ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.7, 4787–4795 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.7.45

$*G\hat{\alpha}$ -HOMEOMORPHISM IN TOPOLOGICAL SPACES

K. M. ARIFMOHAMMED¹, S. PIOUS MISSIER, AND M. SURAIYA BEGUM

ABSTRACT. In this article, we introduce a special type of generalised closed and open maps, briefly $*g\hat{\alpha}$ -closed maps, $*g\hat{\alpha}$ -open maps in topological spaces also analyze some important characterizations of these new type of maps and then we study $*g\hat{\alpha}$ -homeomorphisms. We also obtain strongly $*g\hat{\alpha}$ -homeomorphisms and proved that under the operation \circ the collection of all strongly $*g\hat{\alpha}$ -homeomorphisms form a group.

1. INTRODUCTION

In topological space, R. Malghan [10] introduced and investigated the notion of generalised-closed maps. In 1994, R. Devi [5] introduced the notions of semi-generalized-closed maps and generalized semi-closed maps. In topological space, many authors have been introduced different types of generalized homeomorphisms. In 1972, Crossely and Hildebrand [2] have analyzed semihomeomorphisms. In 1991, Maki et al [9] have characterized the notion of generalized-homeomorphisms. In our present study,we introduce a special type of generalised closed and open maps, briefly $*g\hat{\alpha}$ -closed maps, $*g\hat{\alpha}$ -open maps in topological spaces also analyze some important characterizations of these new type of maps and then we study $*g\hat{\alpha}$ -homeomorphisms. We also obtain strongly

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54D01, 54F65, 54G05.

Key words and phrases. $*g\hat{\alpha}$ -closed maps, $*g\hat{\alpha}$ - open map, $*g\hat{\alpha}$ -homeomorphisms, strongly $*g\hat{\alpha}$ -homeomorphisms.

4788

* $g\hat{\alpha}$ -homeomorphisms and proved that under the operation \circ the collection of all strongly * $g\hat{\alpha}$ -homeomorphisms form a group.

2. PRELIMINARIES

In this section, we give existing definitions and some important results.

Definition 2.1. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$. Then f is called

- (1) generalized-continuous [8] if $f^{-1}(A) \in gC(X, \tau)$ for each $A \in \sigma^c$.
- (2) α -generalized-continuous [4] if $f^{-1}(A) \in \alpha gC(X, \tau)$ for each $A \in \sigma^c$.
- (3) generalized semi-continuous [3] if $f^{-1}(A) \in gsC(X,\tau)$ for each $A \in \sigma^c$.
- (4) generalized*-continuous [14] if $f^{-1}(A) \in g^*C(X, \tau)$ for each $A \in \sigma^c$.
- (5) *generalized α -continuous [11] if $f^{-1}(A) \in *g\alpha C(X, \tau)$ for each $A \in \sigma^c$.
- (6) generalized pre-continuous [1] if $f^{-1}(A) \in gpC(X, \tau)$ for each $A \in \sigma^c$.
- (7) generalized semipre-continuous [6] if $f^{-1}(A) \in gspC(X, \tau) \ \forall A \in \sigma^c$.
- (8) generalized pre regular-continuous [7] if $f^{-1}(A) \in gprC(X, \tau) \ \forall A \in \sigma^c$.
- (9) generalized alpha-continuous [4] if $f^{-1}(A) \in g\alpha C(X, \tau)$ for each $A \in \sigma^c$.

The collection of all generalized-closed sets, α generalized-closed sets, generalized semi-closed sets, generalized*-closed sets, *generalized α -closed sets, generalized pre-closed sets, generalized semi pre-closed sets, generalized pre regular-closed sets and generalized α -closed sets denoted by $gC(X,\tau)$, $\alpha gC(X,\tau)$, $gsC(X,\tau)$, $g*C(X,\tau)$, * $g\alpha C(X,\tau)$, $gpC(X,\tau)$, $gspC(X,\tau)$, $gprC(X,\tau)$ and $g\alpha C(X,\tau)$ respectively.

Definition 2.2. [12] If A is $*g\hat{\alpha}$ -closed set, then $cl(A) \subseteq O$ for every $*g\alpha$ -open set O which contains A.

Definition 2.3. [13] Consider a mapping $f : (X, \tau) \to (Y, \sigma)$. Then a $*g\hat{\alpha}$ continuous mapping defined by $f^{-1}(A) \in *g\hat{\alpha}C(X, \tau)$ for each $A \in \sigma^c$.

Definition 2.4. [13] Consider a mapping $f : (X, \tau) \to (Y, \sigma)$. Then a $*g\hat{\alpha}$ irresolute mapping defined by $f^{-1}(A) \in *g\hat{\alpha}C(X, \tau)$ for each $A \in *g\hat{\alpha}C(Y, \sigma)$.

Theorem 2.1. [13] Assume that $V \subseteq B \subseteq$. And V is a $*g\hat{\alpha}$ -closed set relative to $B \in \tau$ and $B \in *g\hat{\alpha}C(X,\tau)$. Then, we have the set $V \in *g\hat{\alpha}C(X,\tau)$.

Proposition 2.1. [13] A * $g\hat{\alpha}$ -irresolute mapping $f : (X, \tau) \to (Y, \sigma)$ implies * $g\hat{\alpha}$ continuous mapping.

3. $*g\hat{\alpha}$ -Closed maps and Open maps

Definition 3.1. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$. Then a $*g\hat{\alpha}$ -closed map defined by f(B) is $*g\hat{\alpha}C(Y,\sigma)$ whenever B is a closed set in (X,τ) , where $*g\hat{\alpha}C(X,\tau)$ denotes the collection of all $*g\hat{\alpha}$ -closed sets and $*g\hat{\alpha}O(X,\tau)$ denotes collection of all $*g\hat{\alpha}$ -open sets.

Proposition 3.1. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$. Then f is $*g\hat{\alpha}$ -closed if and only if $*g\hat{\alpha} - cl(f(B)) \subseteq f(cl(B))$ for each set B in (X, τ) .

Proof. Assume that f is $*g\hat{\alpha}$ -closed, $B \subseteq X$. Then we have $f(cl(B)) \in *g\hat{\alpha}C(Y,\sigma)$. We have $f(B) \subseteq f(cl(B))$ and $*g\hat{\alpha}-cl(f(B)) \subseteq *g\hat{\alpha}-cl(f(cl(B))) = f(cl(B))$.

Conversely, choose $B \in \tau^c$. Then B = cl(B), from the statement of the proposition, $f(B) = f(cl(B)) \supseteq *g\hat{\alpha} - cl(f(B))$. We have $f(B) \subseteq *g\hat{\alpha} - cl(f(B))$. Therefore $f(B) = *g\hat{\alpha} - cl(f(B))$. That is, $f(B) \in *g\hat{\alpha}C(Y,\sigma)$. Therefore, f is $*g\hat{\alpha}$ -closed.

Now, we give a result for necessary and sufficient condition for $*g\hat{\alpha}$ -closed map

Theorem 3.1. Let a map $f : (X, \tau) \to (Y, \sigma)$ and f is a $*g\hat{\alpha}$ -closed iff for every $A \in Y$ and for every $f^{-1}(A) \subseteq U \in \tau$, $\exists B \in *g\hat{\alpha}O(Y, \sigma)$ where $A \subseteq B$, $f^{-1}(B) \subseteq U$.

Proof. Assume that f is a $*g\hat{\alpha}$ -closed map. Consider, $C \subseteq Y$, $U \subseteq X$, where $U \in \tau$ such that $f^{-1}(C) \subseteq U$. Now, we have $B = (f(C^c))^c \in *g\hat{\alpha}O(Y,\sigma)$ containing C such that $f^{-1}(B) \subseteq U$.

Conversely, consider $C \in \tau^c$. Then $f^{-1}(f(C)^c) \subseteq C^c$ and $C^c \in \tau$. From the statement of the theorem, $\exists B \in {}^*g\hat{\alpha}O(Y,\sigma)$ where $(f(C))^c \subseteq B$, $f^{-1}(B) \subseteq C^c$ and so $C \subseteq (f^{-1}(B))^c$. Hence $B^c \subseteq f(C) \subseteq f((f^{-1}(B))^c) \subseteq B^c$ that implies $f(C) = B^c$. Thus f is ${}^*g\hat{\alpha}$ -closed, since B^c is ${}^*g\hat{\alpha}$ -closed, f(C) is ${}^*g\hat{\alpha}$ -closed. \Box

Proposition 3.2. Let $f : (X, \tau) \to (Y, \sigma)$ be $*g\alpha$ -irresolute and $*g\hat{\alpha}$ -closed map and $A \in *g\hat{\alpha}C(X, \tau)$. Then $f(A) \in *g\hat{\alpha}C(Y, \sigma)$.

Proof. Consider, $U \in {}^*g\hat{\alpha}O(Y,\sigma)$ such that $f(A) \subseteq U$. Now, $f^{-1}(U) \in {}^*g\alpha O(X,\tau)$ containing A, Since f is ${}^*g\alpha$ - irresolute map. Since $A \in {}^*g\alpha C(X,\tau)$, $cl(A) \subseteq f^{-1}(U)$. From the statement of the theorem, f is a ${}^*g\hat{\alpha}$ -closed map, $f(cl(A)) \in$

4790 K. M. ARIFMOHAMMED, S. PIOUS MISSIER, AND M. SURAIYA BEGUM

 ${}^*g\hat{\alpha}C(Y,\sigma), \ cl(f(cl(A))) \subseteq U$ which implies that $cl(f(A)) \subseteq U$. Therefore $f(A) \in {}^*g\hat{\alpha}C(Y,\sigma).$

Remark 3.1. Consider the maps $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$. Then $f \circ g$ need not be a $*g\hat{\alpha}$ -closed map where the maps f and g are $*g\hat{\alpha}$ -closed.

Corollary 3.1. Consider the maps $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$. Then $g \circ f$ is $*g\hat{\alpha}$ -closed where f is $*g\hat{\alpha}$ -closed, g is $*g\hat{\alpha}$ -closed and $*g\alpha$ -irresolute.

Proof. Let $V \in \tau^c$. From the statement of the theorem, $f(V) \in {}^*g\hat{\alpha}C(Y,\sigma)$. Now we have $g \circ f$ is ${}^*g\hat{\alpha}$ -closed map, because the mapping g is both ${}^*g\hat{\alpha}$ -closed and ${}^*g\alpha$ -irresolute and by the previous Proposition.

Proposition 3.3. Consider the maps $f : (X, \tau) \to (Y, \sigma)$, $g : (Y, \sigma) \to (Z, \eta)$. The composite map $g \circ f$ is a $*g\hat{\alpha}$ -closed map when f is closed, g is $*g\hat{\alpha}$ -closed.

Proof. Consider $A \in \tau^c$. Then by hypothesis, $f(A) \in \sigma^c$. Now, we get $g(f(A)) = (g \circ f)(A) \in {}^*g\hat{\alpha}C(Z,\eta)$, since g is ${}^*g\hat{\alpha}$ -closed. Therefore the composition $g \circ f$ is ${}^*g\hat{\alpha}$ -closed.

Remark 3.2. Consider a ${}^*g\hat{\alpha}$ -closed map $f : (X, \tau) \to (Y, \sigma)$, closed map $g : (Y, \sigma) \to (Z, \eta)$. Then $g \circ f$ is not ${}^*g\hat{\alpha}$ -closed in general.

Theorem 3.2. Consider the maps $f : (X, \tau) \to (Y, \sigma)$, $g : (Y, \sigma) \to (Z, \eta)$ such that $g \circ f$ is $*g\hat{\alpha}$ -closed. Then we get the bellow statements.

- (1) The map g is $*g\hat{\alpha}$ -closed, if the surjective map f is continuous.
- (2) The map f is $*g\hat{\alpha}$ -closed, if the injective map g is $*g\hat{\alpha}$ -irresolute, then
- (3) g is $*g\hat{\alpha}$ -closed, if (X, τ) is $T_{1/2}$ and the surjective map f is generalized continuous.
- (4) The map f is closed, if the injective map g is strongly $*g\hat{\alpha}$ -continuous.
- *Proof.* (1) consider the set $V \in \sigma^c$. Now, $f^{-1}(V) \in \tau^c$, since f is continuous. Then we have $(g \circ f)(f^{-1}(V)) \in {}^*g\hat{\alpha}C(Z,\eta)$, because $g \circ f$ is ${}^*g\hat{\alpha}$ -closed. Since f is surjective, $g(V) \in {}^*g\hat{\alpha}C(Z,\eta)$. Therefore g is ${}^*g\hat{\alpha}$ -closed.
 - (2) consider the set A ∈ τ^c. Now, (g ∘ f)(A) ∈ *gâC(Z,η), because g ∘ f is *gâ-closed. Also we have g⁻¹((g ∘ f)(A) ∈ *gâC(Y,σ), because g is *gâ-irresolute. Since g is injective, f(A) ∈ *gâC(Y,σ). Therefore f is a *gâ-closed map.

- (3) Consider the set $B \in \sigma^c$. Now, $f^{-1}(B) \in {}^*g\hat{\alpha}C(X,\tau)$, Since f is a generalized-continuous map. Also we get $f^{-1}(B) \in {}^*g\hat{\alpha}C(X,\tau)$ and by hypothesis (i), g is a ${}^*g\hat{\alpha}$ -closed map, because X is a $T_{1/2}$ space.
- (4) Consider the set C ∈ τ^c. Noe, (g ∘ f)(C) *gâC(Z,η), because g ∘ f is a *gâ-closed map. Also we get g⁻¹((g ∘ f)(C) ∈ *gâC(Y,σ), since g is a strongly *gâ-continuous map. Since g is injective, f(C) ∈ σ^c. Therefore the map f is closed.

Definition 3.2. Consider, a map $f : (X, \tau) \to (Y, \sigma)$. A * $g\hat{\alpha}$ -open map f is defined by $f(U) \in *g\hat{\alpha}O(Y, \sigma)$ for every $U \in \tau$.

Theorem 3.3. Consider a map $f : (X, \tau) \to (Y, \sigma)$. Then f is $*g\hat{\alpha}$ -open iff for any set A of (Y, σ) , $K \in \tau^c$ and $f^{-1}(A) \subset K$, there $B \in *g\hat{\alpha}C(Y, \sigma)$ containing the set A such that $K \supseteq f^{-1}(B)$.

Proof. The proof is same as proof of Theorem 3.1.

Corollary 3.2. Let a map $f : (X, \tau) \to (Y, \sigma)$. Then f is $*g\hat{\alpha}$ -open iff $f^{-1}(*g\hat{\alpha} - cl(A)) \subseteq cl(f^{-1}(A))$ for each $A \in Y$.

Proof. Assume that f is $*g\hat{\alpha}$ -open. Then, we have for a subset A of Y, $f^{-1}(A) \subseteq cl(f^{-1}(A))$. By the above theorem, there exists $C \in *g\hat{\alpha}C(Y,\sigma)$ such that $A \subseteq C$, $f^{-1}(C) \subseteq cl(f^{-1}(A))$. Now, $f^{-1}(*g\hat{\alpha} - cl(A)) \subseteq f^{-1}(C) \subseteq cl(f^{-1}(A))$, because $C \in *g\hat{\alpha}C(y,\sigma)$.

Conversely, Consider *B* be a subset of (Y, σ) and $D \in \tau^c$ and $f^{-1}(B) \subseteq D$. Which implies $C = g\hat{\alpha} - cl(B)$. Then, we have $C \in g\hat{\alpha}C(X, \tau)$, $B \subseteq C$. From the statement of the theorem, $f^{-1}(C) = f^{-1}(g\hat{\alpha} - cl(B)) \subseteq cl(f^{-1}(B)) = D$. Hence by the previous theorem, *f* is $g\hat{\alpha}$ -open.

Definition 3.3. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$. A strongly $*g\hat{\alpha}$ -closed map is defined by for each $A \in *g\hat{\alpha}C(X, \tau)$, $f(A) \in *g\hat{\alpha}C(Y, \sigma)$.

4. * $g\hat{\alpha}$ -Homeomorphism

Definition 4.1. Consider a bijection $f : (X, \tau) \to (Y, \sigma)$. A * $g\hat{\alpha}$ -homeomorphism f is defined by f is both * $g\hat{\alpha}$ -open map, * $g\hat{\alpha}$ -continuous map.

Example 1. Consider the Topological spaces (X, τ) and (Y, σ) , where $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, Y\}$. Let the bijection $f : (X, \tau) \to (Y, \sigma)$ be identity map. Now, f is both $*g\hat{\alpha}$ -open, $*g\hat{\alpha}$ -continuous. Therefore, the bijective mapping f is $*g\hat{\alpha}$ -homeomorphism.

Proposition 4.1. Homeomorphism implies $*g\hat{\alpha}$ -homeomorphism.

The proof is obvious from the consequences of the notions of homeomorphism and $*g\hat{\alpha}$ -homeomorphism.

Converse of the above proposition is not true in general. Consider the mapping f defined in the Example 1. Because f is not continuous, we have f is a $*g\hat{\alpha}$ -homeomorphism but not a homeomorphism.

Proposition 4.2. $*g\hat{\alpha}$ -homeomorphism implies g-homeomorphism.

Proof. The proposition follows by the following results: both $*g\hat{\alpha}$ -implies *g*-continuous, $*g\hat{\alpha}$ -open map implies generalized open map.

Converse of the above proposition is not true in general.

Example 2. Consider the Topological spaces (X, τ) and (Y, σ) , where $X = \{p, q, r\} = Y$, $\tau = \{\emptyset, \{p\}, X\}$ and $\sigma = \{\emptyset, \{q\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(p) = r, f(q) = p and f(r) = q. Then, we have f is not a $*g\hat{\alpha}$ -homeomorphism but it is a g-homeomorphism.

Proposition 4.3. Consider a bijection $f : (X, \tau) \to (Y, \sigma)$ such that f is $*g\hat{\alpha}$ continuous. Then the below results are equal:

- (1) The bijection f is $*g\hat{\alpha}$ -open.
- (2) The bijection f is $*g\hat{\alpha}$ -homeomorphism.
- (3) The bijection f is $*g\hat{\alpha}$ -closed.

Proof. From the Proposition 4.2, the proof follows.

Remark 4.1. Consider two $*g\hat{\alpha}$ -homeomorphic maps f and g. Then, $f \circ g$ need not be a $*g\hat{\alpha}$ -homeomorphism.

From the below example, the above remark follows.

Example 3. Let the topological spaces, (X, τ) , (Y, σ) and (Z, η) , where $X = Y = Z = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}, \sigma = \{\emptyset, \{a, b\}, Y\}$ and $\eta = \{\emptyset, \{a, b\}, Y\}$

 $\{\emptyset, \{a\}, \{a, b\}, Z\}$. Now, define mappings $f: (X, \tau) \to (Y, \sigma), g: (Y, \sigma) \to (Z, \eta)$ be identity. Then we have $q \circ f$ is not a ${}^*q\hat{\alpha}$ -homeomorphism and f and q are * $g\hat{\alpha}$ -homeomorphism, since the set $\{b\} \in \tau$, $(g \circ f)(\{b\}) = \{b\} \notin {}^*g\hat{\alpha}O(Z,\eta)$.

Definition 4.2. Consider a bijective mapping $f: (X, \tau) \to (Y, \sigma)$. A strongly $*q\hat{\alpha}$ homeomorphism f is defined by both f and its inverse map f^{-1} are ${}^*g\hat{\alpha}$ -irresolute.

For our convenience, we give the following notions

- (1) the collection of all $*g\hat{\alpha}$ -homeomorphism of (X,τ) onto (X,τ) by $*g\hat{\alpha}$ $h(X,\tau),$
- (2) the collection of all strongly $^{*}q\hat{\alpha}$ -homeomorphism of (X, τ) onto (X, τ) by s-* $q\hat{\alpha}$ - $h(X, \tau)$.

Proposition 4.4. Strongly $*q\hat{\alpha}$ -homeomorphism implies $*q\hat{\alpha}$ -homeomorphism.

Proof. From the Proposition 2.1 the proof follows.

The converse part of the above proposition is not true. we can justify from the following example. Let the map q which is defined in Example 3 is not strongly * $q\hat{\alpha}$ -homeomorphism and it is * $g\hat{\alpha}$ -homeomorphism, because $\{a, c\} \in *g\hat{\alpha}C(Y, \sigma)$, $(q^{-1})^{-1}(\{a,c\}) = q(\{a,c\}) = \{a,c\} \notin {}^*q\hat{\alpha}C(Z,\eta)$. Hence q is not a strongly ${}^*q\hat{\alpha}$ homeomorphism.

Proposition 4.5. Strongly $*g\hat{\alpha}$ -homeomorphism implies generalized-homeomorphism.

Proof. From Propositions 4.2 and 4.4, the proof follows.

The converse part of the above proposition is not true. we can justify from the following example. Let the map f defined in Example 2. Then f is not strongly $^*g\hat{\alpha}$ -homeomorphism but it is generalized-homeomorphism.

Proposition 4.6. Consider two are strongly ${}^{*}q\hat{\alpha}$ -homeomorphisms: $f: (X, \tau) \rightarrow$ $(Y, \sigma), g: (Y, \sigma) \to (Z, \eta)$, then $g \circ f$ is a strongly $*g\hat{\alpha}$ -homeomorphism.

Proof. Consider $V \in {}^{*}q\hat{\alpha}O(Z,\eta)$. Then $(q \circ f)^{-1}(V) = f^{-1}(q^{-1}(V)) = f^{-1}(U)$, $U = g^{-1}(V)$. From the assumption, $U \in {}^*g\hat{\alpha}O(Y,\sigma)$ also we have $f^{-1}(U) \in$ ${}^*g\hat{\alpha}O(X,\tau)$. Hence $g\circ f$ is a ${}^*g\hat{\alpha}$ -irresolute mapping. Consider $K \in {}^*g\hat{\alpha}O(X,\tau)$. Then we get $(g \circ f)(K) = g(f(K)) = g(F)$, F = g(K). From the assumption $f(K) \in {}^*q\hat{\alpha}O(Y,\sigma)$ and by hypothesis, $q(f(K)) \in {}^*q\hat{\alpha}O(Z,\eta)$. i.e., $(g \circ f)(K) \in {}^*g\hat{\alpha}O(Z,\eta)$. Thus $(g \circ f)^{-1}$ is a ${}^*g\hat{\alpha}$ -irresolute mapping. Hence composition of g and f is strongly $*g\hat{\alpha}$ -homeomorphism. \square

Theorem 4.1. Under composition of maps, the collection s-* $g\hat{\alpha}$ - $h(X, \tau)$ form a group.

Proof. A binary operation * defined by $g * h = h \circ g$ for each $g, h \in s^* g \hat{\alpha} \cdot h(X, \tau)$, where $*:s^* g \hat{\alpha} \cdot h(X, \tau) \times s^* g \hat{\alpha} \cdot h(X, \tau) \to s^* g \hat{\alpha} \cdot h(X, \tau)$, and \circ is composition of mappings. Now, $h \circ g \in s^* g \hat{\alpha} \cdot h(X, \tau)$, since by Proposition 4.6. Consider the identity map $I : (X, \tau) \to (X, \tau)$. Then $I \in s^* g \hat{\alpha} \cdot h(X, \tau)$ is the identity element, since the operation \circ is associative. If $g \in s^* g \hat{\alpha} \cdot h(X, \tau)$, then we have $g^{-1} \in s^* g \hat{\alpha} \cdot h(X, \tau)$ where $g \circ g^{-1} = g^{-1} \circ g = I$. Therefore, under the operation \circ the collection $(s^* g \hat{\alpha} \cdot h(X, \tau), \circ)$ form a group. \Box

Theorem 4.2. Consider set of all topological space. Then the collection s-* $g\hat{\alpha}$ -homeomorphism satisfies the three conditions of equivalence relation.

Proof. From Proposition 4.6, the proof follows.

Theorem 4.3. Consider a map $f : (X, \tau) \to (Y, \sigma) \in s^*g\hat{\alpha}$ -homeomorphism, then $*g\hat{\alpha}$ - $cl(f^1(A)) = f^{-1}(*g\hat{\alpha}$ -cl(A) for every $A \subseteq Y$.

Proof. The map f is $*g\hat{\alpha}$ -irresolute, since f is a $s-*g\hat{\alpha}$ -homeomorphism. Also we have $f^{-1}(*g\hat{\alpha}) \in *g\hat{\alpha}C(X,\tau)$, because $*g\hat{\alpha}-cl(f(A)) \in *g\hat{\alpha}C(Y,\sigma)$. Also, $f^{-1}(A) \subseteq f^{-1}(*g\hat{\alpha})-cl(A)$ and $*g\hat{\alpha}-cl(f^{-1}(A)) \subseteq f^{-1}(*g\hat{\alpha}-cl(A))$. Now, f^{-1} is $*g\hat{\alpha}$ irresolute, because $f \in s-*g\hat{\alpha}-h(X,\tau)$. Again we have $(f^{-1})^{-1}(*g\hat{\alpha}-cl(f^{-1}(A))) =$ $f(*g\hat{\alpha}-cl(f^{-1}(A)) \in *g\hat{\alpha}C(Y,\sigma)$, because $*g\hat{\alpha}-cl(f^{-1}(A)) \in *g\hat{\alpha}C(X,\tau)$. Now, $A \subseteq (f^{-1})^{-1}(f^{-1}(A)) \subseteq (f^{-1})^{-1}(*g\hat{\alpha}-cl(f^{-1}(A))) = f(*g\hat{\alpha}-cl(f^{-1}(A)))$ and so $*g\hat{\alpha}-cl(A) \subseteq f(*g\hat{\alpha}-cl(f^{-1}(A))$. Thus $f^{-1}(*g\hat{\alpha}-cl(A)) \subseteq f^{-1}(f(*g\hat{\alpha}-cl(f^{-1}(A)))) \subseteq *$ $g\hat{\alpha}-cl(f^{-1}(A))$. Therefore, the equality holds. \Box

REFERENCES

- I. AROCKIARANI, K. BALACHANDRAN, J. DONTCHEV: Some characterization of gpirresolute and gp-continuous maps between topological spaces, Mem. Fac. Kochi Univ. Ser. A. Math., 20 (1999), 93-104.
- [2] S. G. CROSSLEY, S. K. HILDEBRAND: Semi-topological properties, 74 (1972), 233-254.
- [3] R. DEVI, K. BALACHANDRAN, H. MAKI: Semi-generalized homeomorphisms and generalized semi-homeomorphism in topological spaces, Indian J. Pure Appl. Math., 26 (1995), 271-284.
- [4] R. DEVI, K. BALACHANDRAN, H. MAKI: On generalized α -continuous maps and α -generalized continuous mpas, Far East J. Math. Sci., I (1997), 1-15.

- [5] R. DEVI: Studies on generalizations of closed maps and homeomorphism in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1994.
- [6] J. DONTCHEV: On generalized semi-preopen sets, Mem. Fac. Kochi. Univ. Ser A. Math., 16 (1995), 35-48.
- [7] Y. GANAMBAL: On generalized preregular closed sets in topological spaces, Indian J. Pure Appl. Math., **28**(3) (1997), 351-360.
- [8] N. LEVINE: Strong continuity in topological spaces, Amer. Math. Monthly, 67 (1960), 269.
- [9] H. MAKI, P. SUNDARAM, K. BALACHANDRAN: On generalized homeomorphisms in topological spaces, Bull. Fukuoka Univ. Ed. Part III, 40 (1991), 13-21.
- [10] S. R. MALGHAN: Generalized closed maps, J. Karnataka Univ. Sci., 27 (1982), 82-88.
- [11] K. NôNO, R. DEVI, M. DEVIPRIYA, K. MUTHUKUMARASWAMY, H. MAKI: On $*g\alpha$ closed sets and the digital plane, Bulletin of Fukuoka University of Education, **53**(3) (2004), 15-24.
- [12] S. PIOUS MISSIER, K. M. ARIFMOHAMMED: On $*g\hat{\alpha}$ -closed sets, Communicated.
- [13] S. PIOUS MISSIER, K. M. ARIFMOHAMMED: Functions associated with $*g\hat{\alpha}$ -closed sets in topological spaces, Communicated.
- [14] M. K. R. S. VEERA KUMAR: Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ(Math.), 21 (2000), 1-19.

DEPARTMENT OF SCIENCE AND HUMANITIES KARPAGAM COLLEGE OF ENGINEERING COIMBATORE - 641 032 TAMILNADU, INDIA *E-mail address*: arifjmc9006@gmail.com

P.G. AND RESEARCH DEPARTMENT OF MATHEMATICS V.O. CHIDAMBARAM COLLEGE, TUTICORIN-628 00 AFFILIATIATED TO MANONMAIAM SUNDARANAR UNIVERSITY ABISHEKAPATTI, TIRUNELVELI-627 012. *E-mail address*: spmissier@gmail.com

PG AND RESEARCH DEPARTMENT OF MATHEMATICS N.G.M. COLLEGE, POLLACHI - 642 001 TAMILNADU, INDIA *E-mail address*: suraiya0291@gmail.com