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SOLUTION OF NONLINEAR SECOND ORDER MULTI-POINT
BOUNDARY VALUE PROBLEMS BY SHOOTING TYPE

DIFFERENTIAL TRANSFORM ALGORITHM

SUDHA GEORGE1, T. R. SIVAKUMAR, AND D. S. DILIP

ABSTRACT. In this paper, Shooting Type Differential Transform Algorithm
(STDTA), a modified version of Differential Transform Method (DTM) has been
used to solve some nonlinear boundary value problems with multi-point bound-
ary conditions. Using STDTA, the problems are solved and the solution is cal-
culated in the form of a rapid convergent series. It demonstrates the efficiency
and simplicity of the proposed method.

1. INTRODUCTION

Many linear and nonlinear boundary value problems occur in different areas
of science and engineering. Various applications of these types of problems
occur in fluid mechanics, quantum mechanics, optimal control, chemical reactor
theory, aerodynamics, reaction-diffusion process, geophysics and other related
fields of applied science [1].
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2. DIFFERENTIAL TRANSFORMATION METHOD

Differential transform method is a numerical method based on Taylor expan-
sion. The method was first proposed by Zhou (1998) to solve linear and nonlin-
ear differential equations with initial conditions in electrical circuit analysis [2].
Multi-point boundary value problems (MPBV) for ordinary differential equations
arise in the mathematical modelling of viscoelastic and elastic flows, deforma-
tion of beams and plate deflection theory. Some basic definitions and results are
given below:

Definition 2.1. The one-dimensional differential transform of a function y(x) at
the point x = x0 is defined as follows:

(2.1) Y (k) =
1

k!

[
dky(x)

dxk

]∣∣∣∣∣
x=x0

where y(x) is the original function and Y (k) is the transformed function.

Definition 2.2. The differential inverse transform of Y (k) is defined as follows:

(2.2) y(x) =
∞∑
k=0

Y (k)(x− x0)k.

From (2) and (2.2) one gets

y(k) =
∞∑
k=0

Y (k) =
1

k!

[
dky(x)

dxk

]
(x− x0)k .

The proofs of following theorems can be easily obtained from the corresponding
Taylor series and algebra of power series [3].

Theorem 2.1. If f(x) = g(x)± h(x), then F (k) = G(k)±H(k).

Theorem 2.2. If f(x) = λg(x), then F (k) = λG(k) where λ is a constant.

Theorem 2.3. If f(x) = g(x)h(x), then

F (k) =
k∑

k1=0

G(k1)H(k − k1).

Theorem 2.4. If f(x) = u(x)
du(x)

dx
, then

F (k) =
k∑

k1=0

(k − k1 + 1)U(k1)U(k − k1 + 1).
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Theorem 2.5. If f(x) =
dnu(x)

dxn
, then F (k) =

(k + n)!

k!
U(k + n).

Theorem 2.6. If f(x) = sin(ωx+ α), then

F (k) =
ωk

k!
sin

(
kπ

2
+ α

)
.

Let B be a Banach space and consider the functional equation defined on the
Banach space B, T y = b where T is an operator from B to B, b is a given func-
tion of B, and for each satisfying the functional equation [4, 5] is the solution.
Assume that the functional equation has a unique solution for each b ∈ B.

The operator T consists of both linear and non-linear terms, the linear term
is decomposed into L1 + L2, where L1 is the invertible, highest order derivative
and L2 is the remainder of the linear operator.
Thus T = L1 + L2 + N where N is a non-linear operator. Hence the functional
equation becomes

L1y = b− L2y −Ny .

Taking the Differential Transform on both sides of the above equation, we get
the transformed equation as

(2.3) Y (k + n) =
F (k)

(k + n)!
,

where F (k) is the differential transform of f(x, y, y′
, y

′′
, · · · y(n−1)) = b−L2y−Ny.

Then transformed conditions given with the problem can be written as:

(2.4) Y (k) = J, Y (m) =
N∑
k=0

m−1∏
i=1

(k − i)Y (k) = Im, (m < n),

where m is the order of the derivative in the boundary conditions and J, Im are
real constants. Using equations (2.3) and (2.4) the values of Y (i), i = 1, 2, 3, · · ·
can determined and then using inverse differential transformation, the following
approximate solution can be determined as:

(2.5) yN =
N∑
k=0

Y (k)xk .

Usually DTM is used for solving initial value problems. To solve boundary value
problems efficiently the authors [6,7] have introduced Shooting Type Differen-
tial Transform Algorithm (STDTA). The basic steps of STDTA are as follows:
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(i) Converting the given boundary value problem into an initial value prob-
lem by assuming the missing initial conditions;
(If the differential equation is of order n and there are m conditions
given at the initial point and the remaining n −m conditions are given
at other points, assumptions are made on the remaining n − m initial
conditions. In the case of second order boundary value problem one
assumes u′

(0) = α.)
(ii) applying the DTM to the converted initial value problem;

(In the case of second order boundary value problem the assumed con-
dition transforms to U(1) = α.)

(iii) computing the coefficients Y (k+n) for k ≥ 0 using (2.3) up to a specified
level; and

(i) finding the value(s) of the assumed condition(s) by applying the bound-
ary condition(s) at the other point to the approximate solution (2.5).
(In the case of second order boundary value problem α, the only as-
sumed constant is found out by applying the condition at the second
point to the approximate solution).

For solving multi-point boundary value problems step (iv) can be slightly modi-
fied as applying the remaining conditions to the approximate solution to get the
remaining assumed constants.

The effectiveness of STDTA is demonstrated here by applying it to some multi-
point boundary value problems.

3. ILLUSTRATIVE EXAMPLES

Example 1. Consider the following three-point second order nonlinear ordinary
differential equation by Geng [8]:

u
′′
+

3

8
u+

2

1089
[u

′
]2 + 1 = 0 ,

with the boundary conditions u(0) = 0, u(1)− u
(
1

3

)
= 0 .

Let

(3.1) u
′′
+

3

8
u+

2

1089
[u

′
]2 + 1 = 0 ,
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u(0) = 0, u(1)− u
(
1

3

)
= 0 .

Taking the differential transform of (3.1), one obtains

U(k + 2) =
1

(k + 1)(k + 2)[
−3
8
U(k)− 2

1089

k∑
r=0

(r + 1)(k − r + 1)U(r + 1)U(k − r + 1)− δ(k − 0)

]
,

In the modified approach, one assumes that u′
(0) = α.

Taking the differential transform of u(0) = 0 and u′
(0) = α yield

U(0) = 0, U(1) = α. Putting 0, 1, 2, 3, · · · , in the transformed equation, the
series coefficients U(2), U(3), · · · , can be obtained as

U(0) = 0, U(1) = α, U(2) =
1

2

[
−2α2

1089
− 1

]
,

U(3) =
1

6

[
4α3

(1089)2
− 2α2

1089
− 3251α

8712

]
,

U(4) =
1

12
[6.316504219 ∗ (10−3)α2 + 0.185663452 + 3.372905952 ∗ (10−6)α3 −

1.238900258 ∗ (10−8)α4], · · ·

U(7) = [2.679938467 ∗ (10−18) ∗ α7 − 5.501947156 ∗ (10−14) ∗ α6 −

−1.064084847 ∗ (10−12) ∗ α5

+2.110474139 ∗ (10−10) ∗ a4 + 4.394001132 ∗ (10−8) ∗ α3 −

−4.376252405 ∗ (10−8) ∗ α2

−8.375046934 ∗ (10−6) ∗ α].

Then the successive approximations to the solution are obtained, using

un(x) =
n∑

k=0

U(k)xk. The seventh approximation is:
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u7(x) = αx− [9.182736455 ∗ (10−4) ∗ α2 + 0.5]x2 + [5.621509921 ∗ (10−7) ∗ α3

− 3.060912152 ∗ (10−4) ∗ α2 − 0.062193908 ∗ α]x3 + [8.5666541 ∗ (10−5) ∗ α2

+ 3.372905952 ∗ (10−6) ∗ α3 − 1.238900258 ∗ (10( − 8)) ∗ α4 + 0.015471954]x4

+[1.327257699∗ (10−12)∗α5−5.162084408∗ (10−10)∗α4−4.59848158∗ (10−7)∗α3

+5.739118458∗(10−6)∗α2+1.120503143∗(10−3)∗α]x5+[−1.915234775∗(10−15)∗α6

+7.584329638∗(10−13)∗α5+7.542596149∗(10−10)∗α4−2.786659534∗(10−8)∗α3

−9.125112654∗ (10−6)∗α2−2.470403453∗ (10−4)]x6+[2.679938467∗ (10−18)∗α7

−5.501947156∗(10−14)∗α6−1.064084847∗(10−12)∗α5+2.110474139∗(10−10)∗α4

+4.394001132∗(10−8)∗α3−4.376252405∗(10−8)∗α2−8.375046934∗(10−6)∗α]x7.

The ith approximation to the solution u(x), ui(x), is the terms up to xi of the

above expression. Now applying the condition u(1) = u

(
1

3

)
to un(x) yields

the approximate values for α, namely αn, for different values of n. They are
tabulated in Table 1. From the table, it can be observed that the sequence an
converges. Substituting these values of an in the corresponding un(x), the nth

approximation to the solution, u(x) is obtained.

Table 1. Values of αn

n αn

1 0

2 0.6670757

3 0.7332268

4 0.7077722

5 0.7064667

6 0.7068806

7 0.7068904

Table 2 gives the values of un(x), evaluated at x = 0.1, 0.2, 0.3, · · · , 0.9, 1.0, for
different values of n. From this table, it is clear that un(x) is convergent. Com-
parison with that of the earlier results are presented in Table 3. From the table
the effectiveness of STDTA can be noted, since only up to x7 terms in the series
have been considered here, whereas in [9] the author had taken the terms up
to x17.
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Table 2. Convergence of the sequence un
x u2 u4 u6 u7

0.1 0.06170 0.0657 0.0656 0.0656
0.2 0.1134 0.1212 0.1210 0.1210
0.3 0.1552 0.1662 0.1659 0.1659
0.4 0.1868 0.2006 0.2002 0.2002
0.5 0.2086 0.2242 0.2238 0.2238
0.6 0.2204 0.2369 0.2365 0.2365
0.7 0.2222 0.2388 0.2383 0.2383
0.8 0.2139 0.2297 0.2293 0.2293
0.9 0.1956 0.2097 0.2093 0.2093
1.0 0.1667 0.2073 0.2079 0.2079

Table 3. Comparison with the Existing Results
x STDTA ADM [7] SIM [7] RKM [6 ]

0.1 0.0656 0.0656 0.0656 0.0656
0.2 0.1210 0.1209 0.1211 0.1209
0.3 0.1659 0.1658 0.1661 0.1658
0.4 0.2002 0.2001 0.2004 0.2001
0.5 0.2238 0.2236 0.2240 0.2236
0.6 0.2365 0.2363 0.2367 0.2363
0.7 0.2383 0.2382 0.2385 0.2382
0.8 0.2293 0.2291 0.2295 0.2291
0.9 0.2093 0.2091 0.2095 0.2091
1.0 0.2079 0.2000 0.1895 0.1891

Example 2. Consider the nonlinear multi-point boundary value problem

u
′′
(x) + u(x)u

′
(x) = (cos x− 1) sinx ,

u(0) = 0, u(1) =
4∑

i=0

1

1 + i
u

(
i

5

)
+ 0.3277 .

Let

(3.2) u
′′
(x) + u(x)u

′
(x) =

1

2
sin 2x− sinx ,

u(0) = 0, u(1) =
4∑

i=0

1

(1 + i)
u

(
i

5

)
+ 0.3277 .
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Taking the differential transform of (3.2), one obtains

U(k + 2) =
1

(k + 1)(k + 2)

[
−

(
k∑

r=0

(k − r + 1)U(r)U(k − r + 1)

)
+

1

2

(
2k

k!
sin

kπ

2

)
− 1

k!
. sin

(
kπ

2

)]
In the modified approach, one assumes that u′

(0) = α.
Taking the differential transform of u(0) = 0 and u′

(0) = α, yields
U(0) = 0, U(1) = α. Putting k = 0, 1, 2, 3, · · · , in the transformed equation, the
series coefficients U(2), U(3), · · · , can be obtained as:

U(0) = 0, U(1) = α, U(2) = 0, U(3) =
−α2

6
, U(4) = 0,

U(5) =
1

20

[
2α3

3
− 1

2

]
, U(6) = 0,

U(7) =
1

42

[
−17α4

60
+

3α

20
+

1

8

]
.

Then the successive approximations to the solutions are obtained, using

un(x) =
n∑

k=0

U(k)xk. The seventh approximation is:

u7(x) = αx− α3

6
x3 +

1

20

[
2α3

3
− 1

2

]
x5 +

1

42

[
−17α4

60
+

3α

2
+

1

8

]
x7.

The ith approximation to the solution u(x), ui(x), is the terms upto xi of the
above expression.

Now applying the condition u(1) =
4∑

i=0

u

(
i

5

)
+ 0.3277 to un(x), the approxi-

mate values for α, namely αn, for different values of n, are obtained. They are
tabulated in Table 4. From the table it is clear that the sequence αn converges.
Substituting these values of αn in the corresponding un(x), the nth approxima-
tion to the solution, u(x) is obtained.

Table 5 gives the values of un(x), evaluated at x = 0.1, 0.2, 0.3, · · · , 0.9, 1.0,
for different values of n. From this table, it is clear that un(x) is convergent. In
Table 6 the results obtained here, are compared with the Homotopy Perturbation
Method [10] and the Exact Solution. It can be observed from the table that our
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solution matches better with the exact solution, as the values of x increase, than
by HPM.

Table 4. Values of αn

n an

1 0.71759124
3 1.04157923
5 0.99932998
7 1.00537851

Table 5. Convergence of the sequence un(x)
x u3 u5 u7

0.1 0.103977 0.099767 0.100369
0.2 0.206869 0.198537 0.199728
0.3 0.307592 0.295325 0.297093
0.4 0.405059 0.389164 0.391513
0.5 0.498188 0.479118 0.482158
0.6 0.585892 0.564289 0.568424
0.7 0.667086 0.643830 0.650108
0.8 0.740686 0.716953 0.727666
0.9 0.805608 0.782941 0.802571
1.0 0.860764 0.841153 0.852044

Table 6. Comparison with the Existing results
x HPM [8 ] STDTA Exact Solution [8]

0.1 0.988379 0.100369 0.099833
0.2 0.983472 0.199728 0.198669
0.3 0.978774 0.297093 0.295520
0.4 0.978006 0.391513 0.389418
0.5 0.972140 0.482158 0.479426
0.6 0.970688 0.568424 0.564642
0.7 0.970636 0.650108 0.644215
0.8 0.971932 0.727666 0.717356
0.9 0.974389 0.802571 0.783327
1.0 0.977704 0.852044 0.841471
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CONCLUSION

In this paper the Shooting Type Differential Transform Algorithm (STDTA)
is successfully applied to solve nonlinear multi-point boundary value problems.
The study shows that the method leads to more reliable results with less com-
putational work.
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