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NUMERICAL INVESTIGATION OF MAGNETO-HYDRODYNAMIC FLOW OF
NON-NEWTONIAN FLUID WITH A SHARP POROUS WEDGE IN

PRESENCE OF THERMAL BOUNDARY LAYER

SANTOSH KUMAR DIXIT1, RAMESH YADAV, AND AVINASH SHARMA

ABSTRACT. Numerical investigation of the MHD flow of non-Newtonian fluids
with a sharp porous wedge in the existence of the thermal or heated boundary
surface has been studied. The solution of non-linear partial differential equa-
tion procedure is a totally numerical analysis process and Matlab software with
help of ode45 solver has been used for obtaining non-linear partial differential
equations. In this investigation, we have investigated the effect of Magnetic pa-
rameter, Porous wedge parameter, Prandtl number, Reynolds Number, Porous
parameter σ, and power-law index number ’n’ on the velocity and heat transfer
of fluids. The effects of various parameters of fluid flow and heat flow have
been discussed numerically and presented graphically.

1. INTRODUCTION

The boundary layer flow of Newtonian and non-Newtonian fluid passed over
a sharp porous wedge with a transverse magnetic field has caused an appre-
ciable interest for its countless industrial and engineering applications, which
consists of a boundary surface together with the fluid film, chemical engineer-
ing processes, polymerization processing, and other fields. Many fluids such
as multiphase mixture, glues, paints, cosmetics, toiletries, and biological fluids
are called non-Newtonian fluids. The application of partition surface theory to
power-law pseudoplastic fluid: a similar solution has been presented by W. R.

1corresponding author
2010 Mathematics Subject Classification. 76A05.
Key words and phrases. Boundary layer flow, Non-Newtonian fluid, Power-law fluid, Prandtl

number, Reynold number, Porous media.
4449



4450 S. K. DIXIT, R. YADAV, AND A. SHARMA

Schowalter (1960). They have developed second and third dimensional bound-
ary surface equations for pseudo-plastic and non-Newtonian fluid which are dis-
tinguished by a power-law index connection in the middle of velocity gradient
and shear loads or shear stress. The free convection flow of non-Newtonian
fluid in the presence of a vertical embedded in a porous medium has been ana-
lyzed by Chen and Chen (1988). Magyari and Keller (1999) have been analyzed
heat and mass movements in the partition surface on rapid changes stretching
regular surface. They have described the similarity solution of the steady plane
(flow and thermal) boundary layers on stretching regular surfaces with and ex-
ponential distributions and presented numerically and analytically. The heat
and mass transfer characteristics have been discussed and results compared to
other earlier authors.

The consequences of the Rayleigh complication for the power-law index of
non-Newtonian running fluid via class or category method have been studied
Abd-el-Malek., et al. (2002). They have presented the mobility flow of MHD
flow or voltaic running Newtonian and non-Newtonian fluid of limitless size
in a horizontal outer magnetic field. A contingent symmetry, the classical Lie
approach, and contact symmetries have leads superior trimmings and obtained
results to the differential equations just but not for the beginning and dividing
merit difficulties since the formed state restriction be minimized. The unsteady
mixed-convective partition surface flow of fluids together with a uniform wedge
with varying surface temperature has been presented by Hossain et al. (2006).
They have transformed non-dimensional form of the governing boundary layer
differential equations, and formed a non-linear system of partial differential
equations is decreased into neighborhood dissimilarity boundary surface differ-
ential equations, which is presented by the analytical procedure. The main focus
of their analysis is the effects of parameters such as Nusselt number, skin friction
parameter, and other parameters on the fluid velocity and fluid temperature.
The thermally emission effect on fully enlarged mixed deportation or convec-
tive flow of fluid in a perpendicular passage has been presented by Grosan and
Pop (2007). They have solved the governing equation both analytically and nu-
merically and obtained that is the lack in reversal flow of fluid with lead in the
radiation parameters.

The consequences of emission or radiation and varying viscosity fluid on flow
and motion of heat together with a uniform wedge have been analyzed by
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Mukhopadhyay (2009). A second and third-order combined ordinary differ-
ential equation structure with respect to the energy and momentum equation
is found. They obtained that fluid velocity leads with lead of temperature-
dependent liquid viscosity variable and temperature of fluids lacks with leads of
radiation parameter and Prandtl number. The numerical investigation of forced
convection porous wedge pass of non-Newtonian liquid has been studied by
Suratiand and Timol (2010). Ishak et al. (2011) have been investigated in mo-
tion wedge together with a uniform plate in a power-law index model of fluid
or liquid. They solved the transformed boundary difficulty using the numerical
solutions for some variables. The results of these variables on the skin rubbing
parameter have been presented. He has also obtained that many numerous so-
lutions exist when liquid or fluid move in opposite directions, near the side of
detachment or separation. Prasad et al. (2013) have been analyzed heat flow
and momentum of a non-Newtonian rheological method (or Eyring-Powell) liq-
uid or fluid on top of Non-isothermal stretching plates of sheets. They have
solved the non-linear differential equation using a second-order implicit finite
difference method or finite difference scheme which is known as the Keller-box
approximation. He has found the effects of the parameter of non-Newtonian
fluid, variable thermal conductivity parameter, Hartmann number parameter,
Prandtl number, and Eckert number on the flow of fluids. The flow of fluids and
heat transfers of an incompressible fluid over a non-isothermal porous stretching
sheet is studied numerical approximation.

The Quantitative analysis of non-Newtonian fluid flow which passed and ac-
celerated in a perpendicular infinite plate in the appearance of free convection
currents has been presented by Patel et al. (2013). They have obtained the
effects of Grashof number and Prandtl number on the fluid velocity. The re-
sults are that the velocity of the liquid, leads to the class of similarity solution
of the problem. The investigated the heated boundary partition surface of non-
Newtonian fluid along a wedge has been presented by Manju Bisht and Anirudh
Gupta (2014). They have studied the effects of some various parameters of the
flow of fluid and heat flow characteristics discussed and analyzed graphically.
The heat flows of a non-Newtonian and Newtonian fluid in mechanically agi-
tated vessels have been presented by Ansar Ali et al. (2014). The heat transfer
parameter has been calculated using Wilson graphical techniques with the im-
provement or modification which is suggested by Om Prakash et all. The heat
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transfer data for agitated water and 1, 2, and 4% aqueous CMS for impellor have
been correlated by the equations with standard deviations The two variable Lie
group study and Quantitative analysis of the unsteady free convective flow of
non-Newtonian fluid have been presented by Uddin et al. (2016). They have
solved the equation using a Runge-Kutta-Fehlberg fourth-fifth order quantitative
method by shooting techniques. The velocity, temperature, and concentration
of fluid have shown graphically. Umar Khan et al. (2017) have analyzed the
non-linear propagation effects on the flow of nanofluid passed above the per-
meable wedge in the appearance of electrically conducting field. They have
solved the non-linear differential equation with the help of the Runge-Kutta-
Fehlberg method which is coupled by a shooting method. The effects of the
various variables such as skin rubbing variable, local Nusselt number, and Sher-
wood number on fluid velocity, temperature, and concentration profiles using
graphically.

Ramesh Yadav (2017) has been investigated the Analytical study of the magneto-
hydrodynamic flow of condensed adhesive fluid between equidistance plates in
which one of a porous and other is rigid bounding wall. He has found the effects
of Hartmann number M, wall Slip coefficient, Reynolds Number, and thickness
of the medium or channel on the velocity component of fluids. Navneet Kumar
Singh and Ramesh Yadav (2017) have been analyzed the investigation of heat
Transfer of non-Newtonian liquids in appearance a porous barrier or porous
wall. They have been presented the effect of permeable variable ’k’, Prandtl
number ’Pr’, Reynold number ’Re’, on the fluid velocity and heat flow. The Quan-
titative Study of MHD flow of non-Newtonian fluid along a sharp wedge in the
existence of the hot boundary surface has been presented by Yadav et al (2018).
They have obtained the non-linear partial differential equations with the assist
of MATLAB software by ode 45 solver. They have got that the fluid velocity en-
hances with the enhancement of the magnetic variable M and reciprocal effects
of heat flow with leads of magnetic variable M, and the various output has been
found graphics. Dixit et al. (2018) have been studied Quantitative investigation
of MHD flow with variable liquid viscosity and heat motion in the appearance of
symmetrical porous Wedge. They have obtained the various parameters Hart-
mann number M, Prandtl Number Pr, Radiative Heating Parameter Q, porous
wedge parameter, and Falkner Skan exponent m on the velocity of fluids and
Heat Transfer of Fluid. They have found that radial and axial velocity of fluid
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leads sharply with a lead of Magnetic variable, porous wedge parameter, and re-
ciprocal effect with leads of temperature-depending adhesive viscosity variable
A, Falkner Skan Exponent parameter m. The heat transfer of fluid lacks sharply
with leads of Falkner Skan exponent parameter, Magnetic Parameter M, porous
wedge parameter, and Prandtl number Pr, whereas heat transfer leads with the
lead of radiative heating parameter Q. The important application of this diffi-
culty is associated in engineering fields and post accidental heat removal fields.

The MHD partition surface flow, which passes a wedge with heat flow and
viscous Effects of Nanofluid inserted in permeable medium, has been analyzed
by Ibrahim et al. (2019). Pandey et al (2020) have been presented the quanti-
tative study of variable fluids, which passed through a uniform sharp wedge in
the appearance of a perpendicular magnetic field. They have found the radial
and axial velocity of fluid leads with a lead of magnetic variable M, whereas
the reciprocal effect on the heat transfer of the fluid. Jabeen et al. (2020)
have been studied the analysis of MHD fluids on all sides linearity be an elastic
sheet in permeable medium with the thermophoresis propagation and chemical
reaction. They analyzed thoroughly the behavior of velocity, temperature, and
concentration. They have also obtained the heat and mass transfer surveys have
been carried out theoretical as well as graphical and numerical approaches.

In this paper, we investigated the MHD flow of the non-Newtonian fluid with a
sharp porous wedge in the appearance of the thermal partition surface problem.
The results obtained numerically. After this resulting coupled ordinary non-
linear differential equations are obtained using analytical techniques and solving
by MATLAB application with the assist of an ode45 solver. The result was stated
for velocity and temperature distribution of the various parameters by graphics.

For further reference see [1–9].

2. MATHEMATICAL FORMULATION

Let us assume that the stationary coordinated system. u and v be the veloc-
ity of the fluid in x and y direction respectively, in this, we have considered
to a steady-state two-dimensional coordinate system of laminar flow for incom-
pressible or concentrated non-Newtonian fluid, which obey the power-law index
representation or model, and fluid is running above a sharp absorbent wedge
with rigid or stable wall temperature Tw. The governing equations of partition



4454 S. K. DIXIT, R. YADAV, AND A. SHARMA

surface flow are The progression equation

(2.1)
∂u

∂x
+
∂u

∂y
= 0 .

The momentum and energy equation is given below
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∂u
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(2.3) u
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with the boundary conditions

AT y = 0;u = v = 0 and T = Tw

AT y →∞;u→ U(x) = cxm and T = T∞

AT x = 0;u = U∞ and T = T∞ .

Where u and v is the corresponding velocity constituent in the x and y directions
of the liquid flow, v stand as the kinematic fluid adhesiveness or viscosity and
U stands as reference velocity of the fluid at the border of partition surface
and it is a reason or function of x only, m = β

2π−β is the sharp porous wedge
parameter and β represent the wedge angle, ρ stand for the density of fluids
and α represents the thermal spreading rate of fluid, T is the temperature is
near the porous wedge.
For the power-law index fluids, the shearing is represented as

τxy = K(
∂u

∂y
)n .

Thus the equation (2.2) becomes
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In this study, we employ the following conversion; utilized to ease of the solution
of the governed equation is given by

ψ =

(
Kx

ρ

) 1
(n+1)

[U(x)](
(2n−1)
(n+1) )f(λ)(2.5)

λ =

[
(ρU(x)(2−n)

Kx

]( 1
(n+1)

)

y(2.6)

θ =
T − T∞
Tw − T∞

.(2.7)

Stream functions are

(2.8) u =
∂ϕ

∂y
and v =

−∂ϕ
∂x

.

Where λ stands for the similarity parameter and f(λ) and θ(λ) is similarity de-
pending variables for fluid flow and heat flow.
Now equation (2.1) is satisfied automatically. Substituting Equations (2.5),
(2.6), (2.7), (2.8) into momentum equation (2.4) and energy equation (2.3)
changes or lead to given differential equations:

f
′′′
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n(n+ 1)
f(λ)[f
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m
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2
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(2.9)
f
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′′
)(2−n) +

m

n
[1− (f

′
)2](f

′′
)((1− n))− σ2(f

′′
)(1−n)f

′ −M2[f
′′
](1−n)f

′
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(2.10) θ
′′
+ ηfPrReθ = 0 ,

where η = 2mn−m+1
n(n+1)

,σ2 = µcx
KnU2 , Re = R

R
2

n+1
(n,x)

, the generalized Reynold num-

ber for non-Newtonian fluids is represented as R(n,x) =
xnU(2−n)

u
and R = xU

u
and

Pr = (ρµCp)

K
which stands the Reynolds number and Prandtl number correspond-

ingly.
The above differential equations partition condition is associated as:

f
′
= 0, f = 0, θ = 1, for λ = 0;(2.11)

and f
′
= 1, θ = 0, for λ =∞;(2.12)
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here prime notation represented as the differentiation with respect to non-
dimensional parameter λ. For the Newtonian fluid the power law index number
for fluid is one or n=1 and m=0. Equation (2.9) and (2.10) may reduced to
(2.13)

f
′′′
+
1

2
(m+1)f(f

′′
)(2−n)+

[
1− (f

′
)2
]
(f
′′
)(1−n)−σ2(f

′′
)(1−n)f

′−M2(f
′′
)(1−n)f

′
= 0,

or

f
′′′
+

1

2
(m+ 1)ff ′′ + [1− (f

′
)2]− σ2f

′ −M2f
′
= 0,(2.14)

θ
′′
+

1

2
Pr(m+ 1)Refθ′ = 0,(2.15)

where σ2 = µcx
KU2 , is permeability of porous wedge.

Here the importance of physical quantity of attentiveness is the Nusselt number
Nu which is represented as

(2.16) Nux =
qwx

(T0 − T∞)K
= −θ′(0)Re

2
(n+1)

(n,x)

On solving above ordinary differential equation (2.15), involving the above
boundary surface condition (2.11) and (2.12), we obtained the results given
below.

(2.17) θ = e−
1
2
Pr(m+1)Ref(λ)) .

3. METHOD OF SOLUTION

In this analysis, we study and obtain the solution of the non-linear differential
equation (2.13), (2.14) and (2.17) quantitatively numerically with the assist of
MATLAB operating system to ode45 solver. We have solved a set of differential
equations with the sketched partition condition which is stated in differential
equations (2.11) and (2.12). In this analysis the proposed of the time-space
or interval (0, 10) with to begin state vector (0, 0, 1) has been lay hold of
for merging basis or meeting basis options has been taken (’Rel Tol’, 1e-4,’ Abs
Tol’, [1e-4 1e-4 1e-5]). The non-identical sets of parameters have been taken
and presented the obtained analysis. Enlarge or stretch of non-dimensional
parameter λ (0 ≥ λ ≤ 10), the permeable parameter σ has been chosen (1,
2, 3, 4, 5), Permeable wedge variable m has been chosen 1/9, 3/9, 5/9, 7/9,
9/9, the power-law index variable n has been taken 1, 2, 3, 4). The field of
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non-dimensional parameter λ (0 ≥ λ ≤ 10), the utility of Reynolds number Re
has been chosen 1, 2, 3, 4, 5), Prandtl number Pr has been chosen (1, 2, 3, 4,
5), power-law index n have been chosen 1, 2, 3, 4). Different graphs, which
has been sketched or reported sets of variables and talked about the obtained
analysis.

4. RESULTS AND DISCUSSIONS

Here in the above non-linear ordinary differential equations (2.13), (2.14),
(2.15) has integrated under the subject (2.11), (2.12) by numerical analysis
or quantitative procedure, with the assist of ode45 solver, and obtain the nu-
merical outcome with the help of graphs. The numerical outcomes are found
to analyze the outcome of different values of the Reynolds number Re, perme-
able wedge parameter m, Porous law index parameter n, Prandtl number Pr,
and Magnetic parameter M on dimensionless radial and axial velocity compo-
nents of non-Newtonian fluids and non-dimensional temperature descriptions.
Figure 1 represents the graph in the middle of axial velocity components of non-
Newtonian fluids f(λ) against dimensionless parameter λ at constant variables
(n = 2, m = 2/9, σ = 0); it is obtained that the axial velocity component of
fluids leads with a lead of Magnetic variable M (1, 2, 3, 4, 5). Figure 2 repre-
sents graph in the middle of axial velocity components of non-Newtonian fluids
f(λ) against dimensionless parameter λ at constant variables (n = 2, m = 2/9,
σ = 3); it fallows that velocity component of fluids leads sharply with a lead of
Magnetic parameter M (1, 2, 3, 4, 5) as compared to figure 1 (σ = 0).

Figure 3 represents sketch in the middle of axial velocity components of non-
Newtonian fluids f(λ) against non-dimensional variable λ at constant variables
(n = 3, m = 2/9, σ = 3); it fallow that axial velocity leads slowly with the
lead of Magnetic variable M (1, 2, 3, 4, and 5). Figure 4 represents graph
between radial velocity components of non-Newtonian fluids f ’(λ) against non-
dimensional variable λ at constant variables (n = 2, m = 2/9, σ = 3); it is
obtained that radial velocity leads sharply with the lead of Hartmann Numer
or Magnetic variable M (1, 2, 3, 4, and 5). Figure 5 represents graph in the
middle of axial velocity components of non-Newtonian fluids f (λ) against non-
dimensional parameter λ at constant variables (n = 3, m = 2/9, M = 4); it is
obtained that axial velocity leads sharply with the lead of porous wedge variable
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σ (1, 2, 3, 4, and 5). Figure 6 represents graph between the velocity of fluids
f (λ) against non-dimensional parameter λ at constant variables (n = 3, m =
2/9, M = 4); it obtained that velocity of non-Newtonian fluids enhances with
the enhance of porous wedge variable σ (1, 2, 3, 4, and 5).

Figure 7 and Figure 8 represents graph between axial velocity component f(λ)
and radial velocity component f ’ (λ) of non-Newtonian fluids in opposition to
dimensionless variable λ at constant variables (σ = 4, m = 2/9, M = 4); it
is found the axial velocity component and radial velocity component of non-
Newtonian fluid lacks sharply with leads of power-law index parameter n (1,
2, 3, 4). Figure 9 represents graph between heat transfer of fluids θ(λ) against
dimensionless variable λ at sustained parameter (σ = 4, m = 2/9, Re = 0.5,
Pr = 2, n = 3); it is found that flow of heat of non-Newtonian fluids decreases
sharply with leads of magnetic variable M (1, 2, 3, 4, and 5). Whereas from fig-
ure 10 represents graph between the heat transfer rate of non-Newtonian fluids
θ ’(λ) against dimensionless variable λ at constant parameter or variables (σ =
4, m = 2/9, Re = 0.5, Pr = 2, n = 3); it follows that the heat transfer rate of
non-Newtonian fluids slowly increases with an enhance of Hartmann number
variable M (1, 2, 3, 4, 5). Figure 11 represents graph between heat transfer rate
of non-Newtonian fluid θ (λ) against dimensionless variable λ at constant vari-
ables (M = 4, m = 2/9, Re = 0.5, Pr = 2, n = 3); it is found that heat transfer of
non-Newtonian fluids lacks sharply with the increase of porous wedge parame-
ter σ (1, 2, 3, 4, and 5). Whereas figure 12 represents graph between the heat
transfer rate of non-Newtonian fluid θ ’(λ) against dimensionless variable λ at
constant variables (M = 4, m = 2/9, Re = 0.5, Pr = 2, n = 3); it is seen that
heat transfer rate of the non-Newtonian fluid increases slowly with the increase
of porous or permeable wedge parameter σ (1, 2, 3, 4, and 5).

Figure 13 represents graph between heat transfer of fluids θ(λ) against di-
mensionless variable λ at constant variables ( M = 4, m = 2/9, Re = 0.5, σ =
4, n = 3); it has obtained that heat flow rate of non-Newtonian fluids decreases
with the enhance of Prandtl number Pr (1, 2, 3, 4, and 5). Whereas figure
14 represents graph between heat transfer rate of non-Newtonian fluids θ’(λ)
against dimensionless variable λ at constant variables (M = 4, m = 2/9, Re =
0.5, σ = 4, n = 3); it is put out that heat transfer rate of non-Newtonian fluid
leads slowly with the lead of Prandtl number Pr(1, 2, 3, 4, and 5). Figure 15
represents graph between heat transfer rate of fluid θ(λ) against dimensionless
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FIGURE 1. Graph in the middle of Velocity of fluid f(λ) against
non-dimensional parameter λ with variation of Magnetic variable
M (Hartmann Number) with constant parameter n = 2, m = 2/9
and σ=0.

variable λ at constant variables (M = 4, m = 2/9, Pr = 2, σ = 4, n = 3); it
is found that heat transfer rate of fluid lacks sharply with the lead of Reynolds
number Re (1, 2, 3, 4, and 5). Whereas figure 16 represents graph between the
heat transfer rate of non-Newtonian fluids θ ’(λ) against dimensionless variable
λ at constant variables (M = 4, m = 2/9, Pr = 2, σ = 4, n = 3); it is followed
that heat transfer rate of non-Newtonian fluids enhances slowly with enhancing
of parameter Re (1, 2, 3, 4, and 5).

Figure 17 represents graph between the heat flow rate of non-Newtonian flu-
ids θ(λ) against dimensionless variable λ at constant variables (M = 4, m = 2/9,
Pr = 2, σ = 4, Re = 0.5); it is found that heat flow of non-Newtonian fluids re-
duces sharply with the lead of power-law index variable n (1, 2, 3, 4) which
means the increase of non-Newtonian coefficients. Figure 18 represents graph
between heat transfer rate of non-Newtonian fluids θ(λ) against dimensionless
variable λ at constant or sustained parameter (M = 4, n = 2, Pr = 2, σ = 4, Re
= 0.5); it is obtained that heat flow of non-Newtonian fluids enhances sharply
with leads of porous wedge variable m (1/9, 3/9, 5/9, 7/9, 9/9).
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FIGURE 2. Graph in the middle of Velocity of fluid f(λ) against
non-dimensional parameter λ with variation of Magnetic variable
M (Hartmann Number) with constant parameter n = 2, m = 2/9
and σ=3.

FIGURE 3. Graph in the middle of Velocity of fluid f(λ) against
non-dimensional parameter λ with variation of Magnetic variable
M (Hartmann Number) with constant parameter n = 3, m = 2/9
and σ=0.
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FIGURE 4. Graph in the middle of Velocity of fluid f’(λ) against
non-dimensional parameter λ with variation of Magnetic variable
M (Hartmann Number) with constant parameter n = 2, m = 2/9
and σ=3.

FIGURE 5. Graph in the middle of Velocity of fluid f(λ) against
non-dimensional parameter λ with variation of porous variable σ
(1,2,3,4,5) at constant parameter n = 3, m = 2/9 and M=4.
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FIGURE 6. Graph in the middle of Radial velocity of fluid f ’(λ)
against non-dimensional variable λ with variation of porous vari-
able σ (1,2,3,4,5) at constant parameter n = 3, m = 2/9 andM=4.

FIGURE 7. Graph in the middle of Axial velocity of fluid f(λ)
against non-dimensional variable λ with variation of power law
index variable n(1,2,3,4) at constant parameter m = 2/9,M=4,
σ=4.
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FIGURE 8. Graph in the middle of Axial velocity of fluid f ’(λ)
against non-dimensional variable λ with variation of power law
index variable n(1,2,3,4) at constant parameter m = 2/9, M=4,
σ=4.

FIGURE 9. Graph in the middle of Heat transfer of fluids θ(λ)
against non-dimensional variable λ with variation of magnetic
variable M (1, 2, 3, 4, 5) at constant parameter n = 3, m = 2/9,
Pr=2,σ=4, Re = 0.5.
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FIGURE 10. Graph in the middle of temperature profile of fluids
θ’(λ) against non-dimensional variable λ with variation of mag-
netic variable M (1, 2, 3, 4, 5) at constant parameter n = 3, m =
2/9,Pr=2,σ=4, Re = 0.5.

FIGURE 11. Graph in the middle of temperature profile of fluids
θ(λ) against non-dimensional variable λ with variation of porous
variable σ (1, 2, 3, 4, 5) at constant parameter n = 3, m = 2/9,
Pr=2, Re = 0.5, M = 4.
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FIGURE 12. Graph in the middle of temperature profile of fluids
θ’(λ) against non-dimensional variable λ with variation of porous
variable σ (1, 2, 3, 4, 5) at constant parameter n = 3, m = 2/9,
Pr=2,Re=0.5,M=4.

FIGURE 13. Graph in the middle of temperature profile of fluids
θ(λ) against non-dimensional variable λ with variation of Prandtl
number Pr (1, 2, 3, 4, 5) at constant variables n = 3, m = 2/9, M
= 4, σ=4, Re = 0.5.
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FIGURE 14. Graph in the middle of temperature profile of fluids
θ’(λ) against non-dimensional variable λ with variation of Prandtl
number Pr (1, 2, 3, 4, 5) at constant variables n = 3, m =
2/9,M=4,σ=4, Re = 0.5.

FIGURE 15. Graph in the middle of temperature profile of fluids
θ(λ) against non-dimensional variable λ with variation of vari-
able Re (1, 2, 3, 4, 5) at constant parameter n = 3, m = 2/9,
Pr=2,σ=4, M = 4.
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FIGURE 16. Graph in the middle of temperature profile of fluids
θ’(λ) against non-dimensional variable λ with variation of vari-
able Re (1, 2, 3, 4, 5) at constant parameter n = 3, m = 2/9,
Pr=2,σ=4, M = 4.

FIGURE 17. Graph in the middle of temperature profile of fluids
θ(λ) against non-dimensional variable λ with variation of power
law index n (1, 2, 3, 4, 5) at constant parameter M = 4, m =
2/9,Pr=2,σ=4, Re = 0.5.
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FIGURE 18. Graph in the middle of temperature profile of fluids
θ(λ) against non- dimensional variable λ with variation of porous
wedge variable m (1/9, 3/9, 5/9, 7/9, 9/9) at constant parameter
n = 2, M = 4,Pr=2,σ=4, Re = 0.5.

5. CONCLUSION

In this paper, we have done a numerical investigation of non-Newtonian fluid
flow with a sharp permeable porous wedge in the appearance of the thermal
partition surface. In this study the main aim to investigate the consequences
of variables such as M, n, m, Pr, Re on the fluid velocity of the non-Newtonian
liquid and heat flow; it has been obtained that radial and axial velocity of non-
Newtonian fluids leads sharply with the lead of Magnetic variable ’M’, porous
wedge parameter ’σ’ whereas the reciprocal effects on velocity component of
fluids with the lead of power-law index variable n. The heat transfer of non-
Newtonian fluid lacks sharply with the leads of Reynolds number ’Re’, Prandtl
Number ’Pr’, magnetic variable ’M’, power-law index variable ’n’ and reciprocal
change in the heat transfer of non-Newtonian fluid with the lead of permeable
wedge parameter or porous wedge parameter ’m’.
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