ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.7, 4687–4694 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.7.35

m-ZUMKELLER GRAPHS

HARISH PATODIA¹ AND HELEN K. SAIKIA

ABSTRACT. A positive integer n is an m-Zumkeller number if the positive divisors of n can be partitioned into two disjoint subsets of equal product. In this paper, we provide algorithms to label complete bipartite graphs and wheel graphs by m-Zumkeller numbers.

1. INTRODUCTION

A positive integer n is perfect if it is the sum of all of its proper positive divisors. Generalizing this concept, R.H. Zumkeller defined a new type of number called Zumkeller number, which is a positive integer such that we can partition the positive divisors of the integer into two disjoint subsets of equal sum. Various properties of Zumkeller numbers are studied in [3]. In [1] the authors had provided algorithms for Zumkeller labeling of complete bipartite graphs and wheel graphs.

A positive integer n is called an m-Zumkeller number [2] if the positive divisors of n can be partitioned into two disjoint subsets of equal product. In this paper, we provide algorithms to label complete bipartite graphs and wheel graphs by m-Zumkeller numbers.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 11Axx, 97F60, 05Cxx.

Key words and phrases. Perfect Numbers, *m*-Zumkeller numbers, *m*-Zumkeller labeling, Complete bipartite graphs, Wheel graphs.

H. PATODIA AND H. K. SAIKIA

2. PROPERTIES OF *m*-ZUMKELLER NUMBERS

Various properties of *m*-Zumkeller numbers discussed in [2] are given below-

- (1) If *n* is an *m*-Zumkeller number, then $\tau(n) \ge 4$, where $\tau(n)$ gives the number of positive divisors of *n*.
- (2) The integer $n = \prod_{i=1}^{r} p_i^{\alpha_i}$ (where $p_i^{\prime s}$ are distinct primes) is an *m*-Zumkeller number if and only if $4|\alpha_i \tau(n) \quad \forall i = 1, 2, ..., r$.
- (3) The product of distinct prime numbers i.e. ∏_{i=1} p_i (where p's are distinct primes, r ≥ 2) are always m-Zumkeller numbers.
- (4) If p is prime then p^{α} is an m-Zumkeller number if and only if $\alpha \equiv 0 \pmod{4}$ or $\alpha \equiv 3 \pmod{4}$.

Example 1. The integers 6, 8, 10, 14, 15, 16, 21, 22 are the first few *m*-Zumkeller numbers.

For 16, the positive divisors of 16 are 1, 2, 4, 8, 16. This divisors of 16 can be partitioned into two subsets, $P = \{1, 2, 16\}$ and $Q = \{4, 8\}$ such that the product of all the elements in each subset is 32. Hence, 16 is an *m*-Zumkeller number.

3. MAIN RESULTS

In this section we define m-Zumkeller graph and provide algorithms to label complete bipartite graphs and wheel graphs by m-Zumkeller numbers.

Definition 3.1. Let G = (V, E) be a graph. A one-one function $f : V \longrightarrow N$ is said to be an *m*-Zumkeller labeling of the graph G, if the induced function $f^* : E \longrightarrow N$ defined as $f^*(xy) = f(x) f(y)$ is an *m*-Zumkeller number for all $xy \in E$ and $x, y \in V$.

Definition 3.2. A graph is said to be an *m*-Zumkeller graph if it admits an *m*-Zumkeller labeling.

Example 2. The *m*-Zumkeller labeling of a graph is given in the figure 1. Here, all the integers on each edges are *m*-Zumkeller numbers.

Proposition 3.1. A non-totally disconnected subgraph of an *m*-Zumkeller graph is an *m*-Zumkeller graph.

FIGURE 1. *m*-Zumkeller graph

Proof. Let G be an m-Zumkeller graph and G' be its subgraph such that G' is not a totally disconnected graph. Since the edges of G' are labeled by multiplying the labels of the end vertices of the edges in G, hence the non-totally disconnected subgraph G' is an m-Zumkeller graph.

4. *m*-Zumkeller Labeling Algorithm For Complete Bipartite Graph

Input: A complete bipartite graph $K_{p,q}$ having p + q vertices and mn edges. Output: *m*-Zumkeller complete bipartite graph.

 $\label{eq:procedure: mzum_lab_complete bipartite graph.$

 $U = \{u_i | 1 \le i \le p\}$ and $V = \{v_j | 1 \le j \le q\}$ be the two disjoint vertex sets of the graph $K_{m,n}$.

```
\begin{array}{ll} p_1 := \texttt{a} & \texttt{prime number} \neq 2 < 10 \\ p_2 := \texttt{a} & \texttt{prime number} \neq 2 < 10 \\ p_1 \neq p_2 \\ \texttt{for } i := 1 \texttt{ to } p \texttt{ do} \\ & f(u_i) = p_1 2^i \\ \texttt{for } j := 1 \texttt{ to } q \texttt{ do} \\ & f(v_j) = p_2 2^j \\ \texttt{if } i \neq j \texttt{ then} \\ \texttt{begin} \\ & \texttt{for } i := 1 \texttt{ to } p \texttt{ do} \\ & \texttt{begin} \\ & \texttt{for } j := 1 \texttt{ to } q \texttt{ do} \\ & f^*(u_i v_j) = f(u_i) f(v_j) \\ & \texttt{end} \\ & \texttt{end} \end{array}
```

else

 $f^*(u_i v_i) = f(u_i) f(v_i)$ end $Zum_lab_complete$ bipartite graph.

Proposition 4.1. The complete bipartite graph $K_{p,q}$ is an *m*-Zumkeller graph.

Proof. Let $U = \{u_1, u_2, \ldots, u_p\}$ and $V = \{v_1, v_2, \ldots, v_q\}$ be the two disjoint vertex sets of the complete bipartite graph $K_{p,q}$ and $E = \{e_{ij} = u_i v_j | 1 \le i \le p, 1 \le j \le q\}$ be the edge set of $K_{p,q}$.

Let $f: W \longrightarrow N$ such that

$$f(u_i) = p_1 2^i \quad \forall u_i \in U, \quad 1 \le i \le p$$

$$f(v_i) = p_2 2^j \quad \forall v_i \in V, \quad 1 \le j \le q,$$

where p_1 and p_2 are distinct prime numbers and $2 < p_1, p_2 \le 10$.

Define an induced function $f^* : E \longrightarrow N$ such that

$$f^*(e_{ij}) = f^*(u_i v_j), \qquad 1 \le i \le p, \quad 1 \le j \le q$$

= $f(u_i) f(v_j).$

Now if i = j then

 $f^*(e_{ij}) = f^*(u_i v_j) = f(u_i) f(v_j) = p_1 p_2 2^{2i}$ is clearly an *m*-Zumkeller number since $\tau(p_1 p_2 2^{2i})$ is a multiple of 4.

Again if $i \neq j$ then

 $f^*(e_{ij}) = f^*(u_i v_j) = f(u_i) f(v_j) = p_1 p_2 2^{i+j}$ is also clearly an *m*-Zumkeller number since $\tau (p_1 p_2 2^{i+j})$ is a multiple of 4.

Hence, $K_{p,q}$ is an *m*-Zumkeller graph.

Corollary 4.1. *Every bipartite graph allows an m*-*Zumkeller labeling.*

Proof. Since every bipartite graph is a non-totally disconnected subgraph of a complete bipartite graph, the result follows. \Box

Example 3. The complete bipartite graph $K_{6,3}$ is an *m*-Zumkeller graph for $p_1 = 3$ and $p_2 = 5$ which is given in the figure 2.

4690

FIGURE 2. *m*-Zumkeller labeling of $K_{6.3}$

5. *m*-Zumkeller Labeling Algorithm For Wheel Graph

Input: A wheel graph $W_n = K_1 + C_n$ Output: *m*-Zumkeller wheel graph Procedure: Zum_{lab} wheel graph $W_n = K_1 + C_n$. Let w_0 be the central vertex of the wheel graph W_n // w_1, w_2, \ldots, w_n be the vertices of C_n in W_n // $E = \{e_i = w_i w_{i+1} | 1 \le i \le n-1\} \bigcup \{e_n = w_n w_1\} \bigcup \{e'_i = w_0 w_i | 1 \le i \le n\}$ be the edge set of the wheel graph W_n $p_1 :=$ a prime number $\neq 2 < 12$ $p_2 :=$ a prime number $\neq 2 < 12$ $p_3 := a \text{ prime number} \neq 2 < 12$ $p_4 :=$ a prime number $\neq 2 < 12$ $p_1 \neq p_2, p_1 \neq p_3, p_1 \neq p_4, p_2 \neq p_3, p_2 \neq p_4, p_3 \neq p_4$ $f(w_0) = 2p_1//f$ is an injective function on the vertex set of W_n If $n \equiv 1 \pmod{2}$ then begin for $i = 1, 3, 5, \ldots, n - 2$ do begin $f(w_i) = p_2 2^{\frac{i+1}{2}}$ $f(w_{i+1}) = p_3 2^{\frac{i+1}{2}}$ end if i = n then $f\left(w_n\right) = 2p_4$ end else begin for $i = 1, 3, 5, \ldots, n - 1$ do

```
begin

f(w_i) = p_2 2^{\frac{i+1}{2}}
f(w_{i+1}) = p_3 2^{\frac{i+1}{2}}
end

end

end

Zum_lab_wheel graph W_n = K_1 + C_n.
```

Proposition 5.1. The wheel graph $W_n = K_1 + C_n$ is an *m*-Zumkeller graph.

Proof. Let w_0 be the central vertex and w_1, w_2, \ldots, w_n be the rim vertices of W_n . Let $E = \{e_i = w_i w_{i+1} | 1 \le i \le n-1\} \cup \{e_n = w_n w_1\} \cup \{e'_i = w_0 w_i | 1 \le i \le n\}$ be the edge set of the wheel graph W_n . Now we have the following two cases:

Case (1) If $n \equiv 1 \pmod{2}$.

Define an injective function $f: V \longrightarrow N$ such that

$$f(w_0) = 2p_1$$

$$f(w_i) = p_2 2^{\frac{i+1}{2}}, i = 1, 3, 5, \dots, n-2$$

$$f(w_{i+1}) = p_3 2^{\frac{i+1}{2}}, i = 1, 3, 5, \dots, n-2$$

$$f(w_n) = 2p_4,$$

where p_1, p_2, p_3, p_4 are distinct primes such that $2 < p_i < 12$, i = 1, 2, 3, 4. Define an induced function $f^* : E \longrightarrow N$ such that

$$f^{*}(e_{i}) = f^{*}(w_{i}w_{i+1}) = f(w_{i}) f(w_{i+1}), \quad 1 \leq i \leq n-2$$

$$f^{*}(e_{n-1}) = f^{*}(w_{n-1}w_{n}) = f(w_{n-1}) f(w_{n}),$$

$$f^{*}(e_{n}) = f^{*}(w_{n}w_{1}) = f(w_{n}) f(w_{1}) \text{ and}$$

$$f^{*}(e_{i}') = f^{*}(w_{0}w_{i}) = f(w_{0}) f(w_{i}), \quad 1 \leq i \leq n.$$

Now, we have to show that the numbers labeled in each edge of W_n is an *m*-Zumkeller number.

- (i) $f^*(e_i) = f^*(w_i w_{i+1}) = f(w_i) f(w_{i+1}) = p_2 2^{\frac{i+1}{2}} p_3 2^{\frac{i+1}{2}} = p_2 p_3 2^{i+1},$ $1 \le i \le n-2$, which is an *m*-Zumkeller number since $\tau(p_2 p_3 2^{i+1}) = 4(i+2)$.
- (ii) $f^*(e_{n-1}) = f^*(w_{n-1}w_n) = f(w_{n-1})f(w_n) = p_3 2^{\frac{n-1}{2}} 2p_4 = p_3 p_4 2^{\frac{n+1}{2}}$, which is an *m*-Zumkeller number since $\tau(p_3 p_4 2^{\frac{n+1}{2}}) = 4 \times 2^{\frac{n+3}{2}}$.
- (iii) $f^*(e_n) = f^*(w_n w_1) = f(w_n) f(w_1) = 2p_4 2p_2 = 4p_2 p_3$, which is also an *m*-Zumkeller number since $\tau(4p_2p_3) = 12$.
- (iv) If *i* is an odd number then

m-ZUMKELLER GRAPHS

 $f^*(e'_i) = f^*(w_0w_i) = f(w_0)f(w_i) = p_1p_22^{\frac{i+3}{2}}$, which is also an *m*-Zumkeller number since $\tau\left(p_1p_22^{\frac{i+3}{2}}\right)$ is a multiple of 4.

And $f^*(e'_{i+1}) = f(w_0) f(w_{i+1}) = p_1 p_3 2^{\frac{i+3}{2}}$, which is also an *m*-Zumkeller number as $\tau(p_1 p_3 2^{\frac{i+3}{2}})$ is a multiple of 4.

(v) $f^*(e'_n) = f(w_0) f(w_n) = 4p_1p_4$, which is also an *m*-Zumkeller number since $\tau(4p_1p_4) = 12$.

Case(2) If $n \equiv 1 \pmod{2}$.

Define an injective function $f: V \longrightarrow N$ such that

$$f(w_0) = 2p_1$$

$$f(w_i) = p_2 2^{\frac{i+1}{2}}, i = 1, 3, 5, \dots, n-1$$

$$f(w_{i+1}) = p_3 2^{\frac{i+1}{2}}, i = 1, 3, 5, \dots, n-1$$

where p_1, p_2, p_3 are distinct primes such that $2 < p_i < 12$, i = 1, 2, 3. Define an induced function $f^* : E \longrightarrow N$ such that

 $f^{*}(e_{i}) = f^{*}(w_{i}w_{i+1}) = f(w_{i}) f(w_{i+1}), \quad 1 \le i \le n-1$ $f^{*}(e_{n}) = f^{*}(w_{n}w_{1}) = f(w_{n}) f(w_{1}) \text{ and}$ $f^{*}(e_{i}') = f^{*}(w_{0}w_{i}) = f(w_{0}) f(w_{i}), \quad 1 \le i \le n-1$

From Case (1), we can say that for $1 \leq i \leq n-1$, $f^*(e_i)$ and for $1 \leq i \leq n$, $f^*(e'_i)$ is an *m*-Zumkeller number.

Also, $f^*(e_n) = f(w_n) f(w_1) = p_3 2^{\frac{n}{2}} 2p_2 = 2^{\frac{n+2}{2}} p_2 p_3$ is an *m*-Zumkeller number.

Hence, we can conclude that the wheel graph $W_n = K_1 + C_n$ is an *m*-Zumkeller graph.

Example 4. For n = 6 the wheel graph W_6 is an *m*-Zumkeller graph, its *m*-Zumkeller labeling with $p_1 = 3$, $p_2 = 5$, $p_3 = 7$ is given in figure 3.

FIGURE 3. m-Zumkeller labeling of W_6

Example 5. For n = 7 the wheel graph W_7 is an *m*-Zumkeller graph, its *m*-Zumkeller labeling with $p_1 = 3$, $p_2 = 5$, $p_3 = 7$, $p_4 = 11$ is given in figure 4.

FIGURE 4. m-Zumkeller labeling of W_7

Corollary 5.1. A cycle C_n admits an *m*-Zumkeller labeling.

Proof. Since the cycle C_n obtained by removing the central vertex of W_n is a non-totally disconnected subgraph of a wheel graph W_n , the result follows. \Box

Corollary 5.2. The path P_n with n vertices is an m-Zumkeller graph.

References

- B. J. BALAMURUGAN, K. THIRUSANGU, D. G. THOMAS: Zumkeller Labeling Algorithms for Complete Bipartite Graphs and Wheel Graphs, Faculty Publications-Agni College of Technology- Academic Year (2014-2015), 248–256.
- [2] H. PATODIA, H. K. SAIKIA: On *m-Zumkeller Numbers*, Communicated.
- [3] Y. PENG, K. P. S. BHASKARA RAO: On Zumkeller Numbers, Journal of Number Theory, 133 (2013), 1135–1155.

DEPARTMENT OF MATHEMATICS GAUHATI UNIVERSITY GUWAHATI-781014, ASSAM, INDIA *E-mail address*: harishp956@gmail.com

DEPARTMENT OF MATHEMATICS GAUHATI UNIVERSITY GUWAHATI-781014, ASSAM, INDIA *E-mail address*: hsaikia@yahoo.com