ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.7, 4345–4352 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.7.4

NEUTROSOPHIC SET IN INK-ALGEBRA

M. KAVIYARASU, K. INDHIRA¹, AND V. M. CHANDRASEKARAN

ABSTRACT. The notion of neutrosophic INK-Algebra, neutrosophic INK-filter, neutrosophic near INK-filter, neutrosophic ideal and neutrosophic INK-ideal of INK-algebra are introduced, and several properties are investigated. Condition for neutrosophic sets to be neutrosophic INK-filter, neutrosophic near INK-filter, neutrosophic ideal and neutrosophic INK-ideal of INK-algebra are provided. Relation between neutrosophic sub algebra and neutrosophic INK-ideal are considered.

1. INTRODUCTION

In 1965 Zadeh introduced the fuzzy set theory, then so many researchers applied fuzzy set in BCI/BCK-algebras. Also, Atanassov introduced the intuitionistic fuzzy set on the universal set X as generalization of fuzzy set in 1986. Kaviyarasu, Indhira and Chandrasekaran introduced a new algebraic structure called INK-algebra and also, they applied fuzzy set, intuitionistic fuzzy set, Translation and interval-valued concepts in INK-algebras, see [1–11].

In this paper, the notions of neutrosophic INK-subalgebras, neutrosophic near INK-filters, neutrosophic INK-filters, neutrosophic ideals, and neutrosophic INKideals of INK-algebras are introduced, and several properties are investigated.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 03G25,03B52, 03B60.

Key words and phrases. INK-algebra, neutrosophic INK-subalgebra, neutrosophic ideal, neutrosophic INK-ideal, neutrosophic INK-filter, neutrosophic near INK-filter.

4346 M. KAVIYARASU, K. INDHIRA, AND V. M. CHANDRASEKARAN

Conditions for neutrosophic sets to be neutrosophic INK-subalgebras, neutrosophic near INK-filters, neutrosophic INK-filters, neutrosophic ideals, and neutrosophic INK-ideals of INK-algebras are provided.

2. PRELIMINARIES

Before we begin our study, we will give the definition and useful properties of INK-algebras.

Definition 2.1. An algebra (X, *, 0) is called a INK-algebra if you meet the ensuing conditions for every $x, y, z \in X$.

INK-1: ((x * y) * (x * z)) * (z * y) = 0. INK-2: ((x * z) * (y * z)) * (x * y) = 0. INK-3: x * 0 = x. INK-4: x * y = 0 and y * x = 0 imply x = y.

Definition 2.2. A non-empty subset S of a INK-algebra (X, *, 0) is said to be a subalgebra of X, if $x * y \in S$, whenever $x, y \in X$.

Definition 2.3. Let (X, *, 0) be a INK-algebra. A nonempty subset I of X is called an ideal of X if it satisfies

- (i) $0 \in I$,
- (ii) $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$. Any ideal I has the property that $y \in I$ and $x \leq y$ imply $x \in I$.

Definition 2.4. *let I be a non-empty subset of a INK-algebra X. Then I is called a INK-ideal of X, if*

- (i) $0 \in I$.
- (ii) $((z * x) * (z * y)) \in I$ and $y \in I$ imply $x \in I$ for all $x, y, z \in X$.

Definition 2.5. A nonempty subset S of a INK-algebra (X, *, 0) is called a near INK-filter of X if

- (i) The constant 0 of X is in S,
- (ii) $y \in S \Rightarrow x * y \in S$ for all $x, y \in X$.

Definition 2.6. A nonempty subset S of a INK-algebra (X, *, 0) is called a INK-filter of X if

(i) The constant 0 of X is in S,

(ii) $x * y \in S, x \in S \Rightarrow y \in S$ for all $x, y \in X$.

3. NEUTROSOPHIC SET IN INK-ALGEBRA

In this section we applied neutrosophic set in INK-algebra.

Definition 3.1. A neutrosophic set \wedge in a nonempty set X is a structure of the form $\wedge = \{(x, \lambda_T(x), \lambda_I(x), \lambda_F(x)) | x \in X\}$, where $\lambda_T : X \rightarrow [0, 1]$, is a truth membership function $\lambda_I : X \rightarrow [0, 1]$ is a indeterminate membership function and $\lambda_F : X \rightarrow [0, 1]$ is a false membership function.

Definition 3.2. A neutrosophic set \land in X is called a neutrosophic INK-subalgebra of X if it satisfies the following condition, for all $x, y, z \in X$

- (i) $\lambda_T(x * y) \ge \min \{\lambda_T(x), \lambda_T(y)\}$
- (ii) $\lambda_I(x * y) \leq max \{\lambda_I(x), \lambda_I(y)\}$
- (iii) $\lambda_F(x * y) \ge \min \{\lambda_F(x), \lambda_F(y)\}.$

Definition 3.3. A neutrosophic set \land in X is called a neutrosophic near INK-filter of X if it satisfies the following condition, for all $x, y \in X$.

- (i) $\lambda_T(0) \ge \lambda_T(x), \lambda_I(0) \le \lambda_I(x), \text{ and } \lambda_F(0) \ge \lambda_F(x)$
- (ii) $\lambda_T(x * y) \ge \lambda_T(x)$
- (iii) $\lambda_I(x * y) \leq \lambda_I(x)$
- (iv) $\lambda_F(x * y) \ge \lambda_F(x)$.

Definition 3.4. A neutrosophic set \land in X is called a neutrosophic INK-filter of X if it satisfies the following condition, for all $x, y \in X$.

- (i) $\lambda_T(0) \geq \lambda_T(x), \lambda_I(0) \leq \lambda_I(x), \text{ and } \lambda_F(0) \geq \lambda_F(x).$
- (ii) $\lambda_T(y) \ge \min \{\lambda_T(x * y), \lambda_T(x)\}$
- (iii) $\lambda_I(y) \le \max \{\lambda_I(x * y), \lambda_I(x)\}$
- (iv) $\lambda_F(y) \ge \min \{\lambda_F(x * y), \lambda_F(x)\}.$

Definition 3.5. A neutrosophic set \land in X is called a neutrosophic ideal of X if it satisfies the following condition, for all $x, y \in X$.

- (i) $\lambda_T(0) \ge \lambda_T(x), \lambda_I(0) \le \lambda_I(x), \text{ and } \lambda_F(0) \ge \lambda_F(x)$
- (ii) $\lambda_T(x) \ge \min \{\lambda_T(x * y), \lambda_T(y)\}$
- (iii) $\lambda_I(x) \leq max \{\lambda_I(x * y), \lambda_I(y)\}$

(iv) $\lambda_F(x) \ge \min \{\lambda_F(x * y), \lambda_F(y)\}.$

Definition 3.6. A neutrosophic set \land in X is called a neutrosophic INK-ideal of X if it satisfies the following condition, for all $x, y \in X$.

- (i) $\lambda_T(0) \ge \lambda_T(x), \lambda_I(0) \le \lambda_I(x), \text{ and } \lambda_F(0) \ge \lambda_F(x)$
- (ii) $\lambda_T(x) \ge \min \{\lambda_T((z * x) * (z * y)), \lambda_T(y)\}$
- (iii) $\lambda_I(x) \le \max \{\lambda_I((z * x) * (z * y)), \lambda_I(y)\}$
- (iv) $\lambda_F(x) \ge \min \{\lambda_F((z * x) * (z * y)), \lambda_F(y)\}.$

Example 1. let $X = \{0, 1, a, b\}$ be a INK-algebra with a fixed element 0 and a binary operation * defined by the following Cayley table

*	0	1	а	b
0	0	0	а	а
1	1	0	а	а
а	а	а	0	0
b	b	а	1	0

We define a neutrosophic \wedge in X as follows

Theorem 3.1. Every neutrosophic INK-subalgebra of X satisfies the conditions $\lambda_T(0) \ge \lambda_T(x), \lambda_I(0) \le \lambda_I(x)$, and $\lambda_F(0) \ge \lambda_F(x)$

Proof. Assume that \wedge is neutrosophic INK-subalgebra of X. Then for all $x \in X$. $\lambda_T(0) = \lambda_T(x * y) \ge \min \{\lambda_T(x), \lambda_T(x)\} = \lambda_T(x)$ $\lambda_I(0) = \lambda_I(x * y) \le \max \{\lambda_I(x), \lambda_I(x)\} = \lambda_I(x)$ $\lambda_F(0) = \lambda_F(x * y) \ge \min \{\lambda_F(x), \lambda_F(x)\} = \lambda_F(x).$

Theorem 3.2. A neutrosophic set \wedge in X is constant if and only if it is a neutrosophic INK-ideal of X.

Proof. Assume that \wedge is constant for all $x \in X$. $\lambda_T(x) = \lambda_T(0), \lambda_I(x) = \lambda_I(0), \text{ and } \lambda_F(x) = \lambda_F(0).$ Next for all $x, y, z \in X$. $\lambda_T(x) = \lambda_T(0) = \min \{\lambda_T(0), \lambda_T(0)\} = \min \{\lambda_T((z * x) * (z * y)), \lambda_T(y)\}$ $\lambda_I(x) = \lambda_I(0) = \max \{\lambda_I(0), \lambda_I(0)\} = \max \{\lambda_I((z * x) * (z * y)), \lambda_I(y)\}$ $\lambda_F(x) = \lambda_F(0) = \min \{\lambda_F(0), \lambda_F(0)\} = \min \{\lambda_F((z * x) * (z * y)), \lambda_F(y)\}$ Hence, \wedge is a neutrosophic INK-ideal of X. conversely, assume that \wedge is a neutrosophic INK-ideal of X. For any $x \in X$ we have, $\lambda_T(x) \ge \min \{\lambda_T((x * x) * (x * 0)), \lambda_T(0)\}$

4348

NEUTROSOPHIC SET IN INK-ALGEBRA

$$\geq \min \left\{ \lambda_T(0 * x), \lambda_T(y) \right\} \geq \min \left\{ \lambda_T(0), \lambda_T(y) \right\} \geq \lambda_T(0),$$

$$\lambda_I(x) \leq \max \left\{ \lambda_I((x * x) * (x * 0)), \lambda_I(0) \right\}$$

$$\leq \max \left\{ \lambda_I(0 * x), \lambda_I(y) \right\} \leq \max \left\{ \lambda_I(0), \lambda_I(y) \right\} \leq \lambda_I(0),$$

$$\lambda_F(x) \geq \min \left\{ \lambda_F((x * x) * (x * 0)), \lambda_F(0) \right\}$$

$$\geq \min \left\{ \lambda_F(0 * x), \lambda_F(y) \right\} \geq \min \left\{ \lambda_F(0), \lambda_F(y) \right\} \geq \lambda_F(0).$$

Theorem 3.3. A neutrosophic set \land in X is a neutrosophic INK-ideal if and only if it is a neutrosophic INK-ideal of X.

Proof. Assume that \wedge is neutrosophic INK-ideal for all X. The \wedge is satisfies the condition $\lambda_T(0) \geq \lambda_T(x), \lambda_I(0) \leq \lambda_I(x)$ and $\lambda_F(0) \geq \lambda_F(x)$ by the theorem 3.2 we we have \wedge constant, then for all $x \in X$. $\lambda_T(x) = \lambda_T(0), \lambda_I(x) = \lambda_I(0), \text{ and } \lambda_F(x) = \lambda_F(0), \text{ thus}$ $\lambda_T(x) \ge \min \left\{ \lambda_T((z \ast x) \ast (z \ast y)), \lambda_T(y) \right\}$ put z = 0 and 0 * x = x $\geq \min \left\{ \lambda_T((0 * x) * (0 * y)), \lambda_T(y) \right\}$ $> \min \{\lambda_T(x * y), \lambda_T(y)\},\$ $\lambda_I(x) \le \max\left\{\lambda_I((z \ast x) \ast (z \ast y)), \lambda_I(y)\right\}$ put z = 0 and 0 * x = x $\leq \max\left\{\lambda_I((0*x)*(0*y)),\lambda_I(y)\right\}$ $\leq max \{\lambda_I(x * y), \lambda_I(y)\},\$ $\lambda_F(x) \ge \min \left\{ \lambda_F((z \ast x) \ast (z \ast y)), \lambda_F(y) \right\}$ put z = 0 and 0 * x = x $\geq \min \left\{ \lambda_F((0 * x) * (0 * y)), \lambda_F(y) \right\}$ $\geq \min \{\lambda_F(x * y), \lambda_F(y)\}$. Therefore \wedge is a neutrosophic ideal of X. Conversely, \wedge is a neutrosophic INK-ideal of X. \square

Theorem 3.4. Every neutrosophic INK-ideal of X is a neutrosophic INK-filter, if 0 * x = x.

Proof. Assume that \wedge is neutrosophic INK-ideal of X. The \wedge is satisfies the condition $\lambda_T(0) \geq \lambda_T(x), \lambda_I(0) \leq \lambda_I(x)$ and $\lambda_F(0) \geq \lambda_F(x)$. Let $x \in X$. $\lambda_T(y) \geq \min \{\lambda_T((z * x) * (z * y)), \lambda_T(x)\}$ put z = 0 and 0 * x = x $\geq \min \{\lambda_T((0 * x) * (0 * y)), \lambda_T(x)\}$ $\geq \min \{\lambda_T(x * y), \lambda_T(x)\}$,

4349

M. KAVIYARASU, K. INDHIRA, AND V. M. CHANDRASEKARAN

$$\begin{split} \lambda_{I}(y) &\leq \max \left\{ \lambda_{I}((z * x) * (z * y)), \lambda_{I}(x) \right\} \\ \text{put } z &= 0 \text{ and } 0 * x = x \\ &\leq \max \left\{ \lambda_{I}((0 * x) * (0 * y)), \lambda_{I}(x) \right\} \\ &\leq \max \left\{ \lambda_{I}(x * y), \lambda_{I}(x) \right\}, \\ \lambda_{F}(y) &\geq \min \left\{ \lambda_{F}((z * x) * (z * y)), \lambda_{F}(x) \right\} \\ \text{put } z &= 0 \text{ and } 0 * x = x \\ &\geq \min \left\{ \lambda_{F}((0 * x) * (0 * y)), \lambda_{F}(x) \right\} \\ &\geq \min \left\{ \lambda_{F}(x * y), \lambda_{F}(x) \right\}. \\ \text{Hence, } \wedge \text{ is a neutrosophic INK-filter of } X . \end{split}$$

Theorem 3.5. Every neutrosophic INK-filter of X is a neutrosophic near INK-filter, *if* 0 * x = x.

Proof. Assume that \wedge is neutrosophic INK-filter of X. The \wedge is satisfies the condition $\lambda_T(0) \geq \lambda_T(x), \lambda_I(0) \leq \lambda_I(x)$ and $\lambda_F(0) \geq \lambda_F(x)$. Let $x \in X$. $\lambda_T(x*y) \ge \min \left\{ \lambda_T(y*(x*y)), \lambda_T(y) \right\}$ $= \min \left\{ \lambda_T(0), \lambda_T(y) \right\} = \lambda_T(y).$ $\lambda_I(x*y) \le \max\left\{\lambda_I(y*(x*y)), \lambda_I(y)\right\}$ $= max \{\lambda_I(0), \lambda_I(y)\} = \lambda_I(y).$ $\lambda_F(x*y) \ge \min\left\{\lambda_F(y*(x*y)), \lambda_F(y)\right\}$ $= min \{\lambda_F(0), \lambda_F(y)\} = \lambda_F(y).$ Hence, \wedge is a neutrosophic near INK-filter of X .

Theorem 3.6. Every neutrosophic near INK-filter of X is a neutrosophic near INKsubalgebra.

Proof. Assume that \wedge is neutrosophic INK-filter of *X*. $\lambda_T(x * y) \ge \lambda_T(y) \ge \min \left\{ \lambda_T(x), \lambda_T(y) \right\}$ $\lambda_I(x * y) \le \lambda_I(y) \le \max \{\lambda_I(x), \lambda_I(y)\}\$ $\lambda_F(x * y) \ge \lambda_F(y) \ge \min \left\{ \lambda_F(x), \lambda_F(y) \right\}$ Hence, \wedge a neutrosophic near INK-subalgebra of X.

Theorem 3.7. If \wedge is a neutrosophic INK-subalgebra of X satisfies the following condition

 $x * y \neq 0 \Rightarrow (\lambda_T(x) \ge \lambda_T(y), \lambda_I(x) \le \lambda_I(y), \lambda_F(x) \ge \lambda_F(y)).$ Then \wedge is a neutrosophic near INK-filter of X.

4350

Proof. Assume that \wedge is neutrosophic INK-subalgebra of X (3.7) satisfying the condition by the Theorem 3.2, we have \wedge satisfies the condition $\lambda_T(0) \ge \lambda_T(x)$, $\lambda_I(0) \le \lambda_I(x)$ and $\lambda_F(0) \ge \lambda_F(x)$. Let $x, y, z \in X$.

Case 1: x * y = 0. Then

 $\lambda_T(x * y) = \lambda_T(0) \ge \lambda_T(y),$ $\lambda_I(x * y) = \lambda_I(0) \le \lambda_I(y),$ $\lambda_F(x * y) = \lambda_F(0) \ge \lambda_F(y).$

Case 2: $x * y \neq 0$. Then

 $\lambda_T(x * y) \ge \min \{\lambda_T(x), \lambda_T(y)\} = \lambda_T(y), \\ \lambda_I(x * y) \le \max \{\lambda_I(x), \lambda_T(y)\} = \lambda_I(y), \\ \lambda_F(x * y) \ge \min \{\lambda_F(x), \lambda_T(y)\} = \lambda_F(y).$

Then \wedge is a neutrosophic near INK-filter of X .

Theorem 3.8. If \wedge is a neutrosophic near INK-filter of X satisfies the following condition $\lambda_T = \lambda_I = \lambda_F$. Then \wedge is a neutrosophic near INK-filter of X.

Proof. Assume that \wedge is neutrosophic near INK-filter of X satisfies the following condition $\lambda_T = \lambda_I = \lambda_F$. Then \wedge satisfies the condition $\lambda_T(0) \geq \lambda_T(x), \lambda_I(0) \leq \lambda_I(x)$ and $\lambda_F(0) \geq \lambda_F(x)$. Let $x, y \in X$. Then $\min \{\lambda_T(x * y), \lambda_T(x)\} \geq \min \{\lambda_T(y), \lambda_T(x)\}$ $= \min \{\lambda_T(y), \lambda_T(x)\} \leq \lambda_T(y),$ $\max \{\lambda_I(x * y), \lambda_I(x)\} \leq \max \{\lambda_I(y), \lambda_I(x)\}$ $= \max \{\lambda_I(y), \lambda_I(x)\} \leq \lambda_I(y),$ $\min \{\lambda_F(x * y), \lambda_F(x)\} \geq \min \{\lambda_F(y), \lambda_F(x)\}$ $= \min \{\lambda_F(y), \lambda_F(x)\} \leq \lambda_F(y),$ Hence, \wedge is a neutrosophic near INK-filter of X.

REFERENCES

- [1] M. SONGSAENG, A. IAMPAN: *Neutrosophic Set Theory Applied to UP-Algebra*, European journal of pure and applied mathematics, **12**(4) (2019), 1382 1409.
- [2] Y. B. JUN, F. SMARANDACHE, H. BORDBAR: Neutrosophic N-structures applied to BCK/BCI-algebras, Information, 8(4) (2017), 128–132.

M. KAVIYARASU, K. INDHIRA, AND V. M. CHANDRASEKARAN

4352

- [3] M. KAVIYARASU, K. INDHIRA, V. M. CHANDRASEKARAN: *Fuzzy p-ideal in INK-Algebra*, Journal of Xi'an University of Architecture and Technology, **12**(3) (2020), 4746 4752.
- [4] M KAVIYARASU, K INDHIRA, V. M CHANDRASEKARAN : Intuitionistic fuzzy translation on INK-Algebra, Advances in Mathematics: Scientific Journal. 9(1)(2020), 295 – 303.
- [5] M. KAVIYARASU, K. INDHIRA, V. M. CHANDRASEKARAN: Intuitionistic fuzzy p-ideal in INK-Algebra, International Journal of Advanced Science and Technology, 29(12s) (2020), 371 – 379.
- [6] K. ISEKI: On BCI-algebras, Math. Seminar Notes, 8 (1980), 125–130.
- [7] M. KAVIYARASU, K. INDHIRA, V. M. CHANDRASEKARAN, J. KAVIKUMAR: Intervalvalued fuzzy subalgebra and fuzzy INK-ideal in INK-algebra, Advances in Algebra and Analysis, Birkhauser, Cham, (2018), 19–25.
- [8] M. KAVIYARASU, K. INDHIRA, V. M. CHANDRASEKARAN: Fuzzy subalgebras and fuzzy K-ideals in INK-algebras, International Journal of Pure and Applied Mathematics, 113(6) (2017), 47 – 55.
- [9] M. KAVIYARASU, K. INDHIRA: *Review on BCI/BCK-algebras and development*, International Journal of Pure and Applied Mathematics, **117**(11) (2017), 377 383.
- [10] J. THOMAS, K. INDHIRA, V. M. CHANDRASEKARAN : T-Normed Fuzzy TM-algebra of TM-algebra, International Journal of computational Intelligence Systems, 12(2) (2019), 706 – 712.
- [11] M. KAVIYARASU, K. INDHIRA, V. M. CHANDRASEKARAN: Direct product of intuitionistic fuzzy K-ideals of INK-algebras, Materials Today: Proceedings, 16 (2019), 449 – 455.

DEPARTMENT OF MATHEMATICS SRI VIDYA MANDIR ARTS AND SCIENCE COLLEGE, UTHANGARAI KRISHNAGIRI-636902, INDIA *E-mail address*: kavitamilm@gmail.com

DEPARTMENT OF MATHEMATICS UNIVERSITY OF VELLORE INSTITUTE OF TECHNOLOGY VELLORE-632014, INDIA *E-mail address*: kindhira@vit.ac.in

DEPARTMENT OF MATHEMATICS UNIVERSITY OF VELLORE INSTITUTE OF TECHNOLOGY VELLORE-632014, INDIA *E-mail address*: vmcsn@vit.ac.in