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SHORT TERM WATER DEMAND FORECASTING: A REVIEW
A. KAUR! AND M. S. PATTERH

ABSTRACT. Water is the most essential commodity for all living beings and is
one of the most important renewable resources. Demand forecasts are consid-
ered necessary to prepare and optimize the management of resources. Consid-
ering the importance of water management, forecasting is of utmost significant.
Several techniques have been developed in this domain. Short term water re-
quest estimation could be a vital step to back choice making with respect to
gear operation administration. This study presents a literature view of water
demand forecasting methods and models, for proper planning and implementa-
tion of urban water demand management schemes. It was found that Artificial
Neural Network and hybrid model perform better for short-term water demand
forecasting.

1. INTRODUCTION

For everyone on earth, water is a vital element for life. With the increase in
population the demand for water escalate and pressure for finite resources in-
tensifies. Thus increased population, combined with higher standards of living,
particularly in the developing countries, will pose enormous strains on land,
water, energy, and other natural resources, [1].
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Besides efficient water supply management operation, it is required to have
an accurate forecasting method too. Water Demand management aims to re-
duce the wastage of water due to overuse and leakage. It is generally accepted
that water demand is affected by various climatic, socio-economic, government
policies and strategy related factors that differ from place to place, thus necessi-
tating the need to develop a city specific models to predict water demand, [2].

The objective of this paper is to present an extensive review of the short term
urban water demand forecasting method and model, keeping into consideration
a different economic and demographic region. The review covers the mod-
els developed using standard statistical techniques, such as linear regression or
time-series analysis, or techniques based on Soft Computing (SC) and Extreme
learning machine (ELM).

The outline of the paper is organized as follows. The forecasting method will
be presented in the next section follows by Discussion discusses the findings
of the review and gaps, and finally Conclusions presents some suggestions for
possible future research.

2. GENERAL METHODS FOR FORECASTING

Various demand forecasting models based on a particular method have been
developed during the past years. However, brief literature overviews of the fore-
casting method, forecast horizon, variables and performance parameter have
been discussed in Table 1. Some of the important methods and models extract
from the literature used for water demand forecasting are summarized in Table
1.

2.1. Regression Analysis. Regression analysis is the process of constructing a
mathematical model that can be used to predict one variable by another variable
or variables. The regression model specifies the relation of a dependent variable
(Y) to a function combination of independent variables (.X') and unknown pa-
rameter Y =~ f(X, ). Commonly, regression analysis is used for prediction and
forecasting. It is also known as curve fitting or line fitting because it can be used
in fitting a curve or line through a scatter plot of paired observations between
two variables, [3].

2.2. Time Series Analysis. A time series is a sequence of observations on a
variable measured over successive periods of time. The measurements may be
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taken every hour, day, week, month, or year, or at any other regular interval.
There is no minimum or maximum amount of time to be included. Donkor et
al. 2012 in [4] mentioned that a time series model forecast future value based
on past observations. This class of models does not account for the effect of
exogenous variables such as weather or price. It relies on the assumption that
past trends will be repeated in the future. Time series analysis has two classes of
components which are a trend and seasonality. Trends are consecutive increases
or decreases in measurement over time. A trend could last several, days, months
or years. Seasonality is measured over a specific period of time, [5].

However, time series models are the most accurate alternative when weather
changes are likely to occur in the underlying determinants of water demands.
Exponential smoothing, autoregressive (AR), moving average (MA), autoregress-
ive-moving average (ARMA), autoregressive integrated moving average (ARIMA)
and seasonal ARIMA (SARIMA) are examples of time series forecasting mod-
els, [4].

2.3. Artificial Neural Networks. The development of ANNs was mainly bio-
logically motivated, but afterwards they have been applied in many different
areas, especially for forecasting and classification purposes, [6,8]. ANNs are ex-
pansively used for forecasting purposes in various provinces and has an excep-
tional predictive ability [7-10], mentioned the salient features of ANNs, First,
ANNs are data-driven and self-adaptive in nature. They learn from examples
and capture functional relationships among the data even if the relationships
are unknown or hard to describe. Second, ANNs are non-linear, which makes
them more practical and accurate in modeling complex data patterns. Finally,
ANNs are universal functional approximators.

ANNSs can be classified into various types; among which, only a limited num-
ber are used in water demand prediction. One of the most well-liked ANNSs in the
area water demand forecasting is feedforward neural networks (FNNs). In FNNs
multilayered perceptron (MLP) is widely used by the researcher for its accuracy
in forecasting, [11]. The back-propagation algorithm is considered first order
gradient method that can be used to train MLP. It has been observed that, apart
from forecasting MLP, the method is also used in various applications, [12,13].

2.4. Hybrid methods. These approaches combine two or more different ap-
proaches in order to overcome the drawback of the original technique, [14].
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TABLE 1. Summary of Literature Survey

Ref Technique Location Deter Output/Observations Performance Metrics
Regression Based Methods
Co-kriging, Kriging with measurement
error Bayesian maximum entropy (BME)  Phoenix, .
. . . R . . 1. Long term annual forecast. 2. Improved forecasting accuracy
[34] is used to estimate the regression Arizona, Population density t0 43.9% h i . Mean square error (MSE)
up to 43.9% over other space-time mapping.
relationship between water demand and ~ USA 4 ’ P PPIng
population density
Seattle. Density, building size, lot size, .
Developed a regression-based water L % . g . 1. Forecast monthly water demand. 2. Capable of forecasting Root mean square error
Washington household size, income, price, ) B . .
[35] demand models . single-family residential water demand (RMSE)
USA temp, rain
Time Series Based Methods
. 3 1. Long term annual forecast. 2. Correlation between socio
. Total annual residential water . . . . .
ARIMA Method Kuwait . economic traits and their water consumption. 3. Assist the —
[36] consumption . ;
government to subside water consumption
Average monthly water bill, total
subscribership, atmospheric .
. . . . P . P . 1. Forecast monthly water demand 2. Monthly water demand is ~ Mean absolute percentage
Stepwise multiple nonlinear regression Adana, temperature, relative humidity, X . . .
. L. directly related to total number of subscribers and atmospheric error (MAPE) and correlation
[371 method Turkey rainfall, global solar radiation, .
) A . temperature. coefficient (R).
sunshine duration, wind speed and
atmospheric pressure
Artificial Neural Networks
. . . Day of the week, temperature,
Multiple ANN, case based reasoning Regina, . . . . Mean absolute percentage
. X humidity, rainfall, snowfall and Short term daily demand water forecasting.
[38] (CBR) and linear regression (LR) Canada . error (MAPE)
wind speed
1. Short term weekly water demand forecasting 2. The ANN R?, average absolute relative
. . . Ottawa, ‘Weekly peak water demand, . Y . 8 . . 8 .
ANN, regression and time-series models A . models consistently outperformed the regression and time-series  error (AARE), and maximum
81 Ontario, average maximum temperature . . . i
have been developed and compared. X model in terms of accuracy. 3. The amount of rainfall is more absolute relative error (max
Canada and total rainfall . .
significant than the rainfall occurrence ARE)
1. Short term: Hourly, daily, weekly and monthly water demand.
Dynamic Artificial Neural Network, BP California, ~Water volume data and weather % % Y Y .
) 2. DAN2 outperformed both ARIMA and ANN model with 99% MAPE
[39] ANN and ARIMA Model USA input . . .
and 97% respectively accuracy for daily and hourly forecasting.
Lexington 1. Short term daily water demand forecasting. 2. ANN model
Time series, regression method, expert xing ‘Water demand, temperature and yw ,l 3 R (AARE) and threshold static
Kentucky, . outperformed expert system followed by time series and
[40] system and ANN. total rainfall . (TS).
us regression model.
Ottawa, Maximum daily air temperature 1. Short term: peak daily summer water demand forecasting. 2.
ANN, time series and regression R Y P P Y . ) . 8 AARE, Max ARE, R?
[41] Canada and rainfall ANN model outperformed regression followed by time series
AARE), threshold statistic
. . . IIT Kanpur, Weekly rainfall and maximum air 1. Short term: weekly water demand forecasting. 2. Occurrence ¢ ), .
ANN, time series and regression model . . . e . . (TSx), Max ARE, coefficient
[42] India temperature of rainfall is more significant variable then amount of rainfall. . >
of correlation (R?)
Hybrid Approach Based Methods
Four ANN model, project pursuit . 1. Short term: hourly water demand forecasting. 2. Besides .
. . . . ‘Water consumption, temperature, . . . . RMSE, MAE, Nash- Sutcliffe
regression (PPR), Multivariate adaptive City of ) ) . " learning algorithm, number of hidden layers and neurons in each "
. . . wind velocity, rainfall, atmospheric , . . (E) and modified Nash-
[43] regression splines (MARS), random forest Spain layer can directly impact the performance of ANN. 3. SVR is the R
pressure, mean sea level pressure Sutcliffe (D).
(RF) and SVR most accurate followed by MARS, PPR and RF
Hybrid model particle swarm . .
A . . Water consumption, temperature, . Performance matrices used
optimization algorithm and artificial Melbourne, L 1. Monthly water demand forecasting. 2. PSO-ANN outperforms R
R solar radiation, vapour pressure . . . for the evaluation of models
[19] neural network (PSO- ANN), Australia . in terms of fitness function
. . and rainfall are RMSE, MSE and MAE.
backtracking search algorithm (BSA-ANN
Araraquara, .
MLP-BP, DAN2 and two hybrid neural Sao P:ulo Temperature and relative humidi 1. Short term: hourly water demand forecasting. 2. DAN2-H MAE and Pearson (r)
1V¢ 111 .
[16] networks ANN-H and DAN2-H Brazil ? P vy outperformed other model.
razil
Combination of general regression neural ~Al-Khobar, . . 1. Temperature is most important predictor Humidity, rainfall L
. . . Temperature, humidity, wind speed . . MAPE and determination
(18] network (GRNN) combined with time Saudi and rainfall and wind speed cannot be used alone without temperature. 2. o)
rainfa ).
series (TS), ANN and TS model. Arabia Join of GRNN and TS model outperform ANN and TS model.
. . 1.Short term: daily irrigation water demand forecasting. 2.
) . . ‘Water demand in the previous day, . 3 .
Hybrid model combining ANN and City of . . Predict water demand with a short data set. 3. The Developed Standard error prediction
. . . water demand in the two previous R . o
[30] genetic Algorithm (GA) Spain - model improved accuracy between 3% and 11% with respect to ~ (SEP) and R*.
day, temperature, solar radiation )
previous work.
Extreme Learning Machine Method
Average daily water demand, 3
. 8 Y 1. Short term: current day, 1 day, 2-day and 3-day lead time
maximum temperature, total .
R water demand forecasting. 2. ELM outperformed other data -
) . Montreal, precipitation and occurrence of . ) R RMSE and coefficient of
Extreme Learning Machine R driven methods in terms of learning speed. ELM model forecast L. 2
[26] Canada precipitation recorded at current determination R?.

day, one day ago, 2-day ago and
3-day ago

accurate and reliable 1 and 3 day lead time water demand
forecasting.
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Combining multiple models can be an effective way to improve forecasting per-
formance, [15]. For performance improvement of the forecasting model, some
authors, [16-19] developed hybrid forecasting models based on two or more
different models.

Wavelet-bootstrap-artificial neural network (WBANN) modeling approach was
proposed by [17] to forecast medium-term urban water demand with limited
data. Wavelet transforms and bootstrap combined to form a wavelet-bootstrap-
ANN. The bootstrap is a data-driven simulation method that uses intensive re-
sampling with replacement to reduce uncertainties. WBANN model has the po-
tential to increase accuracy and reliability.

Genetic Programming (GP) explains a nonlinear relationship between some
parameters; it is one of the well-known methods in AI. In GP a user can find
straight mathematical or logical relationships between some input and output.
Nasseri et al. in [20] proposed a hybrid model that combines extended kalman
filter (EKF) and genetic programming (GP) for forecasting monthly water de-
mand in Tehran. EKF is used for nonlinear transition.

2.5. Support Vector Machines. SVM is a learning technique with accompany-
ing learning algorithms that recognize patterns and analyze data, [21]. The
basic idea of the SVM model is non-linear trends in input space can be mapped
to linear trends in a higher dimensional space and recognizes the subtle patterns
in complex datasets by using a learning algorithm, [22]. SVM is not dependent
upon the complete training data, and only the support vectors are enough for
generalization. SVM-based model selection certainly manages to improve the
forecasting results in terms of both errors and bias, [23].

2.6. Extreme Learning Machine. ELM is a single hidden layer feed forward
neural network, but it does not use gradient descent (or any other method) to
tune its parameters. ELM shows that hidden nodes can be generated randomly
and need not to be tuned. Compared with the conventional neural network
learning algorithm it overcomes the slow training speed and over-fitting prob-
lems, [24]. ELM is based on empirical risk minimization theory and its learning
process needs only a single iteration. The algorithm avoids multiple iterations
and local minimization, [25]. Experimental studies demonstrate that the perfor-
mance of basic ELM is stable in a wide range of a number of hidden nodes, [24].
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3. DISCUSSION

Water demand forecasting is an area that requires high accuracy since the
supply of water is dependent on water demand. Several methods have been
studied and analyzed including regression analysis, time series, soft computing,
hybrid and ELM. However, an insight look at the existing literature suggests that
this area still has a lot to offer for water demand forecasting.

Traditional forecasting technique like regression analysis tends to overesti-
mate the demand. This results in over expenditure on water production and
transmission infrastructure which are larger than needed, [26]. It has been ob-
served that the conclusion drawn from time series is not always perfect. Factors
influenced by time series may not remain identical for longer period of time,
hence it is unreliable for forecasting. Time series models, such as autoregressive
(AR), moving average (MA), combined AR and MA (ARMA) and autoregressive
integrated moving average (ARIMA) are not effective for a real world practical
problem which are complex and nonlinear, [18]. Changes in water demand are
nonlinear and may not be accurately predicted by linear methods, [27].

Despite many satisfactory characteristics of ANN, building neural network ar-
chitecture for forecasting is challenging. It has been observed that the learn-
ing algorithm, number of input nodes, hidden and output node is crucial for
accurate forecasting. ANNs are well suited for issues whose solutions require
knowledge that is difficult to specify but requires an expansive volume of data
or observations. The design of ANN is more of art than science, [44]. Perhaps
without hidden node a simple perceptron with a linear output node is equiva-
lent to a linear statistical model. It is easier to forecast using a large dataset.
The noise in the data has less impact on a large volume of data. However, the
same cannot be said for a small sample size, [17]. The issue of finding a parsi-
monious model for a real life problem is critical for ANN because of overfitting
problem likely to occur with it. The accuracy of ANN is related to non-linear
data, dealing with non-stationary data is yet to be explored, [28].

Even though there are several types of neural network have been proposed
since 1980 however, few methods are used for water prediction, [28]. Multilay-
ered FFNs is the most popular and widely used paradigm in many applications
including forecasting. BP algorithm is considered a first order gradient method
that can be used to optimise parameters in MLP. However, it suffers from a local
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minimum problem and slow convergence. References are also found for deep
neural network, [29] and ELM in [26,31]. However, no studies using the ar-
chitecture of Recurrent Neural Networks such as Hopfield, Jordan have been
found for water demand prediction. Limited research has been found on parti-
cle swarm optimization algorithm. Emphasis should also be given to parametric
change in demographic and socio-economic factors that affect demand, explore
and identify those factors that are called shift variables in the demand curve.

4. CONCLUSION

In this work, an extensive review of urban water demand forecasting is pre-
sented. For obtaining accurate result of forecasting, the model will be applied
while looking deep insight of socio-economic and demographic variables of the
research region. There is no method or model which guarantees the optimal
solution for all nonlinear problems. Immense literature is available for short
term forecasting, there are very few studies that address medium and long term
forecasting. A neural network learns and does not need to be reprogrammed.
Enormous study is available in the domain of ANN there is a lack of literature
suggesting the appropriate number of hidden nodes, nodes in hidden layers,
optimum value of learning rate and initial weights [32,33].

MLP networks are used in various applications including forecasting because
of their inherent capability of arbitrary input-output mapping. Other influential
model Hopfield networks and recurrent network are rarely used in forecasting.
So ANN is becoming popular for the prediction of results about certain param-
eters. Most of the researchers have concluded that artificial neural network
and hybrid models generally outperform other predictive models used in water
demand forecasting for a city.
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