code clones in a Java software system, J. Softw. Maint. Evol. Res.
Pract., 56(6) (2008), 435-461.

[5] M. MONDAL, C. K. ROY, K. A. SCHNEIDER: SPCP-Miner: A tool for mining code clones
that are important for refactoring or tracking, Proc. Int. Conf. Soft. Anal.,Evol., and Reeng.,
SANER (2015), 484–488.

[6] D. MAZINANIAN, N. TSANTALIS, R. STEIN, Z. VALENTA: JDeodorant: Clone Refac-
toring, Proc. International Conference on Software Engineering Companion, (2016),
613–616.

[7] D. RATTAN, R. BHATIA, M. SINGH: Software clone detection: A systematic review, Inf.
Softw. Technol., 55(7) (2013), 1165–1199.

[8] D. RATTAN, R. BHATIA, M. SINGH: Detecting High Level Similarities in Source Code and
Beyond, International Journal of Energy, Information and Communications, 6(2) (2015),
1–16.

[9] J. SVAJLENKO, C. K. ROY: Evaluating clone detection tools with BigCloneBench, Proc. Int.
Conf. Softw. Maint. Evol., ICSME (2015), 131–140.

[10] R. TAIRAS, J. GRAY: Increasing clone maintenance support by unifying clone detection and
refactoring activities, Inf. Softw. Technol., 54(12) (2012), 1297–1307.

[11] R. D. VENKATASUBRAMANYAM, S. GUPTA, H. K. SINGH: Prioritizing code clone detec-
tion results for clone managemen, Proc. International Workshop on Software Clones, IWSC
(2013), 30–36.

[12] W. WANG, M. W. GODFREY: Recommending clones for refactoring using design, context,
and history, Proc. Int. Conf. Softw. Maint. Evol., ICSME (2014), 331–340.

[13] R. YUE, Z. GAO, N. MENG, Y. XIONG, X. WANG, J. D. MORGENTHALER: Automatic
clone recommendation for refactoring based on the present and the past, Proc. Int. Conf.
Softw. Maint. Evol., ICSME (2018), 115–126.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BABA BANDA SINGH BAHADUR ENGINEERING COLLEGE

FATEHGARH SAHIB, PUNJAB, INDIA
Email address: manpreet.kaur@bbsbec.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PUNJABI UNIVERSITY

PATIALA, PUNJAB, INDIA
Email address: dhavleesh@gmail.com

