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(a, d)-TOTAL NEIGHBORHOOD-ANTIMAGIC LABELING

SIDDHANT TRIVEDI1 AND NARENDRA SHRIMALI

ABSTRACT. In this paper, we introduce a new variant of (a, d)-antimagic to-
tal labeling for a graph G = (V,E) called (a, d)-total neighborhood-antimagic
labeling (TNAL). A total labeling is said to be an (a, d)-total neighborhood-
antimagic labeling if the set of total weights of vertices form an arithmetic pro-
gression with initial value a and difference d. We give some necessary condi-
tions for the existence of this labeling for a graph G. We investigate (a, d)-total
neighborhood-antimagic labeling of cycle Cn. We also discuss the construction
of dual labeling from the existing labeling.

1. INTRODUCTION

All graphs G = (V,E) considered here are finite, simple, connected and undi-
rected. Throughout this paper, we use notations v and e for the cardinality of
vertex set V and edge set E respectively, N(x) for the neighborhood of a vertex
x, deg(x) for the degree of a vertex x, ∆ and δ for maximum degree and mini-
mum degree of vertex in a graph G respectively.

A labeling of graph whose domain is V ∪ E and co-domain is the set of
numbers (positive or non-negative integers) is called total labeling. In [1]
N. Hartsfield and G. Ringel introduced antimagic labeling of graphs. In [2],
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R. Bodendiek and G. Walther firstly introduced (a, d)−arithmetic antimagic la-
beling. They have established the necessary condition for a graph to become
(a, d)−arithmetic antimagic graphs through the Diophantine equation. They
have proved positive results for cycle C2n, path P2n, star Sn(n ≥ 3), Cube Q3

and several complete graphs Kn admits (a, d)−arithmetic labeling. They have
also proved negative results for binary tree, n-ary tree, complete graph K4, Ku-
ratowski Graph and Peterson graph. The variant of this labeling was introduced
by M. Bac̆a et al. in [3] as (a, d)-vertex antimagic total labeling. A total labeling
λ is called (a, d)-vertex antimagic total labeling if the sum λ(x)+λ(xy) for every
vertex x ∈ V forms (a, d)-arithmetic progression. In [4], Simanjuntak et al. de-
fined (a, d)-edge magic total labeling. The details of research work about these
labelings are available in [5]. Motivated by the study of (a, d)-vertex antimagic
total labeling, we introduce a new variant of (a, d)-antimagic total labeling and
we call it (a, d)-total neighborhood-antimagic labeling (See Definition 1.2). By
total neighborhood of a vertex x we mean the set of adjacent vertices and inci-
dent edges to the vertex x. In general context, the term weight of the vertex was
earlier defined by many authors as the sum of appropriate labels at a vertex and
it is denoted by w(x) or wt(x). Here, we define the weight of a vertex as follows.
To avoid ambiguity we call it total weight(See Definition 1.1) of the vertex.

Definition 1.1. Let G = (V,E) be a graph. For any labeling λ, the total weight of
vertex x ∈ V is defined as

∑
y∈N(x)

[λ(y) + λ(xy)], where N(x) = {z|z is adjacent to

x}, xy ∈ E. We use notation WT (x) for total weight at vertex x.

Definition 1.2. Let G = (V,E) be a graph with v vertices and e edges. A bijec-
tion λ : V (G) ∪ E(G) → {1, 2, · · · , v + e} is called an (a, d)-total neighborhood-
antimagic labeling (TNAL) of G if the set of total weights of vertices form an
arithmetic progression with initial value a and difference d. A graph G admits
an (a, d)-total neighborhood-antimagic labeling (TNAL) is called an (a, d)-total
neighborhood-antimagic graph.

2. BASIC COUNTING

Let G = (V,E) be any graph. Let us denote |V | = v and |E| = e and M = v+e.
Let Sv, Se denotes the sum of vertex labels and sum of edge labels respectively.
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Note that the sum of all the labels is :

(2.1) Sv + Se =
M∑
i=1

i =

(
M + 1

2

)
If λ : V ∪ E → {1, 2, · · · , v + e} is an (a, d)-total neighborhood-antimagic

labeling with total weights WT (xi) = a+ id, then the summing of total weights
over all vertices adds each vertex label deg(x) times and each edge label twice,
so we have:

v∑
i=1

deg(xi)λ(xi) + 2Se =
v

2
(2a+ (v − 1)d).

If δ denotes the smallest degree in G, then the minimum possible total weight
on a vertex is at least 1 + 2 + · · ·+ 2δ,

a ≥ δ(2δ + 1).

Similarly, if ∆ denotes the largest degree in G, then the maximum total weight
of vertex can not exceed the sum of the 2∆ largest labels. Therefore,

a+ (v − 1)d ≤
M∑

M−(2∆−1)

i

= ∆(2M − 2∆ + 1).

We summarize above discussion in Theorem 2.1. This theorem gives neces-
sary conditions for the existence of an (a, d)-total neighborhood-antimagic la-
beling for a graph G.

Theorem 2.1. Let G = (V,E) be any graph with v ≥ 2 and e ≥ 1. If λ : V ∪E →
{1, 2, · · · , v + e} is an (a, d)-total neighborhood-antimagic labeling of G then G

must satisfy following conditions:

(a) If Se denotes the sum of all edge labels then

(2.2)
v∑

i=1

deg(xi)λ(xi) + 2Se = va+
v(v − 1)

2
d,

where xi ∈ V , 1 ≤ i ≤ v and deg(xi) ≥ 1.
(b) If δ is the smallest degree in G, then a ≥ δ(2δ + 1).
(c) If ∆ is the largest degree in G, then d ≤ ∆(2(v+e)−2∆+1)−δ(2δ+1)

v−1
.
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Corollary 2.1. If G = (V,E) with v = n ≥ 2 and e ≥ 1 is an r-regular graph and
λ is an (a, d)-total neighborhood-antimagic labeling, then

(2.3) rSv + 2Se = na+
n(n− 1)

2
d.

Here Sv and Se denotes the sum of vertex labels and sum of edge labels respectively.

Proof. Substitute deg(xi) = r in Equation (2.2), we get required result. �

Corollary 2.2. If G = (V,E) with v = n ≥ 2 and e ≥ 1 is an 2-regular graph and
λ is an (a, d)-total neighborhood-antimagic labeling, then

(2.4) 2na+ n(n− 1) d = 2(n+ e)(n+ e+ 1).

Proof. Substitute r = 2 in Equation (2.3) and using Equation (2.1), we get de-
sired result. �

3. CYCLES WITH ODD LENGTH

In this section, we provide (a, d)-total neighborhood-antimagic labeling for
cycles having odd length. For odd cycle Cn where n = 2k + 1, k ∈ N, we have
v = e = 2k + 1 and δ = ∆ = 2. We substitute all these values in Equation (2.4),
we have linear Diophantine equation

(3.1) a+ k d = 8k + 6.

The particular solution of the above equation is a0 = 6 and d0 = 8. The set
of all possible solutions is given by a = 6 + kt and b = 8 − t, for t ∈ Z. The
positive solutions of Equation (3.1) can be obtained by taking feasible value of
t. (See [6])

Theorem 3.1. For odd n ≥ 3, the cycle Cn has (7n+5
2

, 1)-total neighorhood-antimagic
labeling.

Proof. Let (v1, v2, · · · , vn) be a cycle of length n ≥ 3. Let ei be an edge corre-
sponds to consecutive vertices vi and vi+1 of cycle Cn, where the subscripts of
vertices and edges are calculated under modulo n. We label the vertices and
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edges of Cn by

λ(vi) = 2n− i, 1 ≤ i < n

λ(vn) = 2n

λ(ei) =

 i+1
2

if i is odd
n+1+i

2
if i is even

where 1 ≤ i ≤ n.
Note that the total weight of each vertices are as follows:

WT (vi) =


9n+1

2
if i = n

9n+3
2

if i = n− 1

9n+1
2

− i otherwise

Apparently, the total weights of vertices are 9n−1
2

, 9n−3
2

, · · · , 7n+5
2

, 9n+3
2

, 9n+1
2

. Which
form arithmetic progression with initial value a = 7n+5

2
(achieved at vertex vn−2)

and difference d = 1. �

Theorem 3.2. For odd n ≥ 3, the cycle Cn has (3n + 3, 2)-total neighborhood-
antimagic labeling.

Proof. Let (v1, v2, · · · , vn) be a cycle of length n ≥ 3. Let ei denote the edge
between consecutive vertices vi and vi+1 of cycle Cn, where the subscripts of
vertices and edges are calculated under modulo n. If we label the vertices and
edges of Cn by

λ(v1) = 2,

λ(vi) = (2n+ 4)− 2i, 2 ≤ i ≤ n

λ(ei) =

i if i is odd

n+ i if i is even

where 1 ≤ i ≤ n. Then the total weight of each vertices are

WT (vi) =


3n+ 5 if i = 1

3n+ 3 if i = 2

5n+ 7− 2i otherwise.
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Evidently, the total weights of vertices are 3n+5, 3n+3, 5n+1, · · · , 3n+7. Which
form arithmetic progression with initial value a = 3n+ 3 (attained at vertex v2)
and difference d = 2. �

Theorem 3.3. For odd n ≥ 3, the cycle Cn has (2n + 4, 4)-total neighborhood-
antimagic labeling.

Proof. Let (v1, v2, · · · , vn) be a cycle of length n ≥ 3. Let ei denote the edge
between consecutive vertices vi and vi+1 of cycle Cn, where the subscripts of
vertices and edges are calculated under modulo n. We define a labeling λ :

V (Cn) ∪ E(Cn) → {1, 2, · · · , n} by considering the following two cases:

Case-I: When n ≡ 3 (mod 4), we assign the labels to vertices and edges of Cn

as follows:

λ(vi) =

2i if i = 1, 5, 9 · · · , n− 2

2(i− 1) if i = 3, 7, 11 · · · , n

λ(vi) =

2(i+ 1) if i = 2, 6, 10, · · · , n− 1

2i if i = 4, 8, 12, · · · , n− 3

λ(ei) =


(2n− 1)− 2i if i is odd and i < n

2i− 3 if i is even

2n− 1 if i = n

Case-II: When n ≡ 1 (mod 4), we assign the labels to vertices and edges of Cn

as follows:

λ(vi) =

2i if i = 1, 5, 9 · · · , n
2(i− 1) if i = 3, 7, 11 · · · , n− 2

λ(vi) =

2(i+ 1) if i = 2, 6, 10, · · · , n− 3

2i if i = 4, 8, 12, · · · , n− 1

λ(ei) =


(2n− 3)− 2i if i is odd and i < n

2i− 1 if i is even

2n− 1 if i = n
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In both the cases, the total weights of vertices are given by

WT (vi) =

6n if i = 1

(2n+ 4) + 4(i− 2) if 2 ≤ i ≤ n.

Obviously, the total weights of vertices of Cn are 6n, 2n + 4, 2n + 8, · · · , 6n − 4

respectively. Which form arithmetic progression with initial value a = 2n + 4

(attained at v2) and difference d = 4. �

(A) (11,3)-TNAL of C3 (B) (16,3)-TNAL of C5 (C) (21,3)-TNAL of C7

FIGURE 1. (5n+7
2

, 3)-TNAL of cycle Cn for n = 3, 5, 7

We have shown (11, 3), (16, 3) and (21, 3)-total neighborhood-antimagic label-
ing of cycles C3, C5 and C7 in Figure 1 (a), (b) and (c) respectively. However, it
is difficult to determine a unique labeling pattern which admits (5n+7

2
, 3)-total

neighborhood-antimagic labeling for general cycle Cn(odd length). To deter-
mine the general pattern of (5n+7

2
, 3)-total neighborhood-antimagic labeling of

odd cycles, we state as an open problem.
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Open Problem 1. For odd n ≥ 3, the cycle Cn has (5n+7
2

, 3)-total neighborhood-
antimagic labeling.

4. CYCLES WITH EVEN LENGTH

In this section, we investigate (a, d)-total neighborhood-antimagic labeling of
cycle having even length. In particular, we calculate initial value a and differ-
ence d for even cycles. Further, we discuss (12, 4) and (15, 2)-TNAL for a cycle
C4. Later on, we show that there does not exist any (a, d)-total neighborhood-
antimagic labeling where d = 1, 3 and 5 for even cycle Cn.

Consider the even cycle Cn where n = 2k, k ∈ N, we have v = e = 2k.
Substituting these values in Equation (2.4), we get

(4.1) 2a+ (2k − 1)d = 16k + 4.

Clearly, the particular solution of above equation is a = 6 and d = 8. The set of
all solutions is given by a = 6 + (2k − 1)t and d = 8− 2t. The set of all positive
solutions can be obtained by taking t ∈ {−1, 0, 1, 2, 3}. From Theorem 2.1 it
follows that, the only possible positive solutions are (i) a = 4k + 4, d = 4 (ii)
a = 6k + 3, d = 2.

Theorem 4.1. The cycle C4 does not admit a (12, 4)-total neighborhood-antimagic
labeling.

Proof. Let us denote the vertex set and edge set of cycle C4 as V (C4) = {vi|i =
1, 2, 3, 4} and E(C4) = {ei|i = 1, 2, 3, 4}. If we think about one-one map from
f : V (C4) ∪ E(C4) → {1, 2, · · · , 8} then there are 8! = 40, 320 such maps,
which may or may not satisfy our requirement. That means, out of these we
are interested in those maps for which total weights of vertices form (12, 4)-
arithmetic progression. The theory of permutation tells us the following six
distinct arrangements, which form (12, 4)-arithmetic progression according to
its total weights:
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(A) Arrangement A (B) Arrangement B (C) Arrangement C

(D) Arrangement D (E) Arrangement E (F) Arrangement F

If there exists (12, 4)-total neighborhood-antimagic labeling of cycle C4 then
it must follow one of the above six arrangement. By selecting an arrangement
A, we assign the labels to vertices and edges. For the sake of convenience, let
the total weights of vertices be WT (v1) = 12,WT (v2) = 16,WT (v3) = 20 and
WT (v4) = 24. The choices of partitions for these weights are shown in Table
1. Using the choices of partitions, we assign the labels to the vertices v2 and v4.
There are six choices to select these two labels from the selected partitions. Let
us select first partition of 12 from the table 1, then we have six choices namely
(1) 1, 2 (2) 1, 3 (3) 1, 6 (4) 2, 3 (5) 2, 6 and (6) 3, 6 to label the vertices v2 and
v4. Among these six choices, we can easily eliminate two choices namely (1)
and (2) as there is no partition of WT (v3) = 20 consisting 1, 2 and 1, 3. In the
remaining choices, if we try to assign the labels to the other vertices and edges
using the choices of partitions then any of the one label will be repeated. Thus,
such an arrangement is not possible for first partition (i) 1 + 2 + 3 + 6. Now,
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we repeat the same process for second partition (ii) 1 + 2 + 4 + 5 of 12. One
may also agree that in partition (ii) such an arrangement is again not possible.
Hence, it eliminate the arrangement A. So, under this arrangement A there is
no (12, 4)-TNAL exist.

TABLE 1. Choices of Partition for total weights

Sr. No. Total Weights WT (v) Choices of Partitions

1 12 (i) 1 + 2 + 3 + 6 (ii) 1 + 2 + 4 + 5

2 16 (i) 1 + 2 + 5 + 8 (ii) 1 + 2 + 6 + 7

(iii) 1 + 3 + 4 + 8 (iv) 1 + 3 + 5 + 7

(v) 1 + 4 + 5 + 6 (vi) 2 + 3 + 4 + 7

(vii) 2 + 3 + 5 + 6

3 20 (i) 1 + 4 + 7 + 8 (ii) 1 + 5 + 6 + 8

(iii) 2 + 3 + 7 + 8 (iv) 2 + 4 + 6 + 8

(v) 2 + 5 + 6 + 7 (vi) 3 + 4 + 5 + 8

(vii) 3 + 4 + 6 + 7

4 24 (i) 3 + 6 + 7 + 8 (ii) 4 + 5 + 7 + 8

Similarly, one can eliminate arrangement B and C. Note that arrangement A
& F, B & D and C & E are similar. Since, we are failed to arrange the weight
16 in arrangement A, then because of symmetry of C4 arrangement F is also not
possible. Similarly, the arrangements D and E are also eliminated. Thus, C4

does not admit (12, 4)-total neighborhood-antimagic labeling. �

Remark 4.1. Note that the Theorem 4.1 shows that the conditions given Theorem
2.1 is necessary but not sufficient.

Using the above methodology described in the proof of Theorem 4.1, the
(15, 2)-total neighborhood-antimagic labeling of C4 has shown in Figure 2.2.

Theorem 4.2. For even n, there does not exist any integer a such that the cycle Cn

admit (a, 1)-total neighborhood-antimagic labeling.

Proof. Let n = 2k, k ∈ N. Taking d = 1 in Equation (4.1), we have a = 14k+5
2

,
which is not an integer for any value of k. �
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(A) (B) (C)

v

(D) (E) (F)

FIGURE 3. Different (15, 2)-TNAL of cycle C4

Theorem 4.3. For even n, there does not exist any integer a such that the cycle Cn

admit (a, 3)-total neighborhood-antimagic labeling.

Proof. Let n = 2k, k ∈ N. Taking d = 3 in Equation (4.1), we have a = 10k+7
2

,
which is not an integer for any value of k. �

Theorem 4.4. For even n, there does not exist any integer a such that the cycle Cn

admit (a, 5)-total neighborhood-antimagic labeling.

Proof. Let n = 2k, k ∈ N. Taking d = 5 in Equation (4.1), we have a = 6k+9
2

,
which is not an integer for any value of k. �
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Open Problem 2. For the cycle Cn (n > 4), determine if there is an (a, d)-total
neighborhood-antimagic labeling for (i) a = 3n+3, d = 2 and (ii) a = 2n+4, d = 4.

5. DUAL LABELING

For given TNAL on a graph G = (V,E), one can create another TNALs from it.
If λ : V ∪ E → {1, 2, · · · v + e} is a injective then the dual λ′ of λ on V ∪ E is
defined as follows:

λ(x) = v + e+ 1− λ(x), x ∈ V

λ(xy) = v + e+ 1− λ(xy), xy ∈ E

In general, the concept of finding dual labeling with the help of existing label-
ing is only true for regular graphs, which was introduced in [7] for edge-magic
total labeling. The same concept also holds for TNAL. Let us see the following
theorem, which provide us different labeling for the same graph.

Theorem 5.1. The dual of (a, d)-total neighborhood-antimagic labeling for a graph
G is an (a′, d)-total neighborhood-antimagic labeling for some a′ if and only if G is
regular.

Proof. Let λ is an (a, d)-total neighborhood-antimagic labeling for G = (V,E).
The set Wλ = {WTλ(x)|x ∈ V } = {a, a + d, · · · , a + (v − 1)d} denote the set of
total weights at each vertex x in a graph G, which is in arithematic progression.
Now, for any vertex x ∈ V we have

WTλ′(x) =
∑

y∈N(x)

λ′(y) +
∑
xy∈E

λ′(xy)

=
∑

y∈N(x)

[(v + e+ 1)− λ(y)] +
∑
xy∈E

[(v + e+ 1)− λ(xy)]

=
∑

y∈N(x)

(v + e+ 1) +
∑
xy∈E

(v + e+ 1)−
( ∑

y∈N(x)

λ(y) +
∑
xy∈E

λ(xy)

)
= (vx + ex)(v + e+ 1)−WTλ(x)

where vx is the number of vertices adjacent to x and ex is the edges incident
to vertex x. Obviously, the set Wλ′ = {WTλ′(x)|x ∈ V } contains arithmetic
progression with same difference d if and only if vx and ex is constant for every
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x. That means this is possible only when G is regular graph. This completes the
poof. �

Corollary 5.1. Let G be a regular graph of degree s. Then G has a (a, d)-total
neighborhood-antimagic labeling if and only if G has an (a′, d)-total neighborhood-
antimagic total labeling for a′ = 2s(v + e+ 1)− a− (v − 1)d

Proof. The proof follows from the above theorem. �
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