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AN IMPROVED ANT COLONY ALGORITHM BASED ON LEVY FLIGHT
DISTRIBUTION
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ABSTRACT. In the present paper, an improved ant colony algorithm hybridized
with Levy distribution has been proposed. Ant colony algorithm is a swarm in-
telligent algorithm inspired from food search strategy of natural ants. It is a very
efficient in solving complex optimization problems however, its performance
degrades with increase in problem size. It generally suffers from local optima
trapping problem for large size combinatorial optimization problems. In this
paper, this problem is handled using the Levy flight distribution, in such a way
that some of ants will take long jumps according to Levy distribution to jump
out from local optima situations. Better performance of proposed approach
has been demonstrated by testing it on well-known CEC-2014 non-constrained
data-sets.

1. INTRODUCTION

Ant colony optimization (ACO) algorithm is one of the nature inspired algo-
rithm proposed in 1996 [1]. It is a heuristic approach inspired by food searching
strategy of real ants. Natural ants work cooperatively to find the food sources,
in which some of the ants search for new food sources while other follow pre-
viously traversed paths by getting feedback from other ants. ACO preserves
good balancing between exploration (using heuristics) and exploitation (posi-
tive feedback). Ants which searching for food excrete some scented material
(called pheromone) on the traversed path. Next group of ants gets inspiration
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from this pheromone to track already found food sources. This pheromone gets
evaporated with the passage of time. So, the paths which are shorter in length
have higher concentration of pheromone and have higher probability of being
chosen.

It has been proved that ACO performs excellently among its other nature in-
spired approaches viz. genetic algorithms (GAs), Simulated annealing (SA) ap-
proach, Tabu Search (TS) and Particle Swarm Optimization (PSOs) etc. Due
to its advantages over other algorithms, ACO has been widely used for solving
complex combinatorial optimization problems like, Travelling Salesman Prob-
lem (TSP), Bin-Packing problem, Job-shop scheduling and Vehicle Routing Prob-
lems (VRP), etc. [2]. ACO generally suffers from some of most common prob-
lems of heuristic algorithms like slow convergence and being trapped into local
optima [3,4].

Ant colony system (ACS), Multi-ant colony system, Max-Min ACS, ACS with
multi-pheromone matrices, hybrid ACOs has been developed to improve effi-
ciency of ACO. These advanced/improved versions of ACO found better/improved
optimized results of many combinatorial optimization problems. However, with
such improvements the complexity of ACO increases significantly. So, still re-
searchers are working towards the development of more efficient versions of
ant based algorithms with comparatively less complexity and much higher per-
formance rate in solving large scale optimization problems. So, here we are
proposing a new hybrid of ACS with sine-cosine algorithm having high perfor-
mance rate.

Rest of the paper has been organised as follows. Section 2 presents literature
related to ACS, while the proposed approach is discussed in section 3. In section
4, experimental work and results obtained has been discussed and finally the
work has been concluded in section 5.

2. RELATED WORK

An improved ant colony algorithm for mobile robot path planning was pro-
posed in [5]. Local pheromone diffusion process has been introduced for lo-
cal search space. The paths are further localised using geometric distribution.
In [6], ACO has been hybridized with firefly optimization algorithm to avoid
local optimization problem and better performance of proposed algorithms over
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other state of art has been presented by testing on vehicle routing problems
(VRP) and stochastic VRP in [6] and [7] respectively. Another improved version
of ACO with novel pheromone updation and pheromone diffusion mechanisms
is presented in [2]. ACO based financial crisis prediction (FCP) problem has
been modelled in [8]. ACO based feature selection and classification algorithms
are proposed to differentiate reliable and unreliable clients to avoid bankruptcy.
In [9], memetic ant colony algorithm has been developed to generate test in-
stances for reliable software testing. Evolution strategies (ES) is incorporated
into ACS to enhance search space for branch coverage s/w testing approach.

Multiple ant colony optimization based upon Pearson correlation coefficient
(PCCACO) has been presented in [10]. Pearson correlation coefficient has been
used to erect communication between multiple colonies using with help of adapt-
ing frequency. Efficiency of proposed algorithm compared to other approaches
has been demonstrated by testing all the approaches on standard travelling
salesman problem (TSP) datasets. Levy flight based ACO known as Levy-ACO
has been proposed in [11]. The original uniformly distributed next location
selection probability has been replaced by Levy distributed step length.

3. PROPOSED ALGORITHM

Ant Colony Optimization: ACO is a swarm based algorithm, which gets in-
spiration from natural ants. Each ant search for the food source using heuristic
information (its own intuition) and getting inspiration from previous ants (coop-
erative behaviour) [1,4,6]. The information from previous ants get deposited as
the pheromone on the paths chosen. Hence the transition from current location
to next location is a function of heuristic information as well as the pheromone
concentration.

3.1. Solution construction. In general, the movement of an ant from current
location (i) to next location (j) is given by eq. (3.1):

j =

{
argmaxj∈ψ

(
(ηij)

a(τij)
b
)

if q ≥ q0

J otherwise
.(3.1)

Here, ηij is the heuristic value (exploration) in going from location (i) to next
location (j) and τij is the pheromone concentration (exploitation) on the path
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travelled between these two locations. J is a variable selected randomly accord-
ing to following probability distribution:

pij =

{
(ηij)

a(τij)
b∑

u∈ψ (ηiu)
a(τiu)

b ∀j ∈ ψ

0 otherwise
.

where pij is the probability of choosing the next location j from the set ψ of next
available locations.

3.2. Pheromone update. Initially, the pheromone is initialized for each path as
inverse function of that path length. This pheromone gets updated in two ways:
(i) Local Pheromone Update and (ii) Global pheromone update. In each itera-
tion let there are k number of ants which independently work towards solution
construction process. For each iteration, each of the ant updates the pheromone
concentration locally with formula given by eq. (3.2):

τij (t+ 1) = (1− ρ) .τij (t) + ρ.
K∑
k=1

∆τ kij,(3.2)

where ρ is local pheromone evaporation constant and ∆τ kij is the amount of
pheromone deposited by kth ant which depends upon the total path length (L)

of the tour followed by that ant and can be calculated by following formula:

∆τ kij =
1

Lk
.

Similarly, pheromone can be updated globally after each iteration as follows:

τij (t+ 1) = (1− ρ‘) .τij (t) + ρ‘.∆τGij ,

where ρ‘ is global pheromone evaporation constant and ∆τGij is the amount of
pheromone deposited at the end of each iteration given by the formula

∆τGij =
1

Lbest
.

Here Lbest is the total path length of best tour found till now.
Hence, the candidate solutions with smaller distances (i.e. nearly equal objec-

tive function values) and higher concentration of pheromone i.e. more attractive
solutions (chosen by more number of ants) are more likely to be chosen. How-
ever, the solutions which are highly deviated from the current best solutions are
less likely to be chosen as candidate sites. Moreover, with the passage of time,
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the pheromone concentration on the more likely chosen paths get high while
concentration of pheromone on other paths gradually get decreased.

So, ACS always focuses on more attractive solutions i.e. can search local
regions more effectively but are not equally capable of finding more diversified
solutions. Such a situation leads to getting trapped into local optima or sub-
optimal solutions. So, more high jumps towards more promising regions can
avoid from being trapped in local optima and improve the search efficiency of
ACS. Levy flights have the capability of very high jumps and exploring the new
regions of search space so, in the present work Levy flights are incorporated into
ACS to avoid the problem of sub-optimal solutions. Moreover, to keep balance
between exploration and exploitation Levy flights are implemented in a greedy
manner to avoid the ants being diverge highly from promising solution space.

3.3. Levy Flight Optimization. Levy flights are Markovian stochastic processes
whose jumps follows are distributed according to Levy probability distribution
functions. These are named after French mathematician named Paul Pierre Levy
[12,13]. This distribution decays at large as

L (s) ∼ |S|−1−β0 < β ≤ 2,

S =
µ

|v|
1
β

,(3.3)

µ ∼ N
(
0, σµ

2
)
, v ∼ N(0, σv

2),

i.e., follows simple power law or are non-Gaussian distributions. Here S is the
step length and β is Levy index. Unlike other common distributions like Gauss-
ian distribution, Cauchy’s distribution Levy distributions are fat tailed distribu-
tions. Due to very high divergence, 〈s2(t)〉 → ∞, extremely long jumps may
occurs.
Furthermore,

σµ =

(
Γ (1 + β) sin

(
πβ
2

)
βΓ (1 + β) 2(β−1)/2

)1/β

,

σv = 1 Γ (1 + β) =

∫ ∞
0

xβe−xdx.
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Levy distribution in its simplified form is given by

L (s, α, γ) =

{ √
α
2π

exp
[
− α

2(s−γ)

] [
− 1

(s−γ)3/2

]
if 0 < γ < s <∞

0 if s ≤ 0
.

(3.4)

Here α controls the distribution scale so called scale parameter and γ is location
or shift parameter and s is sample set of the distribution. In the proposed ap-
proach, the position of ithant in jth dimension is updated according to following
rule:

xnewij = xij ∗ S,

where xnewij is newly updated position of ant and S is step length which distri-
bution according to Levy distribution which is calculated according to eq. (3.3).
Interested reader may refer to [13] for more information about Levy flights.

As step size depends significantly on Levy index β so different values of β, re-
sults in different step sizes. Larger values of β cause large jumps i.e. exploration
of more diversified regions and smaller values of it cause smaller jumps i.e. ex-
ploitation of local regions. Presently, we use dynamic values of β according to
following equation.

β = βmax

(
1− Curr_Itr

Max_Itr

)
.

Initially higher values (exploration) of β are generated while with increase in
number of iterations the value of β decreases accordingly (exploitation).

In order to incorporate the presented Levy Flight approach into ACS, we di-
vide the number of ants into two different colonies: (i) Col_A and (ii) Col_B.
75% of ants are dedicated to Col_A and remaining 25% ants works as Col_B.
The ants of Col_A search new solutions according to transition probability (eq.
(3.1)) while Col_B with explore new regions according to eq. (3.4).
Basic steps of proposed approach are given as follows:

Step 1: Initialize ACS parameters like, number of ants, maximum number of
iterations Max_itr, heuristic vs pheromone importance (a, b).

Step 2: Construct initial solution randomly for each of the ant and divide those
into 2 different pools i.e. Col_A containing first 75% and Col_B con-
taining rest 25% solutions.

Step 3: Set Curr_Itr = 1 and repeat Step 4 to Step 8 till Curr_Itr ≤Max_Itr.
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Step 4: Each colony i.e. Col_A and Col_B generate new solutions using state
transition probability rule, eq. (3.1) and Levy distribution, eq. (3.4)
respectively.

Step 5: If any (1 or more) of newly generated solution of Col_A is better than
any of solution of that pool then replace (1 or more) worst old solutions
of that pool by new ones. Do the same for newly generated solutions of
Col_B.

Step 6: Apply local pheromone update for each pool separately.
Step 7: Globally update the pheromone for best solution found till now in any

of ant pool.
Step 8: Curr_Itr = Curr_Itr + 1.
Step 9: Present the best solution and stop.

4. RESULTS AND DISCUSSION

The performance of proposed algorithm has been validated by testing it on
CEC-2014 unconstrained problems [14]. Each instance has been tested for 100
times and in each run maximum number of iterations are 104 × D, where D is
the dimension of the problem. Number of ants for each run is 5×D. Numerical
results obtained by applying basic ACS and proposed approach on 10 dimension
problems are presented in Table 1. The best, worst, average and median values
obtained among all the 100 runs of each problem instance are reported for
comparison. From the Table 1, it is clear that while comparing best values
obtained in all the 100 runs GLF_ACS performs much better than ACS in all
the 30 instances. Similarly, while comparing average values GLF_ACS provides
better average values than ACS in test problems except for f3, f8, f21, f23 and
f27 instances. Similarly, on the basis of median values, GLF_ACS performs better
as compared to median values obtained from ACS algorithm in instances except
for f1, f10, f26 and f27.

However, ACS performs better as compared to GLF_ACS in terms of compar-
ison on obtained worst results. Here, GLF_ACS is better than ACS only in f1,
f10, f21, f27 and f30 and in all the remaining instances GLF_ACS provides worse
results than ACS. This uncommon behaviour is probably due to long jumps to-
wards unexplored results sometimes may degrade the objective function values.
Hence, overall analysis of Table 1 demonstrates that GLF_ACS more efficiently
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explores the unexplored solution space and thus avoids local optima stagnation
problem.

5. CONCLUSION

Present work focuses on improving the performance of ACO by hybridizing
with Levy flight optimization. Local optima trapping and premature conver-
gence problem of ACO has been solved by using large step size jumping of Levy
flights. Entire ant colony is divided into two colonies such that one colony
constructs solution using ant based transition rule on the other hand another
colony uses Levy distribution based transition for finding next moves. Non-
constrained CEC-2014 datasets has been used to validate the performance of
proposed GLF_ACS. Results shows better ability of proposed algorithm to find
optimal solutions as compared to classical ACS. For the future work, to evaluate
the performance of proposed algorithm for complex real life problems.

Table 1: Comparison of ACS and GLF_ACS based on CEC-
2014 Unconstrained datasets

Dataset Algorithm Best Average Worst Median
f1 ACS 6359 8266.7 10776.6 8902.6

GLF_ACS 5987 7783.1 10174.4 8980.5
f2 ACS 45.4 59.02 84.21 86.26

GLF_ACS 40.1 52.13 90.8 72.18
f3 ACS 1.062 1.3806 1.1664 1.9116

GLF_ACS 0.729 2.9477 2.4426 1.0935
f9 ACS 3.09 4.326 7.29744 5.253

GLF_ACS 3.0406 3.34466 7.416 4.5609
f10 ACS 8.007 10.4091 13.9344 10.4091

GLF_ACS 6.9672 8.36064 12.8112 13.2378
f11 ACS 7.296 10.2144 7.45584 12.4032

GLF_ACS 3.5504 3.90544 11.6736 4.61552
f12 ACS 0.0293 0.04395 0.033198 0.05274

GLF_ACS 0.01509 0.022635 0.07032 0.02235
f13 ACS 0.8047 1.20705 0.1329 1.4446

GLF_ACS 0.0604 0.07254 1.5293 0.08463
f14 ACS 0.425 0.5525 0.0589 0.6375
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GLF_ACS 0.031 0.0434 0.6375 0.0558
f17 ACS 0.106 0.1166 0.048672 0.1484

GLF_ACS 0.02028 0.022308 0.2014 0.038532
f18 ACS 49.057 58.8684 57.35018 78.4912

GLF_ACS 33.7354 50.6031 103.0197 43.85602
f19 ACS 2.086 2.2946 1.468817 2.7118

GLF_ACS 0.86401 1.296015 5.0064 1.209614
f20 ACS 3.955 5.9325 6.362 7.119

GLF_ACS 3.181 3.8172 8.701 5.4077
f22 ACS 5.9218 7.10616 7.59322 9.47488

GLF_ACS 3.3014 4.29182 13.62014 5.94252
f23 ACS 3079.82 3387.802 6303.57 5543.676

GLF_ACS 3001.7 3602.04 6775.604 5403.06
f24 ACS 132.04 198.06 239.338 250.876

GLF_ACS 108.79 141.427 290.488 163.185
f25 ACS 150.014 210.0196 192.057 225.021

GLF_ACS 128.038 179.2532 360.0336 192.057
f26 ACS 109.72 164.58 150.003 175.552

GLF_ACS 100.002 110.0022 219.44 180.0036
f27 ACS 2.505 3.7575 3.990378 3.2565

GLF_ACS 1.90018 3.96652 3.7575 3.610342
f30 ACS 376.12 451.344 761.19472 601.792

GLF_ACS 345.9976 484.39664 639.404 484.39664
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