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A STUDY ON 0-CONDITIONS IN THE SUBGROUP LATTICES OF 2 × 2
MATRICES OVER Z11

R. SEETHALAKSHMI1, V. DURAIMURUGAN, AND P. NAMASIVAYAM

ABSTRACT. In this paper we verify the lattice theoretic properties like 0-modularity,
0-semi modularity, 0-super modularity, 0-distributivity, super 0-distributivity,
pseudo 0-distributivity in the subgroup lattice of the group of 2 × 2 matrices
over Z11.

1. INTRODUCTION

Let L(G) be the Lattice of Subgroups of G, where G is a group of 2x2 matri-
ces over Zp having determinant value 1 under matrix multiplication modulo p,

where p is a prime number. Let G =

{(
a b

c d

)
: a, b, c, dεZp, ad− bc 6= 0

}
Then

G is a group under matrix multiplication modulo p. Let

G =

{(
a b

c d

)
εG : ad− bc = 0

}
.

Then G is a subgroup of G. We have,

(1.1) o(G) = p(p2− 1)(p− 1)and, o(G) = p(p2− 1)
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For ready reference we give the split up of the lattice of subgroups of G
whenp=11 [ 4 ]. In this paper we are going to study about all the above prop-
erties in L(G) .

2. PRELIMINARIES

Definition 2.1. (Lattice) [3] Poset (P, ≤ ) is called a lattice if every pair x, y
elements of P has a supre mum and an infimum, which are denoted by x ∨ y and x
∧ y respectively.

Definition 2.2. (0-Modular Lattice) [2] A lattice L is said to be 0-modular if when-
ever x ≤ y and y∧ z = 0, then x = ( x ∨ z ) ∧ y, for all x,y,z ε L.

Definition 2.3. (0-semi modular) [5] A Lattice L is said to be 0-semi modular if
whenever a is an atom of L and x ε L such that a ∧ x = 0, then x∨a covers x.

Definition 2.4. (0-upermodular) [2] A lattice L is said to be 0-supermodular if for
all a, b, c, d ε L, with b∧ c = c ∧ d = b ∧ d = 0,we have

Definition 2.5. (0-Distributive lattice) [2] A Lattice L is said to be 0-distributive
if for all x. y, zεL whenever x∧y = 0 and x∧z = 0 then x∧ (y∨z) = 0.

Definition 2.6. ( super 0-distributive ) [2] A Lattice L is said to be super 0- dis-
tributive if for all x, y, z ε L , x∧y = 0 implies that ( x∨y)∧z = (x∧z)∨(y∧z).

Definition 2.7. (pseudo 0-Distributive) [2] A Lattice L is said to be pseudo 0-
Distributive if for all x. y, z ε L with x∧y = 0, x∧z = 0 we have (x∨y)∧z =
(y∧z).

We give on fig. 1 the diagram of L(G) when P=11.

f(x, y) = {[(fR(x, y)fG(x, y)fB(x, y))]T :

V (x, y)ε{0, 1, 2, . . . ,m− 1} × {0, 1, 2, . . . , n− 1}}.

Row I: (Left to right) L1to L12

Row II: (Left to right) J1 to J55 and I1 to I12

Row III: (Left to right) F1 to F55 and H1 to H66

Row IV: (Left to right) C1 to C55 and E1 to E55

Row V: (Left to right) A1, B1to B55 and D1 to D66
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FIGURE 1. L(G) when p = 11

3. LATTICE IDENTITIES IN THE SUBGROUP LATTICE OF THE GROUP OF 2X2
MATRICES OVER Z11

Lemma 3.1. L(G) is not 0-modular if p = 11.

Proof. From fig.1, we take three subgroups C54, J1, I2, ε L(G). Let C54 ⊂ J1 and
J1∧I2= e. But, (C54∨I2)∧J1 = G∧J1 = J1¬C54. Therefore, (C54∨I2)∧J1¬C54.
Hence, L(G) is not 0-modular when p = 11. �

Lemma 3.2. L(G) is not 0-semi modular if p = 11.

Proof. From fig. 1, we take two subgroups I1, C19εL(G). We know that, I1 is an
atom of L(G) and C19εL(G) such that I1 ∧ C19=0. Then I1 ∨ C19=G which does
not cover C19. Hence, L(G) is not 0-semi modular when p = 11. �

Lemma 3.3. L(G) is not 0-super modular if p = 11.
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FIGURE 2

Proof. From fig. 2, we choose four subgroups B53, H1, F38, I2 ε L(G). Now, Let
H1 ∧ F38 = F38 ∧ I2 = H1 ∧ I2=0. Then, (B53 ∨H1) ∧ (B53 ∨ F38) ∧ (B53 ∨ I2) =

G ∧ G ∧ G = G 6= B53. Therefore, (B53 ∨ H1) ∧ (B53 ∨ F38) ∧ (B53 ∨ I2) 6= B53.
Hence, L(G) is not 0-super modular when p = 11. �

Lemma 3.4. L(G) is not 0-distributive if p = 11.

Proof. From fig. 1, we take three subgroups C19, I1, B1εL (G). Let C19 ∧ I1 =

eandC19 ∧ B1 = e. But, C19 ∧ (I1 ∨ B1) = C19 ∧ G = C19 6= e. Therefore,
C19 ∧ (I1 ∨B1) 6= e. Hence, L(G) is not 0-distributive when p = 11. �

Lemma 3.5. L(G) is not super 0-distributive if p = 11.
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FIGURE 3

Proof. From fig. 3, we take three subgroups C54, I2, B53εL(G). Let C54 ∧ I2=0.
Then, (C54 ∨ 3I2) ∧B53 = G ∧B53 = B53. But, (C54 ∧B53) ∨ (I2 ∧B53) = e ∨ e =

e 6= B53. Therefore, (C54 ∨ I2)∧B53 6= (C54 ∧B53)∨ (I2 ∧B53). Hence L(G) is not
super 0-distributive when p = 11. �

Lemma 3.6. L(G) is not pseudo 0-distributive if p = 11.

Proof. From fig. 1, we take three subgroups B1, D20, I1εL(G).. Now, Let B1 ∧
D20 = 0andB1 ∧ I1 = 0. Then, (B1 ∨D20) ∧ I1 = G ∧ I1 = I1. But, (D20 ∧ I1) =

e 6= I1. Therefore, (B1 ∨ D20) ∧ I1 6= D20 ∧ I1. Hence, L(G) is not pseudo
0-distributive. �

4. CONCLUSION

In this paper we proved that the 0-modularity, 0- semi modularity, 0-super
modularity, 0-distributivity,super 0-distributivity, pseudo 0-distributivity in the
subgroup lattice of the group of 2x2 matrices over Z11.
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