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NOISE VARIANCE ESTIMATION IN MAGNITUDE MAGNETIC RESONANCE
IMAGES

RAM SINGH1 AND LAKHWINDER KAUR

ABSTRACT. Noise corrupted Magnetic Resonance Images (MRI) are modelled
with Rician probability distribution. Cancellation of such signal dependent
noise in MRI is a challenging task. An efficient and robust MR image recon-
struction method is required to efficiently estimate and reduce noise in MR im-
ages. In this paper, linear minimum square error (LMMSE) estimation method
is presented, which employs the self-similarity property of the MRI to restore
the noise free images.

1. INTRODUCTION

Magnetic Resonance Images (MRI) is a non-invasive imaging modality and
preferred over other ones. MRI provides important information such as inter-
nal anatomical details of patient body, soft-tissue, bone structures and inter-
nal organ structural details non-invasively. MRI data is usually corrupted by
random noise occurred during image acquisition by some environmental oper-
ational factors and degrade image quality. This noise corrupted data harm the
useful information required for automatic computerised analysis and diagnostic
applications in clinical environment [1].

In order to provide useful information for its intended used in clinical prac-
tices, these are required to make noise free. An robust noise estimation and
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removal method is required for computerised image reconstruction and for its
further automated analysis [2]. Noisy magnitude MR images follows Rician dis-
tribution. The zero mean uncorrelated probability of Gaussian noise corrupt
the complex image data and assumed to be zero mean and equal variance in
both the real and imaginary component of k-space data. The real and imaginary
parts of the complex raw data are corrupted with white additive Gaussian noise.
The spatial visual MR image is constructed taking the magnitude of the com-
plex image data. After taking magnitude, the MR image data is modelled into
Rician distribution. Rician probability also introduced a bias in reconstructed
image [2,3].

The impact of the noise level present in the image can be minimized by taking
the average of multiple scans of the desired area of interest during image acqui-
sition of data. However, in real clinical application it is not a relevant practical
solution due to some operational practical constraints such as patient comfort
due to long data acquisition time [4]. Noisy magnitude MRI contains Gaussian
additive noise, both in the real and imaginary channels of the data.

2. MRI NOISE MODELING

The k-space data is raw complex valued data with same mean value at each
sample is corrupted by additive white Gaussian noise with square variance. The
magnitude MR image is created by taking the root of the sum squared of both
real and imaginary components by a non-linear operation. The probability dis-
tribution in the constructed magnitude MR image becomes Rician distributed
and is model as in [5]:
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where I0 is the 0th order modified Bessel function of its first kind and M denotes
the Rician distribution random variable, A =

√
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MR signal without any noise and H (.) represents the Heaviside step function.
The shape of the Rician distribution depends on the signal to noise ratio that is
defined as A
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The background MR regions has no signal value equal 0, hence the probability
here follows Rayleigh distribution that can be defined as in [6]:

pM (M,σn) = pM (M |A = 0, σn) =
M

σ2
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n

)
HM.

3. SIGNAL AND NOISE PARAMETER ESTIMATION IN MRI

Similar to Gaussian smoothing and Wiener filtering, a noise free image data
A is approximated from the noisy magnitude MRI M . A magnitude MRI M is
created from the squared sum of squares of the real and imaginary parts of the
complex k-space data.

A very simplified and reliable approach to predict the noise level in the mag-
nitude images is acquired the same image twice and taking their average value.
Various noise level estimation methods are found in the literature such as given
in [7–10]. For a given noisy magnitude MRI and its components, a few domi-
nant noise variance estimation methods are given here as follofs:

(A) Conventional Estimator

The relationship between the second order magnitude data moments and noise
contents in a Rician distributed data MRI image, noise free signal is estimated
as:

Ac =
√

max(< M2 > −2σ2
n, 0),

where < M2 > is the simple second order moment and < . > is defined as:

< I >=
1

|η||
∑
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lp,

where η is square neighborhood mask window. This is called conventional vari-
ance estimator.

(B) Maximum Likelihood Estimator

Maximum likelihood estimator estimates the noise free signal by maximizing
the likelihood function as:

AML = argmax
A

(logL),

where logL is defined as:
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(C) Expectation Maximization

Expected minimization is a recursive method to estimate noise variance and
noise free data simultaneously by maximizing the expected likelihood log is de-
fined below as:

AK+1 =
1

N

N∑
i=1

l1
(AMi)
σ2
n

I0
(AKMl)
σ2
n

Mi

and

σ2
K+1 = max

[
1

N

N∑
i=1

M2
i −

A2
K

σ
, 0

]
,

where N is again the number of samples and the initial values of the data signal
are computed as:
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where σ2
n in the above equation is defined as given below:
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Commonly, even moments of the Rician distributed data in question are ex-
ploited for parameter estimation. The vth moments of the Rician probability
density of the MRI data can be given as:
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where E[.] is the expectation operator and E[M2] is computed from a simple
local spatial average and as is defined in [10–13] is given below:

E[M2] =< M2 >=
1

N

N∑
i=1

M2
i .

This is an unbiased estimator since E[M2] =< M2 >. Therefore, an unbiased
variance parameter of magnitude of the squared MR image data is given by
Ac=< M2 > and taking its square root that will give the conventional estimator
as given in [10–13] and the same is also reproduced here as given below:

A2
c =
√
< M2 − 2σ2 >.
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4. LINEAR MINIMUM MEAN SQUARE ERROR NOISE ESTIMATION

To estimate the true signal from the noisy magnitude MR images, statistical
linear minimum mean square error estimation (LMMSE) method appeared an
effective technique. This technique provides a closed-form solution from the
related functional random data variables where as maximum likelihood and
expectation maximization methods provide solution in a iterative manner. The
LMMSE method emerges more efficient method than other optimization-based
estimation methods. In this approach sigma, the noise variance is observed from
the cross-covariance vector and the covariance matrix of the actual data and can
be defined as:

σ = E{σ}+ CσAC
−1
AA(A− E{A}).

In the above equation, CσA is a cross-covariance vector and C−1AA is the co-
variance matrix of the image data. In this closed-form solution, A2 is used in-
stead of A because the even order moments of the Rician distribution are simple
polynomials and therefore easier to calculate. For a 2D Rician distributed MRI
data, the above model can also represented as:

A2
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ij}+ CA2
ijM

2
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The co-variance matrices in this case are just scaler values for each pixel location
in the image matrix. For the Rician distributed image data, the square linear
minimum mean square error estimation for a 2D MR image is given below:
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By replacing the expectations by the sample estimator < . >, the above expres-
sion can be represented as:
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In this equation, Kij is taken from the expression given below:
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5. EXPERIMENTATION RESULTS

In experiments, single slice noise free magnitude MRIs are used from Brian-
Web MRI database. Forwarded and inverse Fourier transform methods applied
to split transform the image data. To create a noisy magnitude image, it is
squared taking sum of squared real and imaginary data with different noise
levels. Some related stochastic Rician distributed based model such as given
in [10,14–17] are applied.

The statistics of the noisy MRIs is calculated using local neighborhood sliding
window of size 5×5 around each pixel. This method is compared with the Adap-
tive Wiener filter and Wavelet domain filtering for medical image processing as
given in [18,19]. The neighborhood size can be set as r = cd2. A trade-off exists
between the computational accuracy and computation time taken to compute
the statistically significant of the outcome results. This method works well with
noise variance σ2 with 5 × 5 neighborhood window and automatically estimate

the noise variance using σ̂n =
√

2
N
bmod(µ̂1i,j). In the noisy MRI background re-

gions, the maximum mean shifted towards a value of noise standard deviation
σn. The mean of a Rayleigh distribution is defined as:

µ̂1 = σn

√
π

2
.

Based on above equation, a new noise estimator can be defined as:

σ̂n =

√
2

π
argmax{p(µ̂1)}.

The maximum mean σ̂n of the noise can be calculated from above as the mode
of the noise distribution as:

σ̂n =

√
2

π
bmod(µ̂1i,j).

When the background pixels are properly isolated, the performance of the es-
timator is largely same for all the estimation around the distribution of noise
variance. In [20] histogram mode based noise estimator robustly estimate the
noise properly when the background pixels wrongly assigned to foreground pix-
els.

In Table 1, the estimated noise variance result against the applied pseudo-
noise variance on the different images of different sizes is depicted. Figure
1 represents the same. Only gray-scale images with 256 intensity levels and
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TABLE 1. Experimental observation of estimated noise variance

Noise Levels Applied vs Estimated Variance

Images 3 5 7 10 15 20 25 30 35 40 45 50

Brain-T1 3.40 5.33 7.72 10.19 15.10 19.99 24.68 29.46 34.58 40.09 45.05 50.14

Brain-T2 3.35 5.38 7.24 10.18 14.78 19.87 24.76 30.17 34.84 40.38 44.98 59.64

Saggital 4.21 5.50 7.55 10.63 15.27 20.42 25.17 30.42 34.70 40.16 45.48 50.63

Lena 3.32 5.17 7.10 10.12 14.85 19.62 24.57 29.30 34.55 39.99 44.99 49.01

Barbara 5.88 7.13 8.61 11.03 15.71 20.46 25.45 30.56 34.94 40.53 45.26 50.40

FIGURE 1. Plot of applied vs estimated noise variance

different sizes are used. For example input MRI images are of 181×181, 256×256
and Lena and Barbara images are used of 256×256 and 512×512 sizes and 10 to
50 iterations are applied using 5× 5 neighborhood kernel for noise estimation.

6. CONCLUSION

The accuracy of this method is best in small size medical images, but not per-
form well in all type of noisy images with other than Rician probability distribu-
tion. For mixed type noise levels, this method not perform well and required to
tune depending upon the type and distribution of noise. There is a lot of scope
to improve the estimation methods to provide more robust estimation criteria in
all type of noise corrupted MR images.
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