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∗Gα̂-HOMEOMORPHISM IN TOPOLOGICAL SPACES

K. M. ARIFMOHAMMED1, S. PIOUS MISSIER, AND M. SURAIYA BEGUM

ABSTRACT. In this article, we introduce a special type of generalised closed and
open maps, briefly ∗gα̂-closed maps, ∗gα̂-open maps in topological spaces also
analyze some important characterizations of these new type of maps and then
we study ∗gα̂-homeomorphisms. We also obtain strongly ∗gα̂-homeomorphisms
and proved that under the operation ◦ the collection of all strongly ∗gα̂- home-
omorphisms form a group.

1. INTRODUCTION

In topological space, R. Malghan [10] introduced and investigated the no-
tion of generalised-closed maps. In 1994, R. Devi [5] introduced the notions
of semi-generalized-closed maps and generalized semi-closed maps. In topolog-
ical space, many authors have been introduced different types of generalized
homeomorphisms. In 1972, Crossely and Hildebrand [2] have analyzed semi-
homeomorphisms. In 1991, Maki et al [9] have characterized the notion of
generalized-homeomorphisms. In our present study,we introduce a special type
of generalised closed and open maps, briefly ∗gα̂-closed maps, ∗gα̂-open maps in
topological spaces also analyze some important characterizations of these new
type of maps and then we study ∗gα̂-homeomorphisms. We also obtain strongly

1corresponding author
2010 Mathematics Subject Classification. 54A05, 54D01, 54F65, 54G05.
Key words and phrases. ∗gα̂-closed maps, ∗gα̂ - open map, ∗gα̂-homeomorphisms, strongly

∗gα̂-homeomorphisms.
4787



4788 K. M. ARIFMOHAMMED, S. PIOUS MISSIER, AND M. SURAIYA BEGUM

∗gα̂-homeomorphisms and proved that under the operation ◦ the collection of
all strongly ∗gα̂-homeomorphisms form a group.

2. PRELIMINARIES

In this section, we give existing definitions and some important results.

Definition 2.1. Consider a mapping f : (X, τ)→ (Y, σ). Then f is called

(1) generalized-continuous [8] if f−1(A) ∈ gC(X, τ) for each A ∈ σc.
(2) α-generalized-continuous [4] if f−1(A) ∈ αgC(X, τ) for each A ∈ σc.
(3) generalized semi-continuous [3] if f−1(A) ∈ gsC(X, τ) for each A ∈ σc.
(4) generalized∗-continuous [14]if f−1(A) ∈ g∗C(X, τ) for each A ∈ σc.
(5) ∗generalizedα-continuous [11] if f−1(A) ∈ ∗gαC(X, τ) for each A ∈ σc.
(6) generalized pre-continuous [1] if f−1(A) ∈ gpC(X, τ) for each A ∈ σc.
(7) generalized semipre-continuous [6] if f−1(A) ∈ gspC(X, τ) ∀A ∈ σc.
(8) generalized pre regular-continuous [7] if f−1(A) ∈ gprC(X, τ) ∀A ∈ σc.
(9) generalized alpha-continuous [4] if f−1(A) ∈ gαC(X, τ) for each A ∈ σc.

The collection of all generalized-closed sets, αgeneralized-closed sets, gen-
eralized semi-closed sets, generalized∗-closed sets, ∗generalizedα-closed sets,
generalized pre-closed sets, generalized semi pre-closed sets, generalized pre
regular-closed sets and generalizedα-closed sets denoted by gC(X, τ), αgC(X, τ),
gsC(X, τ), g∗C(X, τ), ∗gαC(X, τ), gpC(X, τ), gspC(X, τ), gprC(X, τ) and
gαC(X, τ) respectively.

Definition 2.2. [12] If A is ∗gα̂-closed set, then cl(A) ⊆ O for every ∗gα-open set
O which contains A.

Definition 2.3. [13] Consider a mapping f : (X, τ) → (Y, σ). Then a ∗gα̂-
continuous mapping defined by f−1(A) ∈ ∗gα̂C(X, τ) for each A ∈ σc.

Definition 2.4. [13] Consider a mapping f : (X, τ) → (Y, σ). Then a ∗gα̂-
irresolute mapping defined by f−1(A) ∈ ∗gα̂C(X, τ) for each A ∈ ∗gα̂C(Y, σ).

Theorem 2.1. [13] Assume that V ⊆ B ⊆. And V is a ∗gα̂-closed set relative to
B ∈ τ and B ∈ ∗gα̂C(X, τ). Then, we have the set V ∈ ∗gα̂C(X, τ).

Proposition 2.1. [13] A ∗gα̂-irresolute mapping f : (X, τ) → (Y, σ) implies ∗gα̂-
continuous mapping.
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3. ∗gα̂-CLOSED MAPS AND OPEN MAPS

Definition 3.1. Consider a mapping f : (X, τ) → (Y, σ). Then a ∗gα̂-closed
map defined by f(B) is ∗gα̂C(Y, σ) whenever B is a closed set in (X, τ), where
∗gα̂C(X, τ) denotes the collection of all ∗gα̂-closed sets and ∗gα̂O(X, τ) denotes
collection of all ∗gα̂-open sets.

Proposition 3.1. Consider a mapping f : (X, τ)→ (Y, σ). Then f is ∗gα̂-closed if
and only if ∗gα̂− cl(f(B)) ⊆ f(cl(B)) for each set B in (X, τ).

Proof. Assume that f is ∗gα̂-closed, B ⊆ X. Then we have f(cl(B)) ∈
∗gα̂C(Y, σ). We have f(B) ⊆ f(cl(B)) and ∗gα̂−cl(f(B)) ⊆ ∗gα̂−cl(f(cl(B))) =

f(cl(B)).
Conversely, choose B ∈ τ c. Then B = cl(B), from the statement of the propo-
sition, f(B) = f(cl(B)) ⊇ ∗gα̂ − cl(f(B)). We have f(B) ⊆ ∗gα̂ − cl(f(B)).
Therefore f(B) =∗ gα̂ − cl(f(B)). That is, f(B) ∈ ∗gα̂C(Y, σ). Therefore, f is
∗gα̂-closed. �

Now, we give a result for necessary and sufficient condition for ∗gα̂-closed
map

Theorem 3.1. Let a map f : (X, τ) → (Y, σ) and f is a ∗gα̂-closed iff for every
A ∈ Y and for every f−1(A) ⊆ U ∈ τ , ∃ B ∈ ∗gα̂O(Y, σ) where A ⊆ B,
f−1(B) ⊆ U .

Proof. Assume that f is a ∗gα̂-closed map. Consider, C ⊆ Y , U ⊆ X, where
U ∈ τ such that f−1(C) ⊆ U . Now, we have B = (f(Cc))c ∈ ∗gα̂O(Y, σ)

containing C such that f−1(B) ⊆ U .
Conversely, consider C ∈ τ c. Then f−1(f(C)c) ⊆ Cc and Cc ∈ τ . From the
statement of the theorem, ∃ B ∈ ∗gα̂O(Y, σ) where (f(C))c ⊆ B, f−1(B) ⊆ Cc

and so C ⊆ (f−1(B))c. Hence Bc ⊆ f(C) ⊆ f((f−1(B))c) ⊆ Bc that implies
f(C) = Bc. Thus f is ∗gα̂-closed, since Bc is ∗gα̂-closed, f(C) is ∗gα̂-closed. �

Proposition 3.2. Let f : (X, τ) → (Y, σ) be ∗gα-irresolute and ∗gα̂-closed map
and A ∈ ∗gα̂C(X, τ). Then f(A) ∈ ∗gα̂C(Y, σ).

Proof. Consider, U ∈ ∗gα̂O(Y, σ) such that f(A) ⊆ U . Now, f−1(U) ∈ ∗gαO(X, τ)

containing A, Since f is ∗gα- irresolute map. Since A ∈ ∗gαC(X, τ), cl(A) ⊆
f−1(U). From the statement of the theorem, f is a ∗gα̂-closed map, f(cl(A)) ∈
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∗gα̂C(Y, σ), cl(f(cl(A))) ⊆ U which implies that cl(f(A)) ⊆ U . Therefore
f(A) ∈ ∗gα̂C(Y, σ). �

Remark 3.1. Consider the maps f : (X, τ)→ (Y, σ) and g : (Y, σ)→ (Z, η). Then
f ◦ g need not be a ∗gα̂-closed map where the maps f and g are ∗gα̂-closed.

Corollary 3.1. Consider the maps f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η).
Then g ◦ f is ∗gα̂-closed where f is ∗gα̂-closed, g is ∗gα̂-closed and ∗gα-irresolute.

Proof. Let V ∈ τ c. From the statement of the theorem, f(V ) ∈ ∗gα̂C(Y, σ). Now
we have g ◦ f is ∗gα̂-closed map, because the mapping g is both ∗gα̂-closed and
∗gα-irresolute and by the previous Proposition. �

Proposition 3.3. Consider the maps f : (X, τ) → (Y, σ), g : (Y, σ) → (Z, η). The
composite map g ◦ f is a ∗gα̂-closed map when f is closed, g is ∗gα̂-closed.

Proof. Consider A ∈ τ c. Then by hypothesis, f(A) ∈ σc. Now, we get g(f(A)) =
(g ◦ f)(A) ∈ ∗gα̂C(Z, η), since g is ∗gα̂-closed. Therefore the composition g ◦ f
is ∗gα̂-closed. �

Remark 3.2. Consider a ∗gα̂-closed map f : (X, τ) → (Y, σ), closed map g :

(Y, σ)→ (Z, η). Then g ◦ f is not ∗gα̂-closed in general.

Theorem 3.2. Consider the maps f : (X, τ) → (Y, σ), g : (Y, σ) → (Z, η) such
that g ◦ f is ∗gα̂-closed. Then we get the bellow statements.

(1) The map g is ∗gα̂-closed, if the surjective map f is continuous.
(2) The map f is ∗gα̂-closed, if the injective map g is ∗gα̂-irresolute, then
(3) g is ∗gα̂-closed, if (X, τ) is T1/2 and the surjective map f is generalized

continuous.
(4) The map f is closed, if the injective map g is strongly ∗gα̂-continuous.

Proof. (1) consider the set V ∈ σc. Now, f−1(V ) ∈ τ c, since f is continuous.
Then we have (g ◦ f)(f−1(V )) ∈ ∗gα̂C(Z, η), because g ◦ f is ∗gα̂-closed.
Since f is surjective, g(V ) ∈ ∗gα̂C(Z, η). Therefore g is ∗gα̂-closed.

(2) consider the set A ∈ τ c. Now, (g ◦ f)(A) ∈ ∗gα̂C(Z, η), because g ◦ f
is ∗gα̂-closed. Also we have g−1((g ◦ f)(A) ∈ ∗gα̂C(Y, σ), because g is
∗gα̂-irresolute. Since g is injective, f(A) ∈ ∗gα̂C(Y, σ). Therefore f is a
∗gα̂-closed map.
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(3) Consider the set B ∈ σc. Now, f−1(B) ∈ ∗gα̂C(X, τ), Since f is a
generalized-continuous map. Also we get f−1(B) ∈ ∗gα̂C(X, τ) and by
hypothesis (i), g is a ∗gα̂-closed map, because X is a T1/2 space.

(4) Consider the set C ∈ τ c. Noe, (g ◦ f)(C) ∗gα̂C(Z, η), because g ◦ f is a
∗gα̂-closed map. Also we get g−1((g ◦ f)(C) ∈ ∗gα̂C(Y, σ), since g is a
strongly ∗gα̂-continuous map. Since g is injective, f(C) ∈ σc. Therefore
the map f is closed.

�

Definition 3.2. Consider, a map f : (X, τ)→ (Y, σ). A ∗gα̂-open map f is defined
by f(U) ∈ ∗gα̂O(Y, σ) for every U ∈ τ .

Theorem 3.3. Consider a map f : (X, τ)→ (Y, σ). Then f is ∗gα̂-open iff for any
set A of (Y, σ), K ∈ τ c and f−1(A) ⊂ K, there B ∈ ∗gα̂C(Y, σ) containing the set
A such that K ⊇ f−1(B).

Proof. The proof is same as proof of Theorem 3.1. �

Corollary 3.2. Let a map f : (X, τ) → (Y, σ). Then f is ∗gα̂-open iff f−1(∗gα̂ −
cl(A)) ⊆ cl(f−1(A)) for each A ∈ Y .

Proof. Assume that f is ∗gα̂-open. Then, we have for a subset A of Y , f−1(A) ⊆
cl(f−1(A)). By the above theorem, there exists C ∈ ∗gα̂C(Y, σ) such that A ⊆ C,
f−1(C) ⊆ cl(f−1(A)). Now, f−1(∗gα̂ − cl(A)) ⊆ f−1(C) ⊆ cl(f−1(A)), because
C ∈ ∗gα̂C(y, σ).
Conversely, Consider B be a subset of (Y, σ) and D ∈ τ c and f−1(B) ⊆ D. Which
implies C =∗ gα̂ − cl(B). Then, we have C ∈ ∗gα̂C(X, τ), B ⊆ C. From the
statement of the theorem, f−1(C) = f−1(∗gα̂− cl(B)) ⊆ cl(f−1(B)) = D. Hence
by the previous theorem, f is ∗gα̂-open. �

Definition 3.3. Consider a mapping f : (X, τ) → (Y, σ). A strongly ∗gα̂-closed
map is defined by for each A ∈ ∗gα̂C(X, τ), f(A) ∈ ∗gα̂C(Y, σ).

4. ∗gα̂-HOMEOMORPHISM

Definition 4.1. Consider a bijection f : (X, τ) → (Y, σ). A ∗gα̂-homeomorphism
f is defined by f is both ∗gα̂-open map, ∗gα̂-continuous map.
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Example 1. Consider the Topological spaces (X, τ) and (Y, σ), whereX = {a, b, c} =
Y , τ = {∅, {a}, {b, c}, X} and σ = {∅, {a}, {b}, {a, b}, {b, c}, Y }. Let the bijection
f : (X, τ) → (Y, σ) be identity map. Now, f is both ∗gα̂-open, ∗gα̂-continuous.
Therefore, the bijective mapping f is ∗gα̂-homeomorphism.

Proposition 4.1. Homeomorphism implies ∗gα̂-homeomorphism .

The proof is obvious from the consequences of the notions of homeomorphism
and ∗gα̂-homeomorphism.

Converse of the above proposition is not true in general. Consider the map-
ping f defined in the Example 1. Because f is not continuous, we have f is a
∗gα̂-homeomorphism but not a homeomorphism.

Proposition 4.2. ∗gα̂-homeomorphism implies g-homeomorphism.

Proof. The proposition follows by the following results: both ∗gα̂-implies g-
continuous, ∗gα̂-open map implies generalized open map. �

Converse of the above proposition is not true in general.

Example 2. Consider the Topological spaces (X, τ) and (Y, σ), whereX = {p, q, r} =
Y , τ = {∅, {p}, X} and σ = {∅, {q}, Y }. Define f : (X, τ) → (Y, σ) by f(p) = r,
f(q) = p and f(r) = q. Then, we have f is not a ∗gα̂-homeomorphism but it is a
g-homeomorphism.

Proposition 4.3. Consider a bijection f : (X, τ) → (Y, σ) such that f is ∗gα̂-
continuous. Then the below results are equal:

(1) The bijection f is ∗gα̂-open.
(2) The bijection f is ∗gα̂-homeomorphism.
(3) The bijection f is ∗gα̂-closed.

Proof. From the Proposition 4.2, the proof follows. �

Remark 4.1. Consider two ∗gα̂-homeomorphic maps f and g. Then, f ◦g need not
be a ∗gα̂-homeomorphism.

From the below example, the above remark follows.

Example 3. Let the topological spaces, (X, τ), (Y, σ) and (Z, η), where X =

Y = Z = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X}, σ = {∅, {a, b}, Y } and η =
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{∅, {a}, {a, b}, Z}. Now, define mappings f : (X, τ) → (Y, σ), g : (Y, σ) → (Z, η)

be identity. Then we have g ◦ f is not a ∗gα̂-homeomorphism and f and g are
∗gα̂-homeomorphism, since the set {b} ∈ τ , (g ◦ f)({b}) = {b} /∈ ∗gα̂O(Z, η).

Definition 4.2. Consider a bijective mapping f : (X, τ)→ (Y, σ). A strongly ∗gα̂-
homeomorphism f is defined by both f and its inverse map f−1 are ∗gα̂-irresolute.

For our convenience, we give the following notions

(1) the collection of all ∗gα̂-homeomorphism of (X, τ) onto (X, τ) by ∗gα̂-
h(X, τ),

(2) the collection of all strongly ∗gα̂-homeomorphism of (X, τ) onto (X, τ)

by s-∗gα̂-h(X, τ).

Proposition 4.4. Strongly ∗gα̂-homeomorphism implies ∗gα̂-homeomorphism.

Proof. From the Proposition 2.1 the proof follows. �

The converse part of the above proposition is not true. we can justify from the
following example. Let the map g which is defined in Example 3 is not strongly
∗gα̂-homeomorphism and it is ∗gα̂-homeomorphism, because {a, c} ∈ ∗gα̂C(Y, σ),
(g−1)−1({a, c}) = g({a, c}) = {a, c} /∈ ∗gα̂C(Z, η). Hence g is not a strongly ∗gα̂-
homeomorphism.

Proposition 4.5. Strongly ∗gα̂-homeomorphism implies generalized-homeomorphism.

Proof. From Propositions 4.2 and 4.4, the proof follows. �

The converse part of the above proposition is not true. we can justify from the
following example. Let the map f defined in Example 2. Then f is not strongly
∗gα̂-homeomorphism but it is generalized-homeomorphism.

Proposition 4.6. Consider two are strongly ∗gα̂-homeomorphisms: f : (X, τ) →
(Y, σ), g : (Y, σ)→ (Z, η) , then g ◦ f is a strongly ∗gα̂-homeomorphism.

Proof. Consider V ∈ ∗gα̂O(Z, η). Then (g ◦ f)−1(V ) = f−1(g−1(V )) = f−1(U),
U = g−1(V ). From the assumption, U ∈ ∗gα̂O(Y, σ) also we have f−1(U) ∈
∗gα̂O(X, τ). Hence g ◦f is a ∗gα̂-irresolute mapping. Consider K ∈ ∗gα̂O(X, τ).
Then we get (g ◦ f)(K) = g(f(K)) = g(F ), F = g(K). From the assump-
tion f(K) ∈ ∗gα̂O(Y, σ) and by hypothesis, g(f(K)) ∈ ∗gα̂O(Z, η). i.e.,
(g ◦ f)(K) ∈ ∗gα̂O(Z, η). Thus (g ◦ f)−1 is a ∗gα̂-irresolute mapping. Hence
composition of g and f is strongly ∗gα̂-homeomorphism. �
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Theorem 4.1. Under composition of maps, the collection s-∗gα̂-h(X, τ) form a
group.

Proof. A binary operation ∗ defined by g ∗h = h◦ g for each g, h ∈ s-∗gα̂-h(X, τ),
where ∗:s-∗gα̂-h(X, τ) × s-∗gα̂-h(X, τ) → s-∗gα̂-h(X, τ), and ◦ is composition
of mappings. Now, h ◦ g ∈ s-∗gα̂-h(X, τ), since by Proposition 4.6. Consider
the identity map I : (X, τ) → (X, τ). Then I ∈ s-∗gα̂-h(X, τ) is the identity
element, since the operation ◦ is associative. If g ∈ s-∗gα̂-h(X, τ), then we have
g−1 ∈ s-∗gα̂-h(X, τ) where g ◦ g−1 = g−1 ◦ g = I. Therefore, under the operation
◦ the collection (s-∗gα̂-h(X, τ), ◦) form a group. �

Theorem 4.2. Consider set of all topological space. Then the collection s-∗gα̂-
homeomorphism satisfies the three conditions of equivalence relation.

Proof. From Proposition 4.6, the proof follows. �

Theorem 4.3. Consider a map f : (X, τ) → (Y, σ) ∈ s-∗gα̂-homeomorphism,
then ∗gα̂-cl(f 1(A)) = f−1(∗gα̂-cl(A) for every A ⊆ Y.

Proof. The map f is ∗gα̂-irresolute, since f is a s-∗gα̂-homeomorphism. Also
we have f−1(∗gα̂) ∈ ∗gα̂C(X, τ), because ∗gα̂-cl(f(A)) ∈ ∗gα̂C(Y, σ). Also,
f−1(A) ⊆ f−1(∗gα̂)-cl(A) and ∗gα̂-cl(f−1(A)) ⊆ f−1(∗gα̂-cl(A)). Now, f−1 is ∗gα̂-
irresolute, because f ∈ s-∗gα̂-h(X, τ). Again we have (f−1)−1(∗gα̂-cl(f 1(A)) =

f(∗gα̂-cl(f−1(A)) ∈ ∗gα̂C(Y, σ), because ∗gα̂-cl(f−1(A)) ∈ ∗gα̂C(X, τ). Now,
A ⊆ (f−1)−1(f−1(A)) ⊆ (f−1)−1(∗gα̂-cl(f−1(A)) = f(∗gα̂-cl(f−1(A)) and so ∗gα̂-
cl(A) ⊆ f(∗gα̂-cl(f−1(A)). Thus f−1(∗gα̂-cl(A)) ⊆ f−1(f(∗gα̂-cl(f−1(A)))) ⊆∗

gα̂-cl(f−1(A)). Therefore, the equality holds. �
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