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REDUCTION GENERATION WITH DISTANCE MEASURE IN SET VALUED
ORDERED DECISION TABLES

D. SHANTHI, S. VENGATAASALAM, AND S. INDRAKUMAR

ABSTRACT. An effective pattern of decision making is proved to be with the as-
sistance of ordered decision tables. Manipulating the multi valued information
is aided with set valued ordered decision model. The studies in establishing
reduction of the conditional attributes based on the amount of information car-
ried by the individual attribute still could not cope up with the consistency of
the original information system. The distance measure was proposed and signif-
icance measure was established between objects with dominance classes. The
distance coefficient between the objects treated under different sets of avail-
able circumstances and the decision values forms the basis of achieving the
reduction of the system with highest significance which also matches with the
stability of targeted set valued ordered decision table. A heuristic algorithm
was presented to explain the process and the algorithm was demonstrated by
using sample data in attaining the valuable redacts.

1. INTRODUCTION

Rough set theory encourages the data interpretation with the existing mass
of invalidated data and achieves at the decision for the future related circum-
stances. The theory can identify the redundant and data in negative regions of
our proposed study and reduce the data dimensions and settle on with the idea
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in the simple format. The useful information thus extracted creates the path for
relevant knowledge compilation and classification. The ordering of data finds
much attention in revealing the relationship between objects in stronger basis.
The worse and better class of data in ordered decision tables helps to build the
much more confident decisions. The equivalence classes in classical rough sets
were replaced by effective pattern of upward and downward dominance rela-
tion in Dominance based rough set model. Set valued dominance based model
is designed in such a way that the dominance classes are defined to meet the
multiple values of the attributes for the objects in the universe. The strength
of the Set valued ordered decision model lies in its nature of defining domi-
nance objects with the aid of multiple valued criterions. The objects that satisfy
condition as well as decision parameters finds inclusion in lower approximation
where as the objects that obey either possibilities acquire membership in upper
approximation set.

Huge data are to be monitored and required ideas has to be grasped and an-
alyzed for the useful interpretation of information. Knowledge was considered
as the valuable part of data while observation and investigation of records [1].
The complicated continuous data is considered easy to access if it was simpli-
fied. Fuzzy rough sets are used to discretize the condition attributes and assign
a degree to decision variable through which the identification of optimum mix-
ture of glass materials [2]. The incomplete decision tables are studied [3] and
an algorithm was proposed for attribute reduction. The conditional attributes
with better significance are annexed to the redact set and the decision rules
are framed with minimal set of condition attributes in incomplete decision ta-
bles [4]. Each individual object in the universe is associated with a weight
along with membership degree and the measures of selected features are pre-
sented [5]. The possibility of application of rough set in real world problems are
presented in detail and basic ideas was clearly explained [6]. Bayesian decision
procedure combined with regression analysis is introduced [7] for extraction
of constructive information and achieving the decision using the three framed
paths.

The intrinsic worth [8] of the Dominance rough set model than that of stan-
dard rough set model was studied and tried to frame the decision rules with
Dominance rough set model. The evidence theory in which the mass of the
dominance class was made use to identify the useful attributes and obtaining
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the belief reduction [9]. Both dominance and non dominance properties of
the object are studied [10] in which the various classes are analyzed to obtain
the inter class reduction in Dominance oriented rough set model. Studies [11]
evaluated the qualities of different classes in ordered classes for the emergency
communication. Procedure for individual analyses of the appended data was
proposed [12] with the validity of the method. The inner and outer significance
of attributes in compacted decision system is to find three types of reduction
with positive region and two other entropies [13]. Boolean reasoning tech-
niques and dominance indiscernibility model is used for reduction construction
and rule optimization in inconsistent set valued ordered decision model [14].
The ordered decision tables are used to identify the decision set of rules and
further the rules are validated with different measures under the knowledge of
conditions and decisions. Various designs possible in ordered decision tables
are discussed in detail [15]. A new method [16] was proposed to estimate the
distance between the attribute values and the feature selection was performed
in set valued decision tables. The distance based measure combined with set
valued dominance approach rough set model was studied through this paper to
simplify the data and extract all possible reductions and faster convergence to
decision progress.

Our work is planned as per the following structure. Some fundamental ideas
of Dominance based set valued decision tables and its properties are presented
in section 2. The proposed reduction induced by distance between the dom-
inance classes under condition and decision preferences of the set valued or-
dered decision table was constructed in section 3. In section 4 the technique
was used for sample data and the valuable features are extracted. Conclusion
part of the paper is discussed in section 5.

2. DOMINANCE SET VALUED DECISION MODEL AND JACCARD DISTANCE

2.1. Dominance set valued decision model. Consider the decision model
S =< U, CD, SV, f >. Here the nonempty finite universe is denoted by U ;
The finite set of condition along with the decision variable is CD; the domain
of attributes is SV =

⋃
a∈ CD

Va, Va is the value set of each attribute a ∈ CD. The

function f : U ×CD → SV , defined as f(ux, a) ∈ SV for every ux ∈ U, a ∈ CD.
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If an attribute ’a’ in CD has more than one value in Va for some the objects in
U , then S is set valued information system.

For the subset A ⊆ CD and (ux, uy) ∈ U × U , the set valued dominance
relation can be specified by the expression [15].

δ+A = {(ux, uy) ∈ U × U/min f(ux, a) ≥ max f(uy, a), ∀a ∈ A} .

It was understood that if (ux, uy) ∈ δ+A , then ux dominate uy or ux is observed to
have better values than uy for all the attributes in A. The set valued dominance
function is reflexive and transitive.

δ+A(ux) = {uy ∈ U/max f(uy, a) ≥ min f(ux, a), ∀a ∈ A} ,
δ−A(ux) = {uy ∈ U/min f(uy, a) ≤ max f(ux, a), ∀a ∈ A} .

If δ+Q(x) = δ+P (x) and δ−Q(x) = δ−P (x), then we can realize that

f(ux, a) = f(uy, a) ∀a ∈ Q, (ux, uy) ∈ U × U and P ⊆ Q ⊆ CD.

Let S =< U, CD, SV, f > be the set valued ordered decision table,
A ⊆ CD, d = {d1, d2, · · · , dn} are the choices initiated by the decision attribute
d, the lower and upper approximations of d+i = {ux ∈ U/f(ux, d) ≥ di} with
respect to the dominance relation δ+A are defined as

δ+A(d
+
i ) = {ux ∈ U/δ+A(ux) ⊆ d+i } and δ+A(d

+
i ) =

⋃
ux∈ d+i

δ+A(ux) .

2.2. Jaccard distance. The Jaccard distance between the sets M,N ⊆ U can
be characterized as

JD(M,N) = 1− |M ∩N |
|M ∪N |

.

3. DISTANCE BASED REDUCT IN ORDERED SET VALUED DECISION TABLE

3.1. Consistency measure. The consistency of the decision in the decision ta-
ble SD = (U,CD, SV, f) can be measured by the coefficient

ψ+
C (ux) =

|δ+C∪d(ux)|
|δ+C (ux)|

for any ux ∈ U.

The set valued dominance decision table is considered to be consistent if
ψ+
C (ux) = 1 and inconsistent if ψ+

C (ux) 6= 1 for any ux ∈ U .
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Definition 3.1. The set A ⊂ C is the reduct of the set valued decision table
SD = (U,CD, SV, f), if

(i) ψ+
A(ux) = ψ+

C (ux) for any ux ∈ U and

(ii) ψ+
P (ux) 6= ψ+

C (ux) for any P ⊂ A .

3.2. Distance in set valued ordered decision table. Consider the set valued
decision table SD = (U,CD, SV, f) :

M = {uy ∈ U/uy ∈ δ+C (ux)} and N = {ux ∈M/ux ∈ δ+d (x)} .

Based on Jaccard distance, the distance between the Dominance set M and its
decision performance in U with in condition attribute set C can be considered
as the average of the distance calculated for its partition in U .

(3.1) LM(C, d) = 1− 1

|U |
∑

Mi∈ U/δ+c
Ni∈ U/δ+C∪d

|Mi ∩Ni|
|Mi ∪Ni|

.

Equation (3.1) is same as defining

(3.2) LM(C, d) = 1− 1

|U |
∑
ui∈ ∪

|δ+c (ui) ∩ δ+C ∪ d(ui)|
|δ+c (ui) ∩ δ+C ∪ d(ui)|

.

Since δ+C (ui) ⊇ δ+C∪d(ui), for any ui ∈ U the equations (3.1) and (3.2) can be
simplified as

LM(C, d) = 1− 1

|U |
∑

M∈U/δ+C
Ni∈U/δ+C∪d

|Ni|
|Mi|

and LM(C, d) = 1− 1

|U |
∑
ui∈U

|δ+C∪d(ui)|
|δ+C (ui)|

.

Proposition 3.1. For the set valued decision table SD = (U,CD, SV, f), the dis-
tance between the universe and the partition induced by P ⊂ C is

1. LM(U, P ) = 1− 1

|U |

|U |∑
i=1

(
|δ+P (ui)|
|U |

)
2. The minimal distance LM(U, P ) is zero.
3. The maximal distance LM(U, P ) is 1− 1

|U | .
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Proof. 1.

LM(U, P ) = 1− 1

|U |

|U |∑
i=1

(
|U ∩ δ+P (ui)|
|U ∪ δ+P (ui)|

)
for any ui ∈ U

= 1− 1

|U |

|U |∑
i=1

(
|δ+P (ui)|
|U |

) .

2. The distance is minimum when δ+P (ui) equal to the universe U and the
minimum distance is given to be

1− 1

|U |

|U |∑
i=1

(
|δ+P (ui)|
|U |

)
= 1− 1

|U |

|U |∑
i=1

|U |
|U |

= 0 .

3. The distance is maximum when δ+P (xi) = {xi} for all xi ∈ U and the
maximal distance

1− 1

|U |

|U |∑
i=1

(
|δ

+
P (ui)|
|U |

)
= 1− 1

|U |

|U |∑
i=1

(
|{ui}|
|U |

)
= 1− 1

|U |

|U |∑
i=1

(
1

|U |

)
= 1− 1

|U |
.

�

Proposition 3.2. Let SD = (U,CD, SV, f) be the set valued ordered decision table
and let P and Q are the subsets of the condition attribute C such that P ⊂ Q .
Then

LM (P, d) ≥ LM (Q, d) and LM (P, d) ≥ LM (Q, d) iff ψ+
P (ux) = ψ+

Q(ux).

Proof. We know that δ+Q(ux) =
⋂
δ+q (ux) for all q ∈ Q and ux ∈ U . Since P ⊂ Q,

we conclude that δ+Q(ux) ⊆ δ+P (ux) and δ+Q∪{d}(ux) ⊆ δ+P∪{d}(ux) so that

|δ+Q(ux)| ≤ |δ
+
P (ux)|, |δ

+
Q∪{d}(ux)| ≤ |δ

+
P∪{d}(ux)|, |δ

+
Q∪{d}(ux)| ≤ |δ

+
Q(ux)|

and also |δ+P∪{d}(ux)| ≤ |δ
+
P (ux)|. We also notice that for the consistent set val-

ued ordered decision tables the degree of convergence of δ+Q(ux) → δ+Q∪{d}(ux)

is more than the degree of convergence of δ+P (ux) → δ+P∪{d}(ux) for P ⊆ Q

|δ+Q∪d(ux)|
|δ+Q(ux)|

≥ |δ
+
P∪d(ux)|
|δ+P (ux)|

and hence

1− 1
|U |

|U |∑
i=1

(
| δ+Q∪d(ui)|
|δ+Q(ui)|

)
≤ 1− 1

|U |

|U |∑
i=1

(
| δ+P∪d(ui)|
|δ+P (ui)|

)
.
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So that LM(Q, d) ≤ LM(P, d) is proved

LM(P, d) = LM(Q, d) ⇔ 1− 1
|U |

|U |∑
i=1

(
| δ+P∪d(ui)|
|δ+P (ui)|

)
= 1− 1

|U |

|U |∑
i=1

(
| δ+Q∪d(ui)|
|δ+Q(ui)|

)
⇔ ψ+

P (ux) = ψ+
Q(ux)

.

�

Proposition 3.3. Let SD = (U,CD, SV, f) be the set valued ordered decision table
and let P and Q are the subsets of the condition attribute C such that P ⊂ C. Then
we have the following assumptions

1. LM(P, d) achieves its maximum value
1

|U |
when ψ+

P (ux) =
1

|δ+P (ux)|
.

2. LM(P, d) achieves its minimum value 0 when ψ+
P (ux) = 1.

Proof. 1. LM(P, d) is maximum when
|δ+P∪d(ux)|
|δ+P (ux)|

is minimum for all ux ∈

U and is achieved when |δ+P∪d(ui)| = 1 for all ui ∈ U which means

ψ+
P (ux) =

1

|δ+P (ux)|
.

2. LM(P, d) is minimum when
|δ+P∪d(ui)|
|δ+P (ui)|

is maximum for all ui ∈ U and is

achieved when |δ+P∪d(ui)| = |δ
+
P (ui)| for all ui ∈ U and hence ψ+

P (ux) = 1.
�

Definition 3.2. The set R ⊂ C is the reduct of the set valued decision table
SD = (U,CD, SV, f) if

(i) LM(RED, d) = LM(C, d)

(ii) LM(RED − {a}, d) 6= LX(RED, d) for any {a} belong to the condition
attribute set C.

Definition 3.3. For the dominance set valued decision table SD = (U,CD, SV, f),
if P ⊂ C and c ∈ C − P

(3.3) SIGN≥P (c) = LM(P, d)− LM(P ∪ {c}, d) .

Algorithm 3.1. An algorithm to find the possible dominance based distance reduct
in the set valued decision table was constructed for the ordered decision table.
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Algorithm 1. Distance based set valued reduct
Input: Set valued Decision Table ‘SD’, Decision Attributes ‘d’,

Condition Attributes ‘C = c1, c2, · · · , cn’.
Output: Reduct generation

1 IR=ϕ, S = 0

2 Estimate LM(IR, d) and LM(C, d)

3 Begin
4 For LM(IR, d) 6= LM(C, d) then
5 Measure LM(IR ∪ {ci}, d) and SIGN≥R (ci)

over the decision attribute for all ci ∈ C − IR
6 If SIGN≥R (ci) ≥ S, then SIGN≥R (ci) = S and cR = ci
7 End for
8 IR={IR ∪ {cR}}
9 Estimate LX(IR, d)
10 End
11 Begin
12 For Decision Table ‘SD’ with Condition Attributes set

IR ⊆ C and Decision Attribute ‘d’.
13 Estimate LX(IR− {ci}, d)
14 If LM(IR, d) = LM(IR− {ci}, d) then IR = IR− {ci}
15 End
16 Reduct =IR
17 End

4. FEATURE SELECTION IN SAMPLE SET VALUED ORDERED DECISION TABLE

Sample set valued ordered decision table.
U c1 c2 c3 c4 c5 d

u1 {1} {2} {1} {1, 2} {1, 2} 1
u2 {1} {2} {1, 2} {1} {1} 2
u3 {1} {2} {1} {1, 2} {1, 2} 2
u4 {1} {1, 2} {1} {1} {1} 1
u5 {1, 2} {2} {2} {1} {1, 2} 3
u6 {2} {1} {1, 2} {2} {1} 1
u7 {1} {1, 2} {1, 2} {1} {2} 1
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We calculate the set valued upward dominance classes for all the objects in U

on the basis of the conditional attributes in C = c1, c2, c3, c4, c5 as follows:

δ+c (u1) = {u1}, δ+c (u2) = {u2, u5}, δ+c (u3) = {u3, u6}, δ+c (u4) = {u1, u4, u5}

δ+c (u5) = {u5}, δ+c (u6) = {u6} and δ+c (u7) = {u7}. We also have δ+c∪d(u1) =

{u1}, δ+c∪d(u2) = {u2, u5} δ+c∪d(u3) = {u3}, δ+c∪d(u4) = {u1, u4, u5}, δ+c∪d(u5) =

{u5}, δ+c∪d(u6) = {u6} and δ+c∪d(u7) = {u7}. The calculated distance between
the conditional attribute set C and the decision attribute d can be presented as

LM(C, d) = 1 − 1

|U |
∑

Mi∈U/δ+c
Ni∈U/δ+C∪d

|Ni|
|Mi|

=
1

14
initially we assume the reduct set IR

as the null set ϕ. Proceeding the calculations as above for the reduct set R, the
upward dominance classes for each element of U in R is found to be

δ+IR(u1) = δ+IR(u2) = δ+IR(u3) = δ+IR(u4) = δ+IR(u5) = δ+IR(u6) = δ+IR(u7)

= {u1, u2, u3, u4, u5, u6, u7}
δ+IR ∪d(u1) = δ+IR ∪d(u4) = δ+IR ∪d(u6) = δ+IR ∪d(u7) = {u1, u2, u3, u4, u5, u6, u7}
δ+IR ∪d(u2) = δ+IR ∪d(u3) = {u2, u3, u5} and δ+IR ∪d(u5) = {u5}

Hence LM(IR, d) =
2

7
.

We notice here that
|δ+C ∪d(ui)|
|δ+C (ui)|

≥ |δ
+
IR ∪d(ui)|
|δ+IR(ui)|

∀ ui ∈ U . As LM(IR, d) 6=

LM(C, d), we continue the loop in search of the best reduct. We have to in-
clude an attribute in C to the reduct R which has the greater significance.
We have the similar calculations for the attribute IR ∪ {c1} ⊂ C which gives
LM(IR ∪ {c1}, d) = 73

294
and adding other conditional attributes one at a time

LM(IR ∪ {c2}, d) = 11
49

, LM(IR ∪ {c3}, d) = 4
49

, LM(IR ∪ {c4}, d) = 27
98

and
LM(IR ∪ {c5}, d) = 23

98
and their significance as in (3.3) was given by

SIGN≥IR(c1) = LM(IR, d)− LM(IR ∪ {c1}, d) =
2

7
− 73

294
=

11

294

SIGN≥IR(c2) = LM(IR, d)− LM(IR ∪ {c2}, d) =
2

7
− 11

49
=

3

49

SIGN≥IR(c3) = LM(IR, d)− LM(IR ∪ {c3}, d) =
2

7
− 4

49
=

10

49

SIGN≥IR(c5) = LM(IR, d)− LM(IR ∪ {c5}, d) =
2

7
− 11

49
=

3

49
.
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We notice that the attribute set IR ∪ {c3} = {c3} has the maximum significance
and to be included into the reduct set so that now IR = {c3}. Also note that
LM(IR, d) 6= LM(C, d) and continue the step 5 of the algorithm 1.

SIGN≥IR(c1) = LM(IR, d)− LM(IR ∪ {c1}, d) =
4

49
− 1

14
=

1

98

SIGN≥IR(c2) = LM(IR, d)− LM(IR ∪ {c2}, d) =
4

49
− 4

49
= 0

SIGN≥IR(c4) = LM(IR, d)− LM(IR ∪ {c4}, d) =
4

49
− 1

14
=

1

98

SIGN≥IR(c5) = LM(IR, d)− LM(IR ∪ {c5}, d) =
4

49
− 4

49
= 0 .

The attributes c1 and c4 has the same maximum significance and thus included
in the reduct set. Now, IR = IR ∪ {c1, c4} = {c1, c3, c4} and LM(IR, d) = 1

14
=

LM(C, d). Also LM(IR−{c1}, d) = LM(IR−{c4}, d) = 1
14

and LM(IR−{c3}, d) =
3
14
6= LM(C, d). Hence we conclude R1 = {c3, c4} and R2 = {c1, c3} are both

reduction sets of our set valued ordered decision system.

5. CONCLUSION

In practical world we see the data for some fragment of condition attributes
is many valued and there is a need for set valued decision tables. The order-
ing property of the objects related to the attribute values helps the reasoning
process of the decision and also converges to the clear ideas in relatively min-
imum expected time. We had taken a set valued ordered decision table and
constructed a distance between the object set based on the attribute values and
tried a methodology to find the most featured attribute for the inclusion in the
reduct set. We have explained the procedure with the help of sample data set
and concluded that all the possible reducts can be extracted from the data with
the simplified method in comparably minimum time interval.
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