

Advances in Mathematics: Scientific Journal **9** (2020), no.6, 3289–3294 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.6.8 Spec. Issue on RDESTM-2020

A STUDY ON 0-CONDITIONS IN THE SUBGROUP LATTICES OF 2×2 MATRICES OVER Z_{11}

R. SEETHALAKSHMI¹, V. DURAIMURUGAN, AND P. NAMASIVAYAM

ABSTRACT. In this paper we verify the lattice theoretic properties like 0-modularity, 0-semi modularity, 0-super modularity, 0-distributivity, super 0-distributivity, pseudo 0-distributivity in the subgroup lattice of the group of 2×2 matrices over Z_{11} .

1. INTRODUCTION

Let L(G) be the Lattice of Subgroups of G, where G is a group of 2x2 matrices over Z_p having determinant value 1 under matrix multiplication modulo p, where p is a prime number. Let $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d\varepsilon Z_p, ad - bc \neq 0 \right\}$ Then G is a group under matrix multiplication modulo p. Let

$$G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \varepsilon G : ad - bc = 0 \right\}.$$

Then G is a subgroup of G. We have,

(1.1)
$$o(G) = p(p2-1)(p-1)and, o(G) = p(p2-1)$$

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 06B10.

Key words and phrases. Subgroups, Lattice, Lattice Identities.

For ready reference we give the split up of the lattice of subgroups of G when p=11 [4]. In this paper we are going to study about all the above properties in L(G).

2. PRELIMINARIES

Definition 2.1. (Lattice) [3] Poset (P, \leq) is called a lattice if every pair x, y elements of P has a supre mum and an infimum, which are denoted by $x \lor y$ and $x \land y$ respectively.

Definition 2.2. (0-Modular Lattice) [2] A lattice *L* is said to be 0-modular if whenever $x \le y$ and $y \land z = 0$, then $x = (x \lor z) \land y$, for all $x,y,z \in L$.

Definition 2.3. (0-semi modular) [5] A Lattice L is said to be 0-semi modular if whenever a is an atom of L and $x \in L$ such that $a \land x = 0$, then $x \lor a$ covers x.

Definition 2.4. (0-upermodular) [2] A lattice *L* is said to be 0-supermodular if for all *a*, *b*, *c*, $d \in L$, with $b \land c = c \land d = b \land d = 0$, we have

Definition 2.5. (0-Distributive lattice) [2] A Lattice L is said to be 0-distributive if for all x. y, $z \in L$ whenever $x \wedge y = 0$ and $x \wedge z = 0$ then $x \wedge (y \vee z) = 0$.

Definition 2.6. (super 0-distributive) [2] A Lattice L is said to be super 0- distributive if for all x, y, $z \in L$, $x \wedge y = 0$ implies that $(x \vee y) \wedge z = (x \wedge z) \vee (y \wedge z)$.

Definition 2.7. (pseudo 0-Distributive) [2] A Lattice L is said to be pseudo 0-Distributive if for all x. y, $z \in L$ with $x \wedge y = 0$, $x \wedge z = 0$ we have $(x \vee y) \wedge z = (y \wedge z)$.

We give on fig. 1 the diagram of L(G) when P=11.

$$f(x,y) = \{ [(f_R(x,y)f_G(x,y)f_B(x,y))]^T :$$

$$V(x,y) \in \{0, 1, 2, \dots, m-1\} \times \{0, 1, 2, \dots, n-1\} \}$$

Row I: (Left to right) L_1 to L_{12}

Row II: (Left to right) J_1 to J_{55} and I_1 to I_{12}

Row III: (Left to right) F_1 to F_55 and H_1 to H_{66}

Row IV: (Left to right) C_1 to C_55 and E_1 to E_55

Row V: (Left to right) A_1 , B_1 to B_55 and D_1 to D_66

FIGURE 1. L(G) when p = 11

3. Lattice identities in the subgroup lattice of the group of 2x2matrices over Z_{11}

Lemma 3.1. L(G) is not 0-modular if p = 11.

Proof. From fig.1, we take three subgroups C_54 , J_1 , I_2 , ε L(G). Let $C_{54} \subset J_1$ and $J_1 \wedge I_2 = e$. But, $(C_{54} \vee I_2) \wedge J_1 = G \wedge J_1 = J_1 \neg C_{54}$. Therefore, $(C_{54} \vee I_2) \wedge J_1 \neg C_{54}$. Hence, L(G) is not 0-modular when p = 11.

Lemma 3.2. L(G) is not 0-semi modular if p = 11.

Proof. From fig. 1, we take two subgroups $I_1, C_{19} \in L(G)$. We know that, I1 is an atom of L(G) and $C_{19} \in L(G)$ such that $I_1 \wedge C_{19} = 0$. Then $I_1 \vee C_{19} = G$ which does not cover C19. Hence, L(G) is not 0-semi modular when p = 11.

Lemma 3.3. L(G) is not 0-super modular if p = 11.

3291

FIGURE 2

Proof. From fig. 2, we choose four subgroups B_{53} , H_1 , F_{38} , $I_2 \in L(G)$. Now, Let $H_1 \wedge F_{38} = F_{38} \wedge I_2 = H_1 \wedge I_2 = 0$. Then, $(B_{53} \vee H_1) \wedge (B_{53} \vee F_{38}) \wedge (B_{53} \vee I_2) = G \wedge G \wedge G = G \neq B_{53}$. Therefore, $(B_{53} \vee H_1) \wedge (B_{53} \vee F_{38}) \wedge (B_{53} \vee I_2) \neq B_{53}$. Hence, L(G) is not 0-super modular when p = 11.

Lemma 3.4. L(G) is not 0-distributive if p = 11.

Proof. From fig. 1, we take three subgroups C_{19} , I_1 , $B_1 \in L$ (G). Let $C_{19} \wedge I_1 = eandC_{19} \wedge B_1 = e$. But, $C_{19} \wedge (I_1 \vee B_1) = C_{19} \wedge G = C_{19} \neq e$. Therefore, $C_{19} \wedge (I_1 \vee B_1) \neq e$. Hence, L(G) is not 0-distributive when p = 11.

Lemma 3.5. L(G) is not super 0-distributive if p = 11.

A STUDY ON 0-CONDITIONS IN THE SUBGROUP...

FIGURE 3

Proof. From fig. 3, we take three subgroups C_{54} , I_2 , $B_{53} \in L(G)$. Let $C_{54} \wedge I_2 = 0$. Then, $(C_{54} \vee 3I_2) \wedge B_{53} = G \wedge B_{53} = B_{53}$. But, $(C_{54} \wedge B_{53}) \vee (I_2 \wedge B_{53}) = e \vee e = e \neq B_{53}$. Therefore, $(C_{54} \vee I_2) \wedge B_{53} \neq (C_{54} \wedge B_{53}) \vee (I_2 \wedge B_{53})$. Hence L(G) is not super 0-distributive when p = 11.

Lemma 3.6. L(G) is not pseudo 0-distributive if p = 11.

Proof. From fig. 1, we take three subgroups $B_1, D_{20}, I_1 \in L(G)$.. Now, Let $B_1 \wedge D_{20} = 0$ and $B_1 \wedge I_1 = 0$. Then, $(B_1 \vee D_{20}) \wedge I_1 = G \wedge I_1 = I_1$. But, $(D_{20} \wedge I_1) = e \neq I_1$. Therefore, $(B_1 \vee D_{20}) \wedge I_1 \neq D_{20} \wedge I_1$. Hence, L(G) is not pseudo 0-distributive.

4. CONCLUSION

In this paper we proved that the 0-modularity, 0- semi modularity, 0-super modularity, 0-distributivity, super 0-distributivity, pseudo 0-distributivity in the subgroup lattice of the group of $2x^2$ matrices over Z_{11} .

REFERENCES

[1] D. JEBARAJ THIRAVIAM: A Study on some special types of lattices, Ph.D thesis, Manonmaniam Sundaranar University, 2015.

3293

3294 R. SEETHALAKSHMI, V. DURAIMURUGAN, AND P. NAMASIVAYAM

- [2] I. CHAJDA, S. RADELECZKI: O-conditions and Tolerance schemes, Acta Math. Univ. Comenianae, **70**(11,2) (2003), 177–184.
- [3] A. ROSENFELD: Fuzzy groups, J. Math Anal. and App., 35 (1971), 512–517.
- [4] R. SEETHALAKSHMI, V. DURAI MURUGAN, R. MURUGESAN: On the lattice of subgroups of 2x2 matrices over Z11, Malaya journal of Matematik, 5(1) (2020), 451–456.
- [5] A. VETHAMANICKAM: *Topics in universal Algebra*, Ph.D thesis, Madurai Kamaraj University, 1994.

DEPARTMENT OF MATHEMATICS MANONMANIAMSUNDARANAR UNIVERSITY ABISHEKAPATTI TIRUNELVELI 627 012, TAMILNADU, INDIA *E-mail address*: trseethalakshmi@gmail.com

DEPARTMENT OF MATHEMATICS ST. JOSEPH COLLEGE OF ARTS AND SCIENCE TENKASI, TAMILNADU, INDIA *E-mail address*: vvndurai@gmail.com

DEPARTMENT OF MATHEMATICS THE MDT HINDU COLLEGE TIRUNELVELI-627010 INDIA *E-mail address*: vasuhe2010@gmail.com