

Advances in Mathematics: Scientific Journal 9 (2020), no.6, 4139-4144

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.6.95 Spec. Issue on ICIGA-2020

THE DOMINATION UNIFORM SUBDIVISION NUMBER OF $G \circ K_1$

T. BERJIN MAGIZHA¹ AND M. K. ANGEL JEBITHA

ABSTRACT. Let G=(V,E) be an undirected and simple graph. A dominating set D of G is a set of vertices of G such that every vertex in V-D is adjacent to at least one vertex in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality taken over all dominating sets of G. The domination uniform subdivision number of G is the least positive integer K such that the subdivision of any K edges from K results in a graph having domination number greater than that of K and is denoted by K and is paper, we discuss the domination uniform subdivision number for a standard graph operation namely corona of graphs.

1. Introduction

Let G=(V,E) be a simple undirected graph of order n and size m. If $v{\in}V(G)$, then the neighborhood of v is the set N(v) consisting of all vertices u which are adjacent to v. The closed neighborhood is $N[v]=N(v){\cup}\{v\}$. The degree of v in G is |N(v)| and is denoted by deg(v). The maximum degree of G is $max\{deg(v):v{\in}V(G)\}$ and is denoted by $\Delta(G)$. A vertex v is said to be full vertex if deg(v)=n-1. A vertex v is said to be pendant vertex if deg(v)=1. An edge incident with pendant vertex is called leaf or pendent edge. A path, a cycle and a complete graph on n vertices are denoted by P_n , C_n and K_n respectively.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. Domination number, domination uniform subdivision number, domination subdivision stable set.

A complete bipartite graph is denoted by $K_{m,n}$. A graph is said to be connected if there exists a path between any pair of vertices. Otherwise it is said to be disconnected. A vertex is called support if it is adjacent to a pendant vertex. A support is said to be strong support if it is adjacent to more than one pendent. Let G be a connected graph. An edge e = uv is said to be subdivided if it is deleted and replaced by a u - v path of length two with a new internal vertex w (subdividing vertex). $G\Lambda\{e\}$ is the graph obtained by sub dividing the edge e. The corona of two graphs G_1 and G_2 is the graph $G = G_1 \circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 where the i^{th} vertex of G_1 is adjacent to every vertex in the i^{th} copy of G_2 . Terms not defined here are used in the sense of [3].

A subset D of V(G) is said to be a dominating set if every vertex of V(G) - D is adjacent to at least one vertex in D. The minimum cardinality taken over all minimal dominating sets of G is the domination number of G and is denoted by $\gamma(G)$, see [4].

The domination subdivision number introduced by Arumugam Velammal in [5]. Its bound was obtained in [1] and several authors characterized trees according to their domination subdivision number. Also many results have also been obtained on the parameters sd_{dd} , $sd_{\gamma c}$ and $sd_{\gamma t}$. The domination subdivision number of a graph G is the minimum number of edges whose subdivision increases the domination number. It can also be defined as

$$sd_{\gamma}(G) = min\{|E'| : \gamma(G\Lambda E') > \gamma(G)\}.$$

Here we have studied domination uniform subdivision number of $G \circ K_1$ for some standard graphs. In this paper the following theorems are used.

Theorem 1.1. [2] For any graph G, $0 \le usd_{\gamma}(G \circ K_1) \le m$. Also the bounds are sharp.

Theorem 1.2. For any connected graph G, $usd_{\gamma}(G \circ K_1) = m$ if and only if $G \cong K_{1,r} \circ K_1$, for all $r \geq 1$.

2. Exact values for some standard graphs

In this section we attain domination uniform subdivision numbers of $P_n \circ K_1$, $C_n \circ K_1$ and $K_n \circ K_1$. Here, we consider corona of two graphs and in particular we take the second graph as K_1 .

Definition 2.1. [2]: The domination uniform subdivision number of G is the least positive integer k such that the subdivision of any k edges from G results in a graph having domination number greater than that of G and is denoted by $usd_{\gamma}(G)$. If it does not exist then $usd_{\gamma}(G) = 0$.

Definition 2.2. [2]: A subset $S \subseteq E(G)$ is said to be domination subdivision stable set if $\gamma(G\Lambda S) = \gamma(G)$. A domination subdivision stable set S is said to be maximum domination subdivision stable set if there is no stable subdivision set S' such that |S'| > |S|.

Observation 2.1 *[2]* : $usd_{\gamma}(G) = |S| + 1$, where S is a maximum domination subdivision stable set of G.

Observation 2.2: Let $S \subseteq S'$. If S is not a domination subdivision stable set, then S' is also not a domination subdivision stable set.

Lemma 2.1. Let G be a graph of order greater than 4. If there exists a path of length 3, $P^* = v_1 e_1 v_2 e_2 v_3 e_3 v_4$ where v_1 and v_4 are pendent vertices, then any set contains all the three edges of P^* is not a domination subdivision stable set of G.

Proof. Any minimum dominating set of G must have any one of the pair from $\{(v_1,v_3),(v_1,v_4),(v_2,v_3),(v_2,v_4)\}$. Without loss of generality we assume that minimum dominating set D contains v_2 and v_3 . Let G' be a graph obtained from G by subdividing all the edges of P^* . Let us take w_1,w_2 and w_3 be subdividing vertices. Then any minimum dominating set of G' should contain w_2 and w_3 . Hence w_2 is not adjacent to any of the vertices of $(D\setminus\{v_1,v_2\})\cup\{w_1,w_3\}$. Thus any minimum dominating set of G' contains w_2 and so $\gamma(G')>\gamma(G)$. That is $\gamma(G\Lambda\{e_1,e_2,e_3\})>\gamma(G)$. Therefore $\{e_1,e_2,e_3\}$ is not a domination subdivision stable set. By Observation 2.2 , any set contains $\{e_1,e_2,e_3\}$ is not a domination subdivision stable set.

Theorem 2.1. For any path
$$P_n(n \ge 2)$$
, $usd_{\gamma}(P_n \circ K_1) = \left\lceil \frac{3n}{2} \right\rceil$.

Proof. Let $P_n = v_1 e_1 v_2 e_2$. . . $v_{n-1} e_{n-1} v_n$ be a path on n vertices and let $u_i's$ be pendent vertices and $x_j's$ be pendent edges of $P_n \circ K_1$ for all i=1,2...n. We can easily verify that the result is true for n=2 and 3. Let us assume that $n\geq 4$.

Take
$$S = \{e_i/1 \le i \le n-1\} \cup \{x_j/j = 2k-1, 1 \le k \le \lceil \frac{n}{2} \rceil \}$$
.

Then
$$|S| = n - 1 + \le \left\lceil \frac{n}{2} \right\rceil = \frac{2n-2}{2} + \left\lceil \frac{n}{2} \right\rceil = \left\lceil \frac{3n}{2} \right\rceil - 1$$
. By Lemma 2.1, S is a maximal domination subdivision stable set of $P_n \circ K_1$.

Claim: S is a maximum domination subdivision stable set of $P_n \circ K_1$. Suppose S is not a maximum domination subdivision stable set of $P_n \circ K_1$. Then there exists $S' \subseteq E(P_n \circ K_1)$ which is a maximum domination subdivision stable set of $P_n \circ K_1$. Then |S'| > |S|. Since S is a maximal domination subdivision stable set of $P_n \circ K_1$, $S \not\subset S'$. Therefore $S \setminus S'$ contains at least one edge. Let it be e. Define $S'' \subseteq S'$ such that $S'' = (S \setminus \{e\}) \cup \{x,y\}$, where $x,y \not\in S$. Then there exists some P^* such that S'' contains all the edges of P^* . Therefore by Lemma 2.1 S'' is not a domination subdivision stable set and hence S' is not a domination subdivision stable set. Thus S is a maximum domination subdivision stable set. Hence $usd_\gamma(P_n \circ K_1) = |S| + 1 = \left\lceil \frac{3n}{2} \right\rceil$.

Theorem 2.2. For any cycle
$$C_n$$
, $usd_{\gamma}(C_n \circ K_1) = \left\lfloor \frac{3n+2}{2} \right\rfloor$.

Proof. Let $C_n = v_1 e_1 v_2 e_2$. . . $v_n e_n v_1$ be a cycle of n vertices and let $u_i's$ be pendent vertices and $x_j's$ be pendent edges of $C_n \circ K_1$ for all i=1,2...n. We can easily verify that the result is true for n=3. Let us assume that $n\geq 4$.

Take
$$S = \{e_i/1 \le i \le n\} \cup \{x_j/j = 2k - 1, 1 \le k \le \lfloor \frac{n}{2} \rfloor \}$$
, $|S| = n + \lfloor \frac{n}{2} \rfloor = \lfloor \frac{2n + n}{2} \rfloor = \lfloor \frac{3n}{2} \rfloor$.

By Lemma 2.1, S is a maximal domination subdivision stable set of $C_n \circ K_1$.

Claim: S is a maximum domination subdivision stable set of $C_n \circ K_1$. Suppose S is not a maximum domination subdivision stable set of $C_n \circ K_1$. Then there exists $S' \subseteq E(C_n \circ K_1)$ which is a maximum domination subdivision stable set of $C_n \circ K_1$. Then |S'| > |S|. Since S is a maximal domination subdivision stable set of $C_n \circ K_1$, $S \not\subset S'$. Therefore $S \setminus S'$ contains at least one edge. Let it be e. Define $S'' \subseteq S$ such that $S'' = (S \setminus \{e\}) \cup \{x,y\}$, where $x,y \not\in S$. Then there exists some P^* such that S'' contains all the edges of P^* . Therefore by Lemma 2.1, S'' is not a domination subdivision stable set and hence S' is not a domination

subdivision stable set. Thus S is a maximum domination subdivision stable set. Hence $usd_{\gamma}(C_n\circ K_1)=|S|+1=\left\lfloor\frac{3n+2}{2}\right\rfloor$.

Theorem 2.3. For any complete graph
$$K_n$$
, $usd_{\gamma}(K_n \circ K_1) = \frac{n(n-1)}{2} + 2$.

Proof. Let $v_1, v_2 \ldots v_n$ be vertices and $e_i (1 \le i \le nC_2)$ be edges of K_n respectively. Let u_i 's be pendent vertices and x_i 's be pendent edges of $K_n \circ K_1$ for all $i=1,2\ldots n$. Since K_n is complete there exists nC_2 edges in K_n and hence the graph $K_n \circ K_1$ consists of $nC_2 + n$ edges.

Let
$$S = \{e_i/1 \le i \le nC_2\} \cup \{x_1\}$$
.

Then $|S| = nC_2 + 1$. By Lemma 2.1, S is a maximal domination subdivision stable set of $K_n \circ K_1$.

Claim: S is a maximum domination subdivision stable set of $K_n \circ K_1$. Suppose S is not a maximum domination subdivision stable set of $K_n \circ K_1$. Then there exists $S' \subseteq E(K_n \circ K_1)$ which is a maximum domination subdivision stable set of $K_n \circ K_1$. Then |S'| > |S|. Since S is a maximal domination subdivision stable set of $K_n \circ K_1$, $S \not\subset S'$. Therefore $S \setminus S'$ contains at least one edge. Let it be e. Define $S'' \subseteq S'$ such that $S'' = (S \setminus \{e\}) \cup \{x,y\}$, where $x,y \notin S$.

Then there exists some P^* such that S'' contains all the edges of P^* . Therefore by Lemma 2.1 S'' is not a domination subdivision stable set and hence S' is not a domination subdivision stable set. Thus S is a maximum domination subdivision stable set. Hence $usd_{\gamma}(K_n \circ K_1) = |S| + 1 = \frac{n(n-1)}{2} + 2$.

3. Bounds for
$$usd_{\gamma}(G \circ K_1)$$

Theorem 3.1. Let G be a connected graph, $m+2 \leq usd_{\gamma}(G \circ K_1) \leq m+n, n \geq 1$.

Proof. Let the edge set of $G \circ K_1$ consists of all the edges in G and all the edges joining K_1 to corresponding vertex of G. Therefore $|E(G \circ K_1)| = m + n$.

Hence $usd_{\gamma}(G \circ K_1) \leq m+n$. Since all the vertices of G are support vertices of $G \circ K_1, E(G)$ is a domination subdivision stable set of G. In particular $E(K_n) \cup \{e\}$, where e is a pendent vertex of $K_n \circ K_1$, is a maximum domination subdivision stable set of $K_n \circ K_1$ by Theorem 2.3. By Observation 2.1 $usd_{\gamma}(G) = S+1$, where S is a maximum domination subdivision stable set. Therefore $usd_{\gamma}(K_n \circ K_1) = m+2$. Then $usd_{\gamma}(G \circ K_1) \geq m+2$.

Theorem 3.2. For any connected graph G, $usd_{\gamma}(G \circ K_1) = m + n$ if and only if G is a star graph.

Proof. The proof follows from Theorem 1.2.

Theorem 3.3. Let G be a connected graph of order n, $usd_{\gamma}(G \circ K_1) = m + 2$ if and only if $G \cong K_n$.

Proof. Assume that $usd_{\gamma}(G \circ K_1) = m+2$. Suppose $G \cong K_n$. Then there exists a pair of non-adjacent vertices, say e_1 and e_2 . Therefore $E(G) \cup \{e_1, e_2\}$ be a domination subdivision stable set. Thus $usd_{\gamma}(G \circ K_1) > m+2$. Conversely assume that $G \cong K_n$. Then by Theorem 2.3 $usd_{\gamma}(G \circ K_1) = m+2$.

CONCLUSION

In this paper, we obtain domination uniform subdivision numbers of corona product on K_1 and some standard graphs. Finally, we determine the bounds of $usd_{\gamma}(G \circ K_1)$ for any connected graph and characterize the extremal graphs of the bounds.

REFERENCES

- [1] A. BHATTACHARYA, G. R. VIJAYAKUMAR: *Effect of Edge-Subdivision on Vertex-Domination in a Graph*, Discussiones Mathematicae Graph Theory, **22** (2002), 335–347.
- [2] M. K. ANGEL JEBITHA: *Domination Uniform Subdivision Number of Graphs*, International Journal of Mathematics Trends and Technology, **27**(1) (2015), 1–6.
- [3] G. CHARTRAND, P. ZHANG: Introduction to Graph Theory, Tata McGraw-Hill, 2006.
- [4] T. W. HAYNES, S. T. HEDETNIEMI, P. J. SLATER: Fundamentals of Domination in *Graphs*, Marcel Dekker, 1998.
- [5] S. VELAMMAL: *Studies in Graph Theory*, Covering, Independence, Domination and Related Topics, Ph. D. Thesis, 1997.

MANONMANIAM SUNDARANAR UNIVERSITY

TIRUNELVELI

Email address: berjin@sxcce.edu.in

DEPARTMENT OF MATHEMATICS

HOLY CROSS COLLEGE (AUTONOMOUS)

NAGERCOIL

Email address: angeljebitha@holycrossngl.edu.in