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ON A NEW SUBCLASS OF BI-PSEUDO-STARLIKE FUNCTIONS DEFINED
BY FRASIN DIFFERENTIAL OPERATOR

TIMILEHIN GIDEON SHABA!, ABDULLAHI ADINOYT IBRAHIM, AND AZEEZ ADE JIMOH

ABSTRACT. The main aim of this research is to introduce and examine new
subclasses of functions class € of bi-univalent functions defined in A associating
with y-pseudo-starlike functions with sakaguchi type functions f)g(u, v, 1V, 8, t)
and 55@ (s, 7, &, s,t), which are defined by a differential operator of holomorphic
functions with binomial series. Also, the estimate on the coefficient |nq| and
|ns| for functions in these new subclasses are determined. Results acquired
generalized some known consequences.

1. INTRODUCTION

We indicate by V the subclass of class of function £ which is of the form
W(z)=z+ Z ngz?
g=2

consisting of functions which are holomorphic and univalent in the unit disk A.
Let G*(¥) and K(¥) indicate the familiar classes of starlike and convex function
of order ¥(0 < o < 1) respectively.

Let ¢~ !(z) be the inverse of the function ¢(z) then we have

T ((2) = 2,
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| =

DT w) =u,  ful < ro(¥);re(t) >
where
h(u) =¥ (u) = u — ngu® + (2n3 — ng)u® — (5n3 — dngng + ng)u* + -+ .

A function ¢(z) € L denoted by € is said to be bi-univalent in A, considering
that ¢(z) and ¢/~!(z2) are univalent in A. For more details see: [7], [4], [15],
[5], [10].

Definition 1.1. [3] Let ¢(z) € L, suppose 0 < ¢ < 1 and v > 1 is real. Then
Y(z) € L, () of v-pseodu-starlike function of order ¥ in A if and only if

ZW(Z)]”)
R{————— ) >0
( ¥(z)

Babalola [3] verified that, all pseodu-starlike function are Bazilevic of type (1 — %),

1 . .
order 9> and univalent in A.

A function ¢ (z) € L satisfying the condition

is required to be a starlike functions with respect to symmetric point, which
was investigated by Sakaguchi [13]. Many other authors examine bounds for
numerous subclasses of bi-univalent functions, (for more details see; [9], [11],

[160).
Frasin [6] introduced the differential operator D,f’ ¥ (z) defined as follows:

D% (z) = (z)
Di () = (1= ) (z) + (1 — (1 = w)") 29/ (2) = Dipt(2)

Dy, () = Di,u(D1(2)
where § € N, then we have

0o k B
(1.1) Dguw(z) =z+ Z (1 +(g—-1) Z (2) (_1)d+lud> ngz? .
Using (1.1), we have

Ch(m)2(DL ,(2)) = D1 (2) = (1= Ch() Dy (=)
where y > 0, k € N, 8 € Ny and C%(p) := So5_ (5) (1)1,



ON A NEW SUBCLASS OF BI-PSEUDO-STARLIKE FUNCTIONS. .. 4831

Remark 1.1. We observe that

(1) When k = 1, we obtain the Al-Oboudi differential operator [2].
(2) When k = i = 1, we obtain the Salagean operator [14].

Motivated by the earlier works of [8], [1], we introduced new subclasses
Sﬁg(u,% v,s,t) and ﬁg(u,% ¢, s,t) of the function class € which are defined by
a differential operator of holomorphic functions comprising of binomial series
in A. Hence, the estimate on the coefficient |ny| and |ns| for functions in these
new subclasses are determined.

Lemma 1.1. [12] If r(z) € P and z € A, then |w,| < 2 for each n. where P is the
family of all function r holomorphic in A for which R(r(z)) > 0,

T(2)21+U}12+UJ222+"‘

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS 55/;(#, Y, U, 8, 1)

Definition 2.1. A function v(z) € £ which gratify the condition below:

(s — £)z[(Dy ¥ (2))]" v
2.1 ar , vr
@0 " [D,f,,twsz) - D,f,,twtz)] ‘ =7
and
(s — yu[(D} ,h(w))] v
(2.2) arg [D,’f#h(su) — Dﬁ#h(tu)] ~

where ¥(z) € &, v > 1, 0<v <1, s5teC z,uc Awith|s| <1, [t]| < 1; s #t
and
h(u) =Uu— n2u2 + (271% — n3)u3 _ (5713 — Bngns + n4)u4 4o

is said to be in the class 5@@, Y, U, 8, t).

Theorem 2.1. Suppose ¢)(z) € L is in the class ﬁg(,u, v, v, 8, t), then

(2.3)

2v
[ng| <

v(6y —2s% — 2t — 2st) (1 + 2C§(,u))ﬁ —2v(2y(s +t+1—7) — 82 — 2 — 2st)

4 —1)2y— s — 12| (1+Ch(w)™
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and
412 2v
25 T 5
2y — s —1)?| (1 + Cj(n)) 3y — 2 — 12 — st)] (1 +2C5 ()
Proof. Let ¢(z) € ﬁg(u, v, v, s, t), then it follows from (2.1) and (2.2) that
(s — t)2[(DL ()]

Ing| <

@9 D7, 0t2) - D i) )
and

s —Hu[(D? h(u))]
05 (o= DL

Dy, h(su) — D}, h(tu)

where y(z) and z(u) are in the class P which is of the form

(2.6) Y(2) =1+ y12 + ya2® + yz2® + -+
(2.7) z(u) = 1+ zu + z9u® + 230" + - - -
Hence,
[y(2)]" =1+ vyz+ (l/y2 + V(V;—'l)y%> 2
[z(uw)]” =1+ veu+ (V[EQ - V(V;—'l)ﬁ) u? 4
Now, equating the coefficient in (2.4) and (2.5) V\}e get
(2.8) (2y—s—t)(1+ Cg(u))ﬁ ne = v

(29) By—s"—st—t*)(1+ QCg(u))ﬁng —(2y(s +t—7y+1) — s> —2st — 1?)
viv—1) ,
ol Y1

(1+C5w)™ n3 = vyn +
(2.10) —(2y—s—1) (1+C5(w) ny = vary
(2.11)

(6y — 2% — 2t* — 2st) (1 + 205(@))’3 —(2y(s+t—7y+1)— s —2st — t?)

viv—1) ,
51 xy.

(1+ Cf(u))w] n3— [(37 — st —t*—st) (1+ 205(/0)5] ng = Vry+
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From (2.8) and (2.10) we get

(2.12) 1= -1
and
(2.13) 22y —s—t)* (14 Cg(u))w ns = v (yi + 7).

Also from (2.9) and (2.11) we have
(2.14)

6y — 25% — 212 — 2st) (1 + 20 (1)) — 2(29(s +t +1 —~) — 82 — 2 — 2st
d

(1+ Cj;(u))”] n3 = v(ys + o) + V(VQ!_ D (7 +22).

From (2.14) and (2.13), we have
[u(6fy —2s* =27 — 2st) (1 + 205(@)5 —2w(2y(s+t+1—7)— s> —t*—2st)

(1+CHw)” = =12y —s—* (1+ cfw»”] ng = v3(ys +12).

Therefore, we have

2
n% _ v*(y2 + x2)

v(6y — 2% — 2t% — 2st) (1 + 2C§(,u))6 —2w(2y(s+t+1—7)—s?—t2 - 2st)

(1+C5w)™ = (= 1)@y — s — ) (1 + Ch(w) ™

From Lemma 1.1, we have

2v

[na| <

V(67 — 252 — 22 — 2st) (1+2C%())” — [20(2y(s + L+ 1 — ) — 52 — 2 — 2st)

=12y — s — 12| (1+Ch(w)™
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Also, subtracting (2.11) from (2.9), we get

(2.15)
23y — 5% — st — 12) (1 + 2C%5 (1)) " ng — 2(3y — s> — 12 — st) (1 + 2C%(1))” n3
= v(ys — a2) + #(zﬁ —ai),
it follows from (2.12), (2.13) and (2.15) that
23y —s* —st—t*) (1 + QCf(u))ﬂ n3
=23y — s — 12— st) (1 + 20K ()" VALt ) + u(ys — z2)

2(2y — s — )2 (1 + ()™

which is equivalent to,

Vi (yi + ) N v(y2 — 22) |
22y — s —1)2 (1+Ch(w)™” 23y — 52— 12 — st) (1+ 2C%(u))”

ny =

Applying Lemma 1.1 for the coefficients vy, o, 21 and z,, we have

412 v
55 T B
(27 — s — )2 (14 Ch(p)) (37 — 5% — 12 — st)| (1 +2C%(n))

We get the desired estimate |n3| as asserted in (2.4).

Ing| <

Putting = 0 in Theorem 2.1, we have;

Corollary 2.1. Suppose 1(z) € L is in the class H2(v, v, s,t), then
2v

which is the results obtain by Emeka and Opoola [8].

Ing| <

6y —4y(s+t+1—7)+2st)v — (v —1)(2y — s — t)?

and
412 2v

@ —s-07 B -]

Ing| < |

Putting v = 1 in Theorem 2.1, we have;
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Corollary 2.2. Suppose 1)(z) € L is in the class ﬁg(u, 1,v,s,t), then

2v
[nal <
v(6 —2s? — 2% — 2st) (1 + 2C§(ﬂ))ﬁ - [2u(2s + 2t — 52 — 12 — 2st)
2 k 26
+ =12y — s —1)?| (1+Ch(w)
and
4p? 2v
3]

2 + :
(2= s =02 (1+Ch()™ |3 —s2—12—st)| (1+2C%n)”

which is the results obtain by Aldawish, Al-Hawary and Frasin [1].

Putting ¢ = 0, s = 1 and v = 1 in Corollary 2.1, we have;
Corollary 2.3. Suppose 1)(z) € L is in the class H%(1,v,1,0), then

2v

Nnol| <
In2l < 1+v

and
Ing| <v(dv+1).

Putting ¢ = —1, s = 1 and v = 1 in Corollary 2.1, we have:
Corollary 2.4. Suppose 1(z) € L is in the class H3(1,v,1,—1), then
Ins| < v
and
Ing| <v(v+1).
3. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS ﬁg(u, v, @, S, 1)
Definition 3.1. A function i(z) € L which gratify the condition below:

(s —t)z[(Dy 1(2)]
" [Df,msz) —~ Df,mtz)] ” o

3.1)

and

— Dul(D? )Y
(3.2) P [ (s = ul(Dy, , n(u))’] ] > 8

Dy, h(su) — Dy h(tu)
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where (2) € €, 7> 1,0< ¢ <1, steC z,uc Awith|s| <1, [t| <1, s#t
and

h(u) = u — nou® + (2n3 — n3)u® — (5nj — dngng + ng)u* + - - -

is said to be in the class ﬁg(,u, v, @, 8, 1) .

Theorem 3.1. Suppose ¢)(z) € L is in the class ﬁg(,u, v, ¢, s, t), then

3y — s — 12— st) (14+2C%(1)” = 2y(s +t — v + 1)
— 52— 2st — 12) (1 4 Ch(u))*’ |
and
(3.3)
|n3’ S 4(1 - ¢)2 2<1 - ¢)

(27— s =07 (1+ Ch(w) ™ |8y =82 = st — )| (1 +2C5 ()"
Proof. From equation (3.1) and (3.2) we get:
(s — 0)z[(DL 0 (2))]

3. - _ P
(3.4 D ) ey =+ (1= )
and

s —u[(D? h(u))]
s (= OUDLIT

D,f,ﬂh(su) - Dﬁuh(tu)
where y(z) and z(u) in P given by (2.6) and (2.7), that is

b+ (L= 0)y(z) = 1+ (1= Gz + 6+ (1= 0)yo® + -
and

o+ (1—¢)z(u) =1+ (1 —@)ziu+ ¢+ (1 — @)’ + - -
Equating the coefficients of (3.4) and (3.5) we get

(3.6) 2y —s—1) (1+C¥w) ny = (1= d)n,

(B7) By—s"—st—t)(1+ ZCs(u))ﬁn;g — (2y(s+t—7+1)— s> —2st — t?)

(14 Ch(w) " n2 = (1 - ¢,

(3.8) —(2y—s—1) (1+C’§(u))5n2 =(1—¢)x,
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(3.9)

[(67 —2s% — 217 — 2st) (1 + 205(@)’3 — (2y(s+t—7+1)—s*—2st — t?)
(1+ cﬁm»”] ng— |3y =52 =2 = st) (14 2C5(1)" | ns = (1= 9)aa.

From (3.6) and (3.8) we get

and
(3.10) 22y — s — 1) (14 Ch() " nd = (1 - 6)%(y} +23).

Now adding (3.7) and (3.9), we deduce that
(6y — 2% — 2t* — 2st) (1 + ZCS(M))B —(y(s+t—7y+1)— s —2st —t?)

(1 + Cc’f(u))% ny = (1—¢)(y2 + 22).

Thus, we have

n2 = (1—¢)(y2 + x2)
’ (6’)/—282—2t2—2$t) (1+205<,U))6—(4’Y(8+t—’y—|—1)
=t =25t = ) (14 Cf ()
ni < (1= o) (|ya| + |22])

(67 — 2s% — 22 — 2st) (1 + QCs(u))ﬁ —(4y(s+t—v+1)
—s*—2st —t?) (1 + C’C’f(u))zﬂ |

Applying Lemma 1.1 we have:
2(1-¢)

|3y —s* =t —st) (1 + 2(7(’;(/0)'8 —(2y(s+t—7+1)
— 8% =25t — 12) (1+ Ch(w)) " |

3] <
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2(1—-¢)
3y — s — 2 — st) (1+2C%(u)” — (2y(s +t —v + 1)
— 2 — 25t — 12) (1 4 Ch())™’ |

IN

|12

Also, subtracting (3.9) from (3.7), we get
23y —s* —st—t*) (1 + QCS(M))'B ng —2(3y — s> — > — st) (1 + 205 (u ))ﬁng
=(1-9)(y2 — 72)

(1 —¢)(y2 — 2
23y — s2 — st —12) (1 + 20§(u))5

2
n3:n2+

Then from (3.10), we have
I () U e N (1= 6)r — )
22y —s— )2 (1 + C’g(,u))m 23y — s> — st —12) (1 + 205@))5
Applying Lemma 1.1 for the coefficients y1, -, 21 and x5, we have
4(1 — ¢)? 2(1 —
ny < (2¢)k - 2 (2¢) m—
(27 —s =) (1 +C(w)™ By — 52— st —t2)| (1 +2C5(n))

We get desired estimate on |n3| as asserted in (3.3).

Putting § = 0 in Theorem 3.1, we have:

Corollary 3.1. Suppose 1(z) € L is in the class H2(v, ¢, s,t), then

|n2|_ ¢)
|3y — s+t—’y+1)+st!

and
0-9P | 20-9)

<
S ey I [ gy

where 0 < ¢ < 1.

which is the results obtain by Emeka and Opoola [8].
Setting 7 = 1 in Theorem 3.1, we have:

Corollary 3.2. Suppose 1)(z) € L is in the class ﬁg(u, 1,¢,s,t), then

2(1-9)

Inal - < \/|(352t25t)(1+2C§(u))5(25+2t5225tt2)(1+C§(u))2ﬁ|
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and

A1 - ¢)” 2(1-9)

Ing| <

where 0 < ¢ < 1.

which is the results obtain by Aldawish et. al. [1].
Putting v = 1 and § = 0 in Corollary 3.2, we have:

Corollary 3.3. Suppose 1(z) € L is in the class H%(1, ¢, s,t), then

Ina| < \/|3 s+t +st|

[
S PR R R R )

and

where 0 < ¢ < 1.
Putting s = 1 and ¢t = —1 in Corollary 3.3, we have:
Corollary 3.4. Suppose ¥ (z) € L is in the class H%(1, ¢, 1, —1), then
no) < V/1-¢
and

ns| < (1 —9)(2—9),

where 0 < ¢ < 1.
Taking ¢t = 0 and s = 1 in Corollary 3.3, we have:
Corollary 3.5. Suppose 1(z) € L is in the class H%(1, ¢, 1,0), then
Ino| < v/2(1 = ¢)
and

Ins| < (1—¢)(5—49),
where 0 < ¢ < 1.

< 5 +
(2—s5—1)2] (1+CE(u)* (38— 52 — st —2)] (1+ 2C%(w))”
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