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BILATERAL RELATION FOR GENERALIZED
HYPERGEOMETRIC FUNCTION WITH SYLVESTER POLYNOMIAL

MAHESH JOSHI, N. SRIMANNARAYANA1, M. V. CHAKRADHARA RAO, M. RADHA MADHAVI,
AND B. SATYANARAYANA

ABSTRACT. In the field of special functions, bilateral generating relations play
a vital role. In the present investigation, it is to obtain a bilateral generating
relation of a Generalized Hypergeometric function with modified Generalized
Sylvester polynomial. Some of the applications of it as special cases also dis-
cussed.

1. INTRODUCTION

Many of the special functions have been generalized by different authors.
Namely, Cesaro polynomials, Laguerre polynomials, Sylvester polynomials etc.
has been generalized recently and their generating relations also discussed.
In [2, 3, 10, 11] authors defined a class of generalized hypergeometric func-
tion and obtained bilateral generating relations, extended linear generating re-
lations and some integral results associated with it. In the same way [4, 9, 12]
authors defined a modified Konhauser Polynomial and derived bilateral gener-
ating relations, also investigated a few integral results of it. Lahiri and Satya-
narayana [6,7] also generalized hypergeometric function using a difference op-
erator and investigated bilateral generating relations.
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We define generalized hypergeometric function B(α,β)
n (x, y, v) in the following

manner, see [2,3,10,11]:
(1.1)

B(α,β)
n (x, y, v) =

Γ(n+ β + 1)Γ(1 + n+ α)

n!

∞∑
k=0

(−1)ky[kv]J
(n)
n−k(x, v)

k! Γ(n− k + α + 1) Γ(k + β + 1)
.

Here J (n)
n (x, v) is the modified-Jacobi polynomial.

The function in (1.1) can be cast in the form of a double sum using the defi-
nition of J (α)

n (x, v) and considering the equations (1.3), (1.4), (1.5) as follows:

B(α,β)
n (x, y, v) =

(1 + β)n(1 + α)n
(n!)2

n∑
k=0

n−k∑
l=0

(−n)k+l
(
y
v

)
k

(
x
v

)
l
(−w)k(w)l

k! l! (1 + α)l (1 + β)k

=
(1 + α)n(1 + β)n

(n!)2
F 1:1;1
−:1;1

[
−n : −y

v
, x

v
;

− : 1 + β , 1 + α ;
− v, v

]
(1.2)

where F p:k;u
q:l;v is a double hypergeometric function. By assuming the limits v → 0 ;

v → 0, β = 0, y = 0 ; v → 0, α = 0, x = 0 in (1.2), the following interesting
cases will arise:

L(α,β)
n (x, y) =

(1 + α)n(1 + β)n
(n!)2

n∑
k=0

n−k∑
l=0

(−n)k+l(y)k(x)l

k! l! (1 + α)l (1 + β)k
,

where L(α,β)
n (x, y) is a Laguerre polynomial of two variables.

lim
v→o

B(α,0)
n (x, 0, v) = L(α)

n (x)

and

lim
v→o

B(0,β)
n (0, y, v) = L(β)

n (y)

where L(β)
n (y) is the well-known Laguerre polynomial [5].

The familiar notations are adopted here are:

(1.3) (k)m =
Γ(k +m)

Γ(k)

=

{
1

k(k + 1).......(k +m− 1)

if m = 0

if m = 1, 2, ..... and k 6= 0
,
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(1.4) (k)l−t =
(−1)t(k)l

(1− k − l)t
,

(1.5) (−k)t =
(−1)tk!

(k − t)!
.

The generalized Sylvester polynomial defined as, see [1], [15],p.450:

fn(x; c) =
(cx)n

n!
2F0

[
−n, x;− ;− 1

ax

]
.

Also fn(x; 1) = φn(x), where φn(x) is the Sylvester polynomial [5] and the ex-
tended linear generating function [1,15] is given by

∞∑
n=0

(
k + n

n

)
fn+k(x; c) tn = (1− t)−x−kecxtfk(x; a(1− t)) ,

where k is a positive integer. M. A. Malik introduced modified generalized
Sylvester polynomial [8,13] as:

(1.6) fn(x; c, d) =
(dx)n

n!
2F0

[
−n, cx;−; (−dx)−1

]
,

and its extended linear generating function [8] is given by

(1.7)
∞∑
n=0

(
k + n

n

)
fn+k(x; c, d) tn = (1− t)−cx−kedxtfk(x; c, d(1− t)) .

In the coming sections, we are going to establish bilateral generating function
of B(α,β)

n (x, y, v) and its special cases as applications.

2. BILATERAL GENERATING FUNCTION

In this section, we derive bilateral generating function for the class of general-
ized hypergeometric function B(α,β)

n (x, y, v) with modified generalized Sylvester
polynomial, fn(x; c, d).

Theorem 2.1.

(2.1)
∞∑
n=0

(n!)2

(1 + α)n(1 + β)n
B(α,β)
n (x, y, v)fn(x; c, d)tn
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= (1− t)−cxedxtF 2:0;0;1
1:0;0;1

[ [−y
v

: 1, 1, 1
]
, [cx : 1, 0, 1] : −;−; x

v
;

[1 + β : 1, 1, 1] , − : −; − ; 1 + α;
t1, t2, t3

]
where t1 =

(
vt
1−t

)
, t2 = (vtdx) , t3 =

(
−v2t
1−t

)
and F p:r,u

q:s,v (x, y) is a double hyper-
geometric function by Srivastava and Karlsson [16].

Proof. Taking left hand side of (2.1) and on making use of the (1.2), we obtain
∞∑
n=0

n∑
r=0

n−r∑
s=0

(−y
v )

r
(x
v )

s
(−v)rvs(−n+r)s(−n)r

(1+α)s(1+β)rr!s!
fn(x; c, d)tn

on replacing n by n+ r, we get

=
∞∑
r=0

n∑
s=0

(−n)s
(−y
v

)
r

(
x
v

)
s
(vt)rvs

(1 + α)s(1 + β)r s!

∞∑
n=0

(
n+ r

r

)
fn+r(x; c, d) tn .

On making use of the (1.7), we have

=
∞∑
r=0

n∑
s=0

(−n)s(
−y
v )

r
(x
v )

s
( vt
1−t)

r
vs

(1+α)s(1+β)r s!
(1− t)−cx−redxtfr (x; c, d(1− t)) .

By using the (1.6), we obtain

= (1− t)−cx
∞∑
r=0

n∑
s=0

(−n)s(
−y
v )

r
(x
v )

s
( vt
1−t)

r
vs

(1+α)s(1+β)rs!

× edxt
(

(d(1−t)x)r
r!

)
2F0

[
−r, cx;

−;
−1

d(1−t)x

]
= (1− t)−cxedxt

∞∑
r=0

n∑
s=0

(−n)s(
−y
v )

r
(x
v )

s
(vt)rvs

(1+α)s(1+β)rs!

(
(dx)r

r!

) r∑
n=0

(−r)n(cx)n
n!

(
− 1
d(1−t)x

)n
= (1− t)−cxedxt

r∑
n=0

n∑
s=0

∞∑
r=0

(−n)s(
−y
v )

r
(x
v )

s
(vt)rvs(dx)r(cx)n

(1+α)s(1+β)rs! (r−n)!n!

(
1

d(1−t)x

)n
,

and replacing r by r + n, we have:

= (1− t)−cxedxt
∞∑
n=0

n∑
s=0

∞∑
r=0

(−n)s(
−y
v )

r+n
(x
v )

s
(vtdx)r+nvs(cx)n

(1+α)s(1+β)r+ns! r! n!

(
1

d(1−t)x

)n
.

Replacing n by n+ s, we obtain

= (1− t)−cxedxt
∞∑
n=0

n∑
s=0

∞∑
r=0

(−y
v

)
r+n+s

(
x
v

)
s
(vtdx)r+n+s(−v)s(cx)n+s

(1 + α)s(1 + β)r+n+s

×

(
1

d(1−t)x

)n+s
s! r! n!

(2.2)

= (1− t)−cx edxtF 2:0;0;1
1:0;0;1

[ [−y
v

: 1, 1, 1
]
, [cx : 1, 0, 1] : −;−; x

v
;

[1 + β : 1, 1, 1] , − : − ; − ; 1 + α ;
t1, t2, t3

]
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where t1 =
(
vt
1−t

)
, t2 = vtdx , t3 =

(
−v2t
1−t

)
. �

3. APPLICATIONS

Theorem 3.1.

(3.1)
∞∑
n=0

(n!)2

(1 + α)n(1 + β)n
L(α,β)
n (x, y)fn(x; c, d)tn

= (1− t)−cxedxtF 1:−;−;−
1:−;−;1

[
[cx : 1, 0, 1] : −;−;−;

[1 + β : 1, 1, 1] : −;−; 1 + α;
t1, t2, t3

]
where t1 = − yt

1−t , t2 = −ytdx , t3 = − ytx
1−t and L(α,β)

n (x, y) is a Laguerre polynomial
of two variables [3,14].

Proof. On assuming v → 0 in the above result (2.2), the left side of it becomes
∞∑
n=0

(n!)2

(1 + α)n(1 + β)n
L(α,β)
n (x, y)fn(x; c, d)tn .

by using the definition of L(α,β)
n (x, y) from [14] we have:

=
∞∑
n=0

n∑
r=0

n−r∑
s=0

(−n+ r)s(−n)r(y)r(x)s

(1 + α)s(1 + β)rr!s!
fn(x; c, d)tn .

On replacing n by n+ r, we obtain

=
∞∑
r=0

n∑
s=0

(−n)s(−yt)
rxs

(1 + α)s(1 + β)rs!

∞∑
n=0

(
n+ r

r

)
fn+r(x; c, d)tn ,

and with use of the equation (1.7) and later on (1.6), we obtain

= (1− t)−cx−redxt
∞∑
r=0

n∑
s=0

(−n)s(−yt)
rxs

(1 + α)s(1 + β)rs!
fr (x; c, d(1− t))

= (1− t)−cxedxt
∞∑
r=0

n∑
s=0

(−n)s
(
− yt

1−t

)r
xs(d(1− t)x)r

(1 + α)s(1 + β)rs! r!
2F0

[
−r , cx ;

− ;
− 1

d(1− t)x

]
= (1− t)−cxedxt

r∑
n=0

∞∑
r=0

n∑
s=0

(−n)s(−ytdx)
rxs(cx)n

(1+α)s(1+β)r s! n! (r−n)!

(
1

d(1−t)x

)n
.

Replacing r by r + n, we get

= (1− t)−cxedxt
∞∑
n=0

∞∑
r=0

n∑
s=0

(−x)s(−ytdx)r+n(cx)n
(n−s)!(1+α)s(1+β)r+n s! r!

(
1

d(1−t)x

)n
.
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Finally, on replacing n by n+ s, we get

= (1− t)−cxedxtF 1:−;−;−
1:−;−;1

[
[cx : 1, 0, 1] : −;−;−;

[1 + β : 1, 1, 1] : −;−; 1 + α;
t1, t2, t3

]
where t1 = − yt

1−t , t2 = −ytdx , t3 = − ytx
1−t . �

Theorem 3.2.
(3.2)
∞∑
n=0

(n!)2

(1 + α)n
L(α)
n (x)fn(x; c, d)tn = (1− t)−cxedxtφ3[cx ; 1 + α ; − tx

1− t
,−dtx2]

where φ3[β ; γ ; x, y] =
∞∑

m,n=0

(β)m xmyn

(γ)m+nm! n!
is the confluent hypergeometric functions

of two variables( [16], p.58,59).

Proof. On assuming v → 0; β = 0 and y = 0 in the above result (2.2), the left
side of it becomes [2]

∞∑
n=0

(n!)2

(1 + α)n
L(α)
n (x)fn(x; c, d)tn =

∞∑
n=0

n∑
r=0

(−n)rx
r

(1 + α)r r!
fn(x; c, d) tn .

On replacing n by n+ r in the second summation, we get

=
∞∑
n=0

∞∑
r=0

(
n+ r

r

)
(−tx)r

(1 + α)r r!
fn+r(x; c, d) tn .

Using equation (1.7) and later on applying equation (1.6), we get

= (1− t)−cxedxt
∞∑
n=0

∞∑
r=0

(cx)n(−dtx2)r

(1 + α)r (r − n)! n!

(
1

d(1− t)x

)n
.

On replacing r by r + n, we get

= (1− t)−cxedxt
∞∑
n=0

∞∑
r=0

(cx)n(−dtx2)r

(1 + α)r+n r! n!

(
− t

(1− t)x

)n
= (1− t)−cxedxt φ3[cx; 1 + α;− tx

1− t
,−d t x2] .

�
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4. CONCLUSION

(3.1) and (3.2) are the new bilateral generating relations of Laguerre polyno-
mial of one and two variables with modified generalized Sylvester polynomial as
the special cases of (2.1). One may get multilateral generating functions using
these polynomials and are useful in obtaining the solutions of BVP which arises
in mathematical physics and in many engineering problems.
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