

Advances in Mathematics: Scientific Journal **9** (2020), no.7, 4495–4503 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.7.18 Spec. Issue on RDESTM-2020

SOME STRONG FORMS OF CONTINUOUS FUNCTIONS IN NANO TOPOLOGY

M. DAVAMANI CHRISTOBER AND A. VINITH MALA $^{\rm 1}$

ABSTRACT. The objective of this paper is to introduce new stronger forms of continuous functions called strongly nano $\alpha \hat{g}$ -continuous function and perfectly nano $\alpha \hat{g}$ - continuous function. Further, some properties and characterizations of these functions are obtained. Also their relationships with existing continuous functions are investigated.

1. INTRODUCTION

Njastad [8] and Levine [7] have introduced α -open sets and generalized closed sets respectively. Lellis Thivagar [4] introduced Nano Topological space with respect to a subset of *X* of an universe which is defined interms of lower and upper approximations of *X*. Davamani Christober and Vinith Mala [2] have defined $\alpha \hat{g}$ -closed sets and $\alpha \hat{g}$ -continuous function in Nano Topological space.

In this paper, we investigate some stronger forms of continuous functions namely strongly nano $\alpha \hat{g}$ -continuous function and perfectly nano $\alpha \hat{g}$ - continuous function. In addition, some properties and characterizations of these functions are examined as well as their relationships with existing continuous functions are explored.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A10, 54B05.

Key words and phrases. Nano $\alpha \hat{g}$ -closed set, Strongly nano $\alpha \hat{g}$ - continuous, perfectly nano $\alpha \hat{g}$ - continuous.

M. DAVAMANI CHRISTOBER AND A. VINITH MALA

2. PRELIMINARIES

Definition 2.1. [4] Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U. The pair (U,R) is said to be the approximation space. Let $X \subseteq U$.

- (i) The lower approximation of X with respect to R is denoted by $L_R(X)$ and is defined as $L_R(X) = \bigcup_{x \in U} \{R(x) : R(x) \subseteq X\}$, R(x) denotes the equivalence class determined by x.
- (ii) The upper approximation of X with respect to R is denoted by $U_R(X)$ and is defined as $U_R(X) = \bigcup_{x \in U} \{R(x) : R(x) \cap X \neq \emptyset\}.$
- (iii) The boundary region of X with respect to R is denoted by $B_R(X)$ and is defined as $B_R(X) = U_R(X) L_R(X)$.

Definition 2.2. [4] Let U be an universe. R be an equivalence relation on U and $\tau_R(X) = \{U, \emptyset, L_R(X), U_R(X), B_R(X)\}$ where $X \subseteq U$. $\tau_R(X)$ satisfies the following axioms:

- (i) U and $\emptyset \in \tau_R(X)$
- (ii) The union of the elements of any sub-collection of $\tau_R(X)$ is in $\tau_R(X)$
- (iii) The intersection of the elements of any finite sub-collection of $\tau_R(X)$ is in $\tau_R(X)$

That is, $\tau_R(X)$ forms a topology on U called the nano topology on U with respect to X. We call $(U, \tau_R(X))$ as the nano topological space. The elements of $\tau_R(X)$ are called nano-open sets.

Definition 2.3. [4] Let $(U, \tau_R(X))$ be a nano topological space with respect to X where $X \subseteq U$ and if $A \subseteq U$, then the nano interior of A is defined as the union of all nano-open subsets of A and is denoted by Nint(A). The nano closure of A is defined as the intersection of all nano closed sets containing A and is denoted by Ncl(A).

Definition 2.4. [2] A subset A of a space $(U, \tau_R(X))$ is called nano $\alpha \hat{g}$ -closed if $N_{\alpha}cl(A) \subseteq G$ whenever $A \subseteq G$ and G is nano \hat{g} -open in $(U, \tau_R(X))$. The complement of nano $\alpha \hat{g}$ -closed set is nano $\alpha \hat{g}$ -open set.

Definition 2.5. A function $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ is said to be

(i) Nano continuous [5] on U if the inverse image of every nano open set in V is nano open in U.

- (ii) Nano α -continuous [5] on U if the inverse image of every nano open set in V is nano α -open in U.
- (iii) Nano g-continuous[1] on U if the inverse image of every nano open set in V is nano g-open in U.
- (iv) Nano α -generalized continuous[9] on U if the inverse image of every nano open set in V is nano α generalized open in U.
- (v) Nano ĝ-continuous [3] on U if the inverse image of every nano open set in V is nano ĝ-open in U.
- (vi) Nano αĝ-continuous [2] if the inverse image of every nano closed set in V is nano αĝ-closed in U.
- (vii) Nano $\alpha \hat{g}$ -irresolute[2] if the inverse image of every nano $\alpha \hat{g}$ -closed set in V is nano $\alpha \hat{g}$ -closed in U.
- (viii) Nano strongly continuous [6] if $f^{-1}(A)$ is nano clopen in U for every subset A in V.
- (ix) Nano Perfectly continuous [6] if $f^{-1}(A)$ is nano clopen in U for every nano open set A in V.

3. Strongly Nano $\alpha \hat{g}$ -continuous functions

Definition 3.1. A function $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ is said to be strongly nano $\alpha \hat{g}$ -continuous if $f^{-1}(B)$ is nano closed in U for every nano $\alpha \hat{g}$ -closed set B in V.

Example 1. Let $U = \{p, q, r, s\}$, $U/R = \{\{p\}, \{q, r\}, \{s\}\}$ and $X = \{q, s\} \subseteq U$. Then $\tau_R(X) = \{U, \emptyset, \{s\}, \{q, r\}, \{q, r, s\}\}$. Also let $V = \{a, b, c, d\}, V/R' = \{\{a, b\}, \{c\}, \{d\}\}, Y = \{a, c\} \subseteq V$. Then nano $\alpha \hat{g}$ -closed sets of V are $\{V, \emptyset, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}\}$. Define a function $f : U \to V$ by f(p) = d, f(q) = a, f(r) = a and f(s) = a. Then inverse image of every nano $\alpha \hat{g}$ -closed sets in V is nano closed in U. Hence f is strongly nano $\alpha \hat{g}$ -continuous.

Theorem 3.1. A function $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ is strongly nano $\alpha \hat{g}$ continuous if and only if $f^{-1}(B)$ is nano open in $(U, \tau_R(X))$ for every nano $\alpha \hat{g}$ -open set B in $(V, \tau_{R'}(Y))$.

Proof. Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a strongly nano $\alpha \hat{g}$ - continuous function and B be any nano $\alpha \hat{g}$ -open set in V. Then B^c is nano $\alpha \hat{g}$ -closed in V.

Therefore $f^{-1}(B^c)$ is nano closed in U. But $f^{-1}(B^c) = [f^{-1}(B)]^c$ and hence $f^{-1}(B)$ is nano open in U. Converse is obvious.

Theorem 3.2. Every strongly nano $\alpha \hat{g}$ -continuous function is

- (i) Nano continuous and hence nano generalized continuous and nano α -continuous.
- (ii) Nano $\alpha \hat{g}$ -continuous and hence nano αg continuous and nano gs-continuous
- (iii) Nano \hat{g} -continuous.

Proof. Follows from the definitions.

Remark 3.1. The following example shows that the implications in theorem 3.2 are not reversible in general.

Example 2. Let $U = \{a, b, c, d\}$, $X = \{a, c\}$ and $\tau_R(X) = \{U, \emptyset, \{c\}, \{a, b\}, \{a, b, c\}\}$. Also $V = \{p, q, r, s\}$, $Y = \{q, s\}$ and $\tau_{R'}(Y) = \{V, \emptyset, \{s\}, \{q, r\}, \{q, r, s\}\}$. Define $f : U \to V$ by f(a) = q, f(b) = r, f(c) = s and f(d) = p. Here fis nano continuous, nano $\alpha \hat{g}$ -continuous, nano α -continuous, nano g-continuous, nano \hat{g} -continuous, nano αg -continuous and nano αg -continuous but not strongly nano $\alpha \hat{g}$ -continuous.

Theorem 3.3. Every strongly nano continuous function is strongly nano $\alpha \hat{g}$ - continuous function.

Proof. Follows from the definitions.

Remark 3.2. The following example shows that the converse of theorem 3.3 need not be true.

Example 3. Let $U = \{p, q, r, s\}$, $U/R = \{\{p\}, \{q, r\}, \{s\}\}$ and $X = \{q, s\} \subseteq U$. Then $\tau_R(X) = \{U, \emptyset, \{s\}, \{q, r\}, \{q, r, s\}\}$. Also let $V = \{a, b, c, d\}, V/R' = \{\{a, b\}, \{c\}, \{d\}\}, Y = \{a, c\} \subseteq V$. Then nano $\alpha \hat{g}$ -closed sets of V are $\{V, \emptyset, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}\}$. Define a function $f : U \to V$ by f(p) = d, f(q) = a, f(r) = a and f(s) = a. Here f is strongly nano $\alpha \hat{g}$ -continuous but not strongly nano continuous.

Theorem 3.4. Every strongly nano $\alpha \hat{g}$ - continuous function is nano $\alpha \hat{g}$ -irresolute.

Proof. Let $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a strongly nano $\alpha \hat{g}$ -continuous function and B be a nano $\alpha \hat{g}$ -closed set in V. Then $f^{-1}(B)$ is nano closed in U. That is $f^{-1}(B)$ is nano $\alpha \hat{g}$ - closed in U. Hence f is nano $\alpha \hat{g}$ -irresolute.

Corollary 3.1. Every strongly nano continuous function is nano $\alpha \hat{g}$ -irresolute.

Proof. Follows from theorem 3.3 and theorem 3.4.

Remark 3.3. The converse of the theorem 3.4 need not be true as the following example shows.

Example 4. $U = \{a, b, c, d\}$ with $X = \{a, c\} \subseteq U$, $U/R = \{\{a, b\}, \{c\}, \{d\}\}\}$. Then $\tau_R(X) = \{U, \emptyset, \{c\}, \{a, b\}, \{a, b, c\}\}$. Also let $V = \{p, q, r, s\}, V/R' = \{\{q, r\}, \{p\}, \{s\}\}, Y = \{q, s\} \subseteq V$. Then nano $\alpha \hat{g}$ -closed sets of V are $\{V, \emptyset, \{p\}, \{p, q\}, \{p, r\}, \{p, s\}, \{p, q, r\}, [p, q, s\}, \{p, r, s\}$. Define $f : U \to V$ by f(a) = s, f(b) = r, f(c) = q, f(d) = p. Here f is nano $\alpha \hat{g}$ -irresolute but not strongly nano $\alpha \hat{g}$ -continuous.

Theorem 3.5. The composition of two strongly nano $\alpha \hat{g}$ -continuous functions is strongly nano $\alpha \hat{g}$ -continuous.

Proof. Let $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ and $g : (V, \tau_{R'}(Y)) \to (W, \tau_{R''}(Z))$ be two strongly nano $\alpha \hat{g}$ -continuous functions. Let B be any nano $\alpha \hat{g}$ -closed set in W. since g is strongly nano $\alpha \hat{g}$ -continuous, $g^{-1}(B)$ is nano closed in V. Then $g^{-1}(B)$ is nano $\alpha \hat{g}$ -closed in V. Since f is strongly nano $\alpha \hat{g}$ -continuous, $f^{-1}(g^{-1}(B))$ is nano closed in U. That is $(g \circ f)^{-1}(B)$ is nano closed in U. Hence $g \circ f$ is strongly nano $\alpha \hat{g}$ -continuous. \Box

Theorem 3.6. Let $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y) \text{ and } g : (V, \tau_{R'}(Y) \to (W, \tau_{R''}(Z)))$ be any two functions such that $g \circ f : (U, \tau_R(X)) \to (W, \tau_{R''}(Z))$ then

- (i) $g \circ f$ is strongly nano $\alpha \hat{g}$ -continuous if g is strongly nano $\alpha \hat{g}$ -continuous and f is nano continuous.
- (ii) $g \circ f$ is nano $\alpha \hat{g}$ -irresolute if g is strongly nano $\alpha \hat{g}$ -continuous and f is nano $\alpha \hat{g}$ -continuous(or f is nano $\alpha \hat{g}$ -irresolute)
- (iii) $g \circ f$ is nano continuous if g is nano continuous and f is strongly nano $\alpha \hat{g}$ -continuous.

Proof. (i) Let *B* be a nano $\alpha \hat{g}$ -closed set in *W*. Since *g* is strongly nano $\alpha \hat{g}$ continuous, $g^{-1}(B)$ is nano closed in *V*. Since *f* is nano continuous, $f^{-1}(g^{-1}(B))$ is nano closed in *U*. That is $(g \circ f)^{-1}(B)$ is nano closed in *U*. Hence $g \circ f$ is
strongly nano $\alpha \hat{g}$ -continuous.

(ii) Let B be a nano $\alpha \hat{g}$ -closed set in W. Since g is strongly nano $\alpha \hat{g}$ -continuous, $g^{-1}(B)$ is nano closed in V. Since f is nano $\alpha \hat{g}$ -continuous, $f^{-1}(g^{-1}(B))$ is nano

П

 $\alpha \hat{g}$ -closed in U. That is $(g \circ f)^{-1}(B)$ is nano $\alpha \hat{g}$ -closed in U. Hence $g \circ f$ is nano $\alpha \hat{g}$ -irresolute.

(iii) Let *B* be a nano closed set in *W*. Since *g* is nano continuous, $g^{-1}(B)$ is nano closed in *V*. Hence $g^{-1}(B)$ is nano $\alpha \hat{g}$ -closed in *V*. Since *f* is strongly nano $\alpha \hat{g}$ -continuous, $f^{-1}(g^{-1}(B))$ is nano closed in *U*. That is $(g \circ f)^{-1}(B)$ is nano closed in *U*. Hence $g \circ f$ is nano continuous.

4. Perfectly Nano $\alpha \hat{g}$ -continuous functions

Definition 4.1. A function $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ is said to be perfectly nano $\alpha \hat{g}$ -continuous if $f^{-1}(B)$ is nano clopen in U for every nano $\alpha \hat{g}$ -closed set B in V.

Example 5. Let $U = \{a, b, c, d\}$ with $X = \{a, b, c\} \subseteq U$, $U/R = \{\{a, c\}, \{b, d\}\}$. Then $\tau_R(X) = \{U, \emptyset, \{a, c\}, \{b, d\}\}$. Also let $V = \{a, b, c, d\}, V/R' = \{\{a, b\}, \{c, d\}\}$, $Y = \{a, b, c\} \subseteq V$. $\tau_{R'}(Y) = \{V, \emptyset, \{a, b\}, \{c, d\}\}$. Define $f : U \to V$ by f(a) = c, f(b) = a, f(c) = d, f(d) = b. Here inverse image of every nano $\alpha \hat{g}$ -closed sets in V is nano clopen in U. Hence f is perfectly nano $\alpha \hat{g}$ -continuous.

Theorem 4.1. A function $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ is perfectly nano $\alpha \hat{g}$ continuous if and only if $f^{-1}(B)$ is nano clopen in $(U, \tau_R(X))$ for every nano $\alpha \hat{g}$ open set B in $(V, \tau_{R'}(Y))$.

Proof. Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a perfectly nano $\alpha \hat{g}$ - continuous function and B b a nano $\alpha \hat{g}$ -open set in V. Then B^c is nano $\alpha \hat{g}$ -closed in V. Therefore $f^{-1}(B^c)$ is nano clopen in U. But $f^{-1}(B^c) = [f^{-1}(B)]^c$ and hence $f^{-1}(B)$ is nano clopen in U. Converse is obvious.

Theorem 4.2. Every perfectly nano $\alpha \hat{g}$ -continuous function is strongly nano $\alpha \hat{g}$ -continuous.

Proof. Follows from the definitions.

Remark 4.1. The converse of the theorem 4.2 need not be true.

Example 6. In example 1, f is strongly nano $\alpha \hat{g}$ -continuous but not perfectly nano $\alpha \hat{g}$ -continuous.

Theorem 4.3. If $(U, \tau_R(X))$ is extremely disconnected then every strongly nano $\alpha \hat{g}$ -continuous is perfectly nano $\alpha \hat{g}$ -continuous.

Proof. Let $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a strongly nano $\alpha \hat{g}$ -continuous function. Then for every nano $\alpha \hat{g}$ -closed set in V, $f^{-1}(B)$ is nano closed in U. Since U is extremely disconnected, $f^{-1}(B)$ is nano clopen in U. Hence f is perfectly nano $\alpha \hat{g}$ -continuous.

Theorem 4.4. Let $(U, \tau_R(X))$ be a indiscrete nano topological space, $(V, \tau_{R'}(Y))$ be a nano topological space and $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be any function, then the following statements are equivalent.

- (i) *f* is perfectly nano $\alpha \hat{g}$ -continuous.
- (ii) f is strongly nano $\alpha \hat{g}$ -continuous.

Proof. (i) \Rightarrow (ii) Follows from theorem 4.2.

(ii) \Rightarrow (i) Let *B* be a nano $\alpha \hat{g}$ -closed set in *V*. By hypothesis, $f^{-1}(B)$ is nano closed in *U*. Since $(U, \tau_R(X))$ is a indiscrete nano topological space, $f^{-1}(B)$ is nano clopen in *U*. Hence *f* is perfectly nano $\alpha \hat{g}$ -continuous.

Theorem 4.5. Every strongly nano continuous function is perfectly nano $\alpha \hat{g}$ -continuous.

Proof. Let f be a strongly nano continuous function. Let B be a nano $\alpha \hat{g}$ -closed set in $(V, \tau_{R'}(Y))$, then $f^{-1}(B)$ is nano clopen in $(U, \tau_R(X))$. Hence f is perfectly nano $\alpha \hat{g}$ -continuous.

Remark 4.2. The following example shows that the converse of the above theorem need not be true.

Example 7. In example 5, f is perfectly nano $\alpha \hat{g}$ -continuous, but not strongly nano continuous.

Theorem 4.6. The composition of two perfectly nano $\alpha \hat{g}$ -continuous functions is perfectly nano $\alpha \hat{g}$ -continuous.

Proof. If $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ and $g : (V, \tau_{R'}(Y)) \to (W, \tau_{R''}(Z))$ be two perfectly nano $\alpha \hat{g}$ -continuous functions. Let B be a nano $\alpha \hat{g}$ -closed set in $(W, \tau_{R''}(Z))$, since g is perfectly nano $\alpha \hat{g}$ -continuous, $g^{-1}(B)$ is nano clopen in $(V, \tau_{R'}(Y))$. Since every nano closed set is nano $\alpha \hat{g}$ -closed, $g^{-1}(B)$ is nano $\alpha \hat{g}$ -closed in V. Since f is perfectly nano $\alpha \hat{g}$ -continuous, $f^{-1}(g^{-1}(B))$ is nano clopen in $(U, \tau_R(X))$. That is $(g \circ f)^{-1}(B)$ is nano clopen in U. Hence $g \circ f$ is perfectly nano $\alpha \hat{g}$ -continuous.

Theorem 4.7. Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ and $g: (V, \tau_{R'}(Y)) \to (W, \tau_{R''}(Z))$ be any two functions such that $g \circ f: (U, \tau_R(X)) \to (W, \tau_{R''}(Z))$ then,

- (i) $g \circ f$ is perfectly nano $\alpha \hat{g}$ -continuous if g is strongly nano $\alpha \hat{g}$ -continuous and f is perfectly nano $\alpha \hat{g}$ -continuous.
- (ii) $g \circ f$ is strongly nano $\alpha \hat{g}$ -continuous if g is perfectly nano $\alpha \hat{g}$ -continuous and f is strongly nano $\alpha \hat{g}$ -continuous(or f is nano continuous).
- (iii) $g \circ f$ is nano $\alpha \hat{g}$ irresolute if g is perfectly nano $\alpha \hat{g}$ -continuous and f is nano $\alpha \hat{g}$ -continuous (or f is nano $\alpha \hat{g}$ -irresolute).

Remark 4.3. From the above theorems and examples we have the following diagram.

- 1. Perfectly nano $\alpha \hat{g}$ -continuous
- 3. Nano $\alpha\text{-continuous}$
- 5. Nano $\alpha \hat{g}$ -irresolute

Strogly nano *αĝ*-continuous
 Strongly nano continuous
 Nano *αĝ*-continuous

REFERENCES

 K. BHUVANESWARI, K. MYTHILI GNANAPRIYA: On nano generalized continuous functions in nano topological space, International Journal of Mathematical Archive, 6(6) (2015), 182–186.

- [2] M. DAVAMANI CHRISTOBER, A. VINITH MALA: A Novel Concept of generalized closed sets through Nano Topology, Infokara Research, 9(1) (2020),838–846.
- [3] R. LALITHA, A. FRANCINA SHALINI: On nano generalized continuous and irresolute functions in Nano Topological spaces, International Journal of Engineering Science and Computing, 7(5) (2017), 11370–11374.
- [4] M. LELLIS THIVAGAR, C. RICHARD: On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1) (2013), 31–37.
- [5] M. LELLIS THIVAGAR, C. RICHARD: On Nano Continuity, Mathematical Theory and Modelling, 3(7) (2013), 32–37.
- [6] M. LELLIS THIVAGAR, S. JAFARI, V. SUTHA DEVI: On new class of contra Continuity in Nano Topology, Italian Journal of Pure and Applied Mathematics, **43** (2020), 25–36.
- [7] N. LEVINE: Generalized closed sets in topology, Rend.Circ.Math. Palermo, 19 (1970), 89– 96.
- [8] O. NJASTAD: On some classes of nearly open sets, Pacific Journal of Mathematics, 15 (1965), 961–970.
- [9] R. THANGA NACHIYAR, K. BHUVANESWARI: Nano generalized A-continuous and nano Ageneralized continuous functions in nano Topological spaces, International Journal of Mathematics Trends and Technology, 14(2) (2014), 79–83.

DEPARTMENT OF MATHEMATICS THE AMERICAN COLLEGE MADURAI-02, TAMILNADU, INDIA *Email address*: christober.md@gmail.com

DEPARTMENT OF MATHEMATICS THE AMERICAN COLLEGE MADURAI-02, TAMILNADU, INDIA *Email address*: vinithmala1986@gmail.com