

Advances in Mathematics: Scientific Journal 9 (2020), no.7, 4829–4841

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.7.49

ON A NEW SUBCLASS OF BI-PSEUDO-STARLIKE FUNCTIONS DEFINED BY FRASIN DIFFERENTIAL OPERATOR

TIMILEHIN GIDEON SHABA¹, ABDULLAHI ADINOYI IBRAHIM, AND AZEEZ ADE JIMOH

ABSTRACT. The main aim of this research is to introduce and examine new subclasses of functions class $\mathfrak E$ of bi-univalent functions defined in Δ associating with γ -pseudo-starlike functions with sakaguchi type functions $\mathfrak H^{\beta}_{\mathfrak E}(\mu,\gamma,\nu,s,t)$ and $\mathfrak H^{\beta}_{\mathfrak E}(\mu,\gamma,\phi,s,t)$, which are defined by a differential operator of holomorphic functions with binomial series. Also, the estimate on the coefficient $|n_2|$ and $|n_3|$ for functions in these new subclasses are determined. Results acquired generalized some known consequences.

1. Introduction

We indicate by V the subclass of class of function L which is of the form

$$\psi(z) = z + \sum_{g=2}^{\infty} n_g z^g$$

consisting of functions which are holomorphic and univalent in the unit disk Δ . Let $\mathfrak{S}^*(\vartheta)$ and $\mathfrak{K}(\vartheta)$ indicate the familiar classes of starlike and convex function of order $\vartheta(0 \le \vartheta < 1)$ respectively.

Let $\psi^{-1}(z)$ be the inverse of the function $\psi(z)$ then we have

$$\psi^{-1}(\psi(z)) = z,$$

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic function, bi-univalent function, Sakaguchi type function, pseudo-starlike function, Coeffient bounds.

$$\psi(\psi^{-1}(u)) = u, \quad |u| < r_0(\psi); r_0(\psi) \ge \frac{1}{4}$$

where

$$h(u) = \psi^{-1}(u) = u - n_2 u^2 + (2n_2^2 - n_3)u^3 - (5n_2^3 - 5n_2n_3 + n_4)u^4 + \cdots$$

A function $\psi(z) \in \mathcal{L}$ denoted by \mathfrak{E} is said to be bi-univalent in Δ , considering that $\psi(z)$ and $\psi^{-1}(z)$ are univalent in Δ . For more details see: [7], [4], [15], [5], [10].

Definition 1.1. [3] Let $\psi(z) \in \mathcal{L}$, suppose $0 \leq \vartheta < 1$ and $\gamma \geq 1$ is real. Then $\psi(z) \in L_{\gamma}(\vartheta)$ of γ -pseodu-starlike function of order ϑ in Δ if and only if

$$\Re\left(\frac{z[\psi'(z)]^{\gamma}}{\psi(z)}\right) > \vartheta.$$

Babalola [3] verified that, all pseudu-starlike function are Bazilevic of type $\left(1-\frac{1}{\gamma}\right)$, order $\vartheta^{\frac{1}{\gamma}}$ and univalent in Δ .

A function $\psi(z) \in \mathcal{L}$ satisfying the condition

$$\Re\left(\frac{z\psi'(z)}{\psi(z)-\psi(-z)}\right) > 0.$$

is required to be a starlike functions with respect to symmetric point, which was investigated by Sakaguchi [13]. Many other authors examine bounds for numerous subclasses of bi-univalent functions, (for more details see; [9], [11], [16]).

Frasin [6] introduced the differential operator $D_{k,\mu}^{\beta}\psi(z)$ defined as follows:

$$D^{0}\psi(z) = \psi(z)$$

$$D^{1}_{k,\mu}\psi(z) = (1-\mu)^{k}\psi(z) + (1-(1-\mu)^{k})z\psi'(z) = D_{k,\mu}\psi(z)$$

$$D^{\beta}_{k,\mu}\psi(z) = D_{k,\mu}(D^{\beta-1}\psi(z))$$

where $\beta \in \mathbb{N}$, then we have

(1.1)
$$D_{k,\mu}^{\beta}\psi(z) = z + \sum_{g=2}^{\infty} \left(1 + (g-1)\sum_{d=1}^{k} {k \choose d} (-1)^{d+1} \mu^d \right)^{\beta} n_g z^g.$$

Using (1.1), we have

$$C_d^k(\mu)z(D_{k,\mu}^{\beta}\psi(z))' = D_{k,\mu}^{\beta+1}\psi(z) - (1 - C_d^k(\mu))D_{k,\mu}^{\beta}\psi(z)$$

where $\mu > 0$, $k \in \mathbb{N}$, $\beta \in \mathbb{N}_0$ and $C_d^k(\mu) := \sum_{d=1}^k {k \choose d} (-1)^{d+1} \mu^d$.

Remark 1.1. We observe that

- (1) When k = 1, we obtain the Al-Oboudi differential operator [2].
- (2) When $k = \mu = 1$, we obtain the Salagean operator [14].

Motivated by the earlier works of [8], [1], we introduced new subclasses $\mathfrak{H}_{\mathfrak{E}}^{\beta}(\mu,\gamma,\nu,s,t)$ and $\mathfrak{H}_{\mathfrak{E}}^{\beta}(\mu,\gamma,\phi,s,t)$ of the function class \mathfrak{E} which are defined by a differential operator of holomorphic functions comprising of binomial series in Δ . Hence, the estimate on the coefficient $|n_2|$ and $|n_3|$ for functions in these new subclasses are determined.

Lemma 1.1. [12] If $r(z) \in \mathcal{P}$ and $z \in \Delta$, then $|w_n| \leq 2$ for each n. where \mathcal{P} is the family of all function r holomorphic in Δ for which $\Re(r(z)) > 0$,

$$r(z) = 1 + w_1 z + w_2 z^2 + \cdots$$

2. Coefficient Bounds for the Function Class $\mathfrak{H}_{\mathfrak{C}}^{\beta}(\mu,\gamma,\nu,s,t)$

Definition 2.1. A function $\psi(z) \in \mathcal{L}$ which gratify the condition below:

(2.1)
$$\left| \arg \left[\frac{(s-t)z[(D_{k,\mu}^{\beta}\psi(z))']^{\gamma}}{D_{k,\mu}^{\beta}\psi(sz) - D_{k,\mu}^{\beta}\psi(tz)} \right] \right| < \frac{\nu\pi}{2},$$

and

(2.2)
$$\left| \arg \left[\frac{(s-t)u[(D_{k,\mu}^{\beta}h(u))']^{\gamma}}{D_{k,\mu}^{\beta}h(su) - D_{k,\mu}^{\beta}h(tu)} \right] \right| < \frac{\nu\pi}{2}$$

where $\psi(z) \in \mathfrak{E}$, $\gamma \geq 1$, $0 < \nu \leq 1$, $s,t \in \mathbb{C}$, $z,u \in \Delta$ with $|s| \leq 1$, $|t| \leq 1$; $s \neq t$ and

$$h(u) = u - n_2 u^2 + (2n_2^2 - n_3)u^3 - (5n_2^3 - 5n_2n_3 + n_4)u^4 + \cdots$$

is said to be in the class $\mathfrak{H}^{\beta}_{\mathfrak{G}}(\mu, \gamma, \nu, s, t)$.

Theorem 2.1. Suppose $\psi(z) \in \mathcal{L}$ is in the class $\mathfrak{H}_{\mathfrak{E}}^{\beta}(\mu, \gamma, \nu, s, t)$, then

(2.3)

$$|n_{2}| \leq \frac{2\nu}{\left|\nu(6\gamma - 2s^{2} - 2t^{2} - 2st)\left(1 + 2C_{d}^{k}(\mu)\right)^{\beta} - \left[2\nu(2\gamma(s + t + 1 - \gamma) - s^{2} - t^{2} - 2st) + (\nu - 1)(2\gamma - s - t)^{2}\right]\left(1 + C_{d}^{k}(\mu)\right)^{2\beta}\right|}$$

and

$$|n_3| \le \frac{4\nu^2}{|(2\gamma - s - t)^2| (1 + C_d^k(\mu))^{2\beta}} + \frac{2\nu}{|(3\gamma - s^2 - t^2 - st)| (1 + 2C_d^k(\mu))^{\beta}}.$$

Proof. Let $\psi(z) \in \mathfrak{H}_{\mathfrak{E}}^{\beta}(\mu, \gamma, \nu, s, t)$, then it follows from (2.1) and (2.2) that

(2.4)
$$\frac{(s-t)z[(D_{k,\mu}^{\beta}\psi(z))']^{\gamma}}{D_{k,\mu}^{\beta}\psi(sz) - D_{k,\mu}^{\beta}\psi(tz)} = [y(z)]^{\nu}$$

and

(2.5)
$$\frac{(s-t)u[(D_{k,\mu}^{\beta}h(u))']^{\gamma}}{D_{k,\mu}^{\beta}h(su) - D_{k,\mu}^{\beta}h(tu)} = [x(u)]^{\nu}$$

where y(z) and x(u) are in the class \mathcal{P} which is of the form

(2.6)
$$y(z) = 1 + y_1 z + y_2 z^2 + y_3 z^3 + \cdots$$

(2.7)
$$x(u) = 1 + x_1 u + x_2 u^2 + x_3 u^3 + \cdots$$

Hence,

$$[y(z)]^{\nu} = 1 + \nu y_1 z + \left(\nu y_2 + \frac{\nu(\nu - 1)y_1^2}{2!}\right) z^2 + \cdots$$
$$[x(u)]^{\nu} = 1 + \nu x_1 u + \left(\nu x_2 + \frac{\nu(\nu - 1)x_1^2}{2!}\right) u^2 + \cdots$$

Now, equating the coefficient in (2.4) and (2.5) we get

(2.8)
$$(2\gamma - s - t) \left(1 + C_d^k(\mu) \right)^{\beta} n_2 = \nu y_1$$

(2.9)
$$(3\gamma - s^2 - st - t^2) \left(1 + 2C_d^k(\mu)\right)^{\beta} n_3 - \left(2\gamma(s + t - \gamma + 1) - s^2 - 2st - t^2\right)$$

 $\left(1 + C_d^k(\mu)\right)^{2\beta} n_2^2 = \nu y_2 + \frac{\nu(\nu - 1)}{2!} y_1^2$

(2.10)
$$-(2\gamma - s - t) \left(1 + C_d^k(\mu)\right)^{\beta} n_2 = \nu x_1$$

(2.11)

$$\left[(6\gamma - 2s^2 - 2t^2 - 2st) \left(1 + 2C_d^k(\mu) \right)^{\beta} - (2\gamma(s+t-\gamma+1) - s^2 - 2st - t^2) \right]$$

$$\left(1 + C_d^k(\mu)\right)^{2\beta} \left[n_2^2 - \left[(3\gamma - s^2 - t^2 - st) \left(1 + 2C_d^k(\mu)\right)^\beta \right] n_3 = \nu x_2 + \frac{\nu(\nu - 1)}{2!} x_1^2 \right]$$

From (2.8) and (2.10) we get

$$(2.12) y_1 = -x_1$$

and

(2.13)
$$2(2\gamma - s - t)^2 \left(1 + C_d^k(\mu)\right)^{2\beta} n_2^2 = \nu^2 (y_1^2 + x_1^2).$$

Also from (2.9) and (2.11) we have

(2.14)
$$\left[(6\gamma - 2s^2 - 2t^2 - 2st) \left(1 + 2C_d^k(\mu) \right)^{\beta} - 2(2\gamma(s+t+1-\gamma) - s^2 - t^2 - 2st) \right]$$

$$\left(1 + C_d^k(\mu) \right)^{2\beta} n_2^2 = \nu(y_2 + x_2) + \frac{\nu(\nu - 1)}{2!} (y_1^2 + x_1^2) .$$

From (2.14) and (2.13), we have

$$\left[\nu(6\gamma - 2s^2 - 2t^2 - 2st)\left(1 + 2C_d^k(\mu)\right)^{\beta} - 2\nu(2\gamma(s+t+1-\gamma) - s^2 - t^2 - 2st)\right]$$

$$\left(1 + C_d^k(\mu)\right)^{2\beta} - (\nu - 1)(2\gamma - s - t)^2 \left(1 + C_d^k(\mu)\right)^{2\beta} n_2^2 = \nu^2(y_2 + x_2).$$

Therefore, we have

$$n_2^2 = \frac{\nu^2(y_2 + x_2)}{\left| \nu(6\gamma - 2s^2 - 2t^2 - 2st) \left(1 + 2C_d^k(\mu) \right)^{\beta} - 2\nu(2\gamma(s + t + 1 - \gamma) - s^2 - t^2 - 2st) \right|} \cdot \left(1 + C_d^k(\mu) \right)^{2\beta} - (\nu - 1)(2\gamma - s - t)^2 \left(1 + C_d^k(\mu) \right)^{2\beta} \right|$$

From Lemma 1.1, we have

$$|n_{2}| \leq \frac{2\nu}{\left|\nu(6\gamma - 2s^{2} - 2t^{2} - 2st)\left(1 + 2C_{d}^{k}(\mu)\right)^{\beta} - \left[2\nu(2\gamma(s + t + 1 - \gamma) - s^{2} - t^{2} - 2st) + (\nu - 1)(2\gamma - s - t)^{2}\right]\left(1 + C_{d}^{k}(\mu)\right)^{2\beta}\right|}$$

Also, subtracting (2.11) from (2.9), we get

(2.15)

$$2(3\gamma - s^2 - st - t^2) (1 + 2C_d^k(\mu))^{\beta} n_3 - 2(3\gamma - s^2 - t^2 - st) (1 + 2C_d^k(\mu))^{\beta} n_2^2$$
$$= \nu(y_2 - x_2) + \frac{\nu(\nu - 1)}{2!} (y_1^2 - x_1^2),$$

it follows from (2.12), (2.13) and (2.15) that

$$2(3\gamma - s^2 - st - t^2) \left(1 + 2C_d^k(\mu)\right)^{\beta} n_3$$

$$= 2(3\gamma - s^2 - t^2 - st) \left(1 + 2C_d^k(\mu)\right)^{\beta} \frac{\nu^2(y_1^2 + x_1^2)}{2(2\gamma - s - t)^2 \left(1 + C_d^k(\mu)\right)^{2\beta}} + \nu(y_2 - x_2)$$

which is equivalent to,

$$n_3 = \frac{\nu^2(y_1^2 + x_1^2)}{2(2\gamma - s - t)^2 \left(1 + C_d^k(\mu)\right)^{2\beta}} + \frac{\nu(y_2 - x_2)}{2(3\gamma - s^2 - t^2 - st) \left(1 + 2C_d^k(\mu)\right)^{\beta}}.$$

Applying Lemma 1.1 for the coefficients y_1, y_2, x_1 and x_2 , we have

$$|n_3| \le \frac{4\nu^2}{|(2\gamma - s - t)^2| (1 + C_d^k(\mu))^{2\beta}} + \frac{2\nu}{|(3\gamma - s^2 - t^2 - st)| (1 + 2C_d^k(\mu))^{\beta}}.$$

We get the desired estimate $|n_3|$ as asserted in (2.4).

Putting $\beta = 0$ in Theorem 2.1, we have;

Corollary 2.1. Suppose $\psi(z) \in \mathcal{L}$ is in the class $\mathfrak{H}^0_{\mathfrak{E}}(\gamma, \nu, s, t)$, then

$$|n_2| \le \frac{2\nu}{\sqrt{\left|(6\gamma - 4\gamma(s+t+1-\gamma) + 2st)\nu - (\nu-1)(2\gamma - s - t)^2\right|}}$$

and

$$|n_3| \le \frac{4\nu^2}{|(2\gamma - s - t)^2|} + \frac{2\nu}{|(3\gamma - s^2 - t^2 - st)|}.$$

which is the results obtain by Emeka and Opoola [8].

Putting $\gamma = 1$ in Theorem 2.1, we have;

Corollary 2.2. Suppose $\psi(z) \in \mathcal{L}$ is in the class $\mathfrak{H}^{\beta}_{\mathfrak{E}}(\mu, 1, \nu, s, t)$, then

$$|n_{2}| \leq \frac{2\nu}{\left|\nu(6 - 2s^{2} - 2t^{2} - 2st)\left(1 + 2C_{d}^{k}(\mu)\right)^{\beta} - \left[2\nu(2s + 2t - s^{2} - t^{2} - 2st)\right]} + (\nu - 1)(2\gamma - s - t)^{2}\right|\left(1 + C_{d}^{k}(\mu)\right)^{2\beta}\right|}$$

and

$$|n_3| \le \frac{4\nu^2}{|(2-s-t)^2| (1+C_d^k(\mu))^{2\beta}} + \frac{2\nu}{|(3-s^2-t^2-st)| (1+2C_d^k(\mu))^{\beta}}.$$

which is the results obtain by Aldawish, Al-Hawary and Frasin [1].

Putting t=0, s=1 and $\gamma=1$ in Corollary 2.1, we have;

Corollary 2.3. Suppose $\psi(z) \in \mathcal{L}$ is in the class $\mathfrak{H}^0_{\mathfrak{E}}(1, \nu, 1, 0)$, then

$$|n_2| \le \frac{2\nu}{\sqrt{1+\nu}}$$

and

$$|n_3| \le \nu(4\nu + 1) .$$

Putting t=-1, s=1 and $\gamma=1$ in Corollary 2.1, we have:

Corollary 2.4. Suppose $\psi(z) \in \mathcal{L}$ is in the class $\mathfrak{H}^0_{\mathfrak{E}}(1, \nu, 1, -1)$, then

$$|n_2| \leq \nu$$

and

$$|n_3| \leq \nu(\nu + 1)$$
.

3. Coefficient Bounds for the Function Class $\mathfrak{H}_{\mathfrak{E}}^{\beta}(\mu,\gamma,\phi,s,t)$

Definition 3.1. A function $\psi(z) \in \mathcal{L}$ which gratify the condition below:

(3.1)
$$\Re\left[\frac{(s-t)z[(D_{k,\mu}^{\beta}\psi(z))']^{\gamma}}{D_{k,\mu}^{\beta}\psi(sz)-D_{k,\mu}^{\beta}\psi(tz)}\right] > \phi,$$

and

(3.2)
$$\Re\left[\frac{(s-t)u[(D_{k,\mu}^{\beta}h(u))']^{\gamma}}{D_{k,\mu}^{\beta}h(su) - D_{k,\mu}^{\beta}h(tu)}\right] > \phi$$

where $\psi(z) \in \mathfrak{E}$, $\gamma \geq 1$, $0 \leq \phi \leq 1$, $s,t \in \mathbb{C}$, $z,u \in \Delta$ with $|s| \leq 1$, $|t| \leq 1$; $s \neq t$ and

$$h(u) = u - n_2 u^2 + (2n_2^2 - n_3)u^3 - (5n_2^3 - 5n_2n_3 + n_4)u^4 + \cdots$$

is said to be in the class $\mathfrak{H}^{\beta}_{\mathfrak{E}}(\mu,\gamma,\phi,s,t)$.

Theorem 3.1. Suppose $\psi(z) \in \mathcal{L}$ is in the class $\mathfrak{H}_{\mathfrak{E}}^{\beta}(\mu, \gamma, \phi, s, t)$, then

$$|n_{2}| \leq \sqrt{\frac{2(1-\phi)}{\left|(3\gamma-s^{2}-t^{2}-st)\left(1+2C_{d}^{k}(\mu)\right)^{\beta}-\left(2\gamma(s+t-\gamma+1)\right)-s^{2}-2st-t^{2}\right)\left(1+C_{d}^{k}(\mu)\right)^{2\beta}}}$$

and

(3.3)

$$|n_3| \le \frac{4(1-\phi)^2}{|(2\gamma-s-t)^2| \left(1+C_d^k(\mu)\right)^{2\beta}} + \frac{2(1-\phi)}{|(3\gamma-s^2-st-t^2)| \left(1+2C_d^k(\mu)\right)^{\beta}}.$$

Proof. From equation (3.1) and (3.2) we get:

(3.4)
$$\frac{(s-t)z[(D_{k,\mu}^{\beta}\psi(z))']^{\gamma}}{D_{k,\mu}^{\beta}\psi(sz) - D_{k,\mu}^{\beta}\psi(tz)} = \phi + (1-\phi)y(z)$$

and

(3.5)
$$\frac{(s-t)u[(D_{k,\mu}^{\beta}h(u))']^{\gamma}}{D_{k,\mu}^{\beta}h(su) - D_{k,\mu}^{\beta}h(tu)} = \phi + (1-\phi)x(u)$$

where y(z) and x(u) in \mathcal{P} given by (2.6) and (2.7), that is

$$\phi + (1 - \phi)y(z) = 1 + (1 - \phi)y_1z + \phi + (1 - \phi)y_2z^2 + \cdots$$

and

$$\phi + (1 - \phi)x(u) = 1 + (1 - \phi)x_1u + \phi + (1 - \phi)x_2u^2 + \cdots$$

Equating the coefficients of (3.4) and (3.5) we get

(3.6)
$$(2\gamma - s - t) \left(1 + C_d^k(\mu) \right)^{\beta} n_2 = (1 - \phi) y_1,$$

(3.7)
$$(3\gamma - s^2 - st - t^2) \left(1 + 2C_d^k(\mu)\right)^{\beta} n_3 - \left(2\gamma(s + t - \gamma + 1) - s^2 - 2st - t^2\right) \left(1 + C_d^k(\mu)\right)^{2\beta} n_2^2 = (1 - \phi)y_2,$$

(3.8)
$$-(2\gamma - s - t) \left(1 + C_d^k(\mu)\right)^{\beta} n_2 = (1 - \phi)x_1,$$

(3.9)
$$\left[(6\gamma - 2s^2 - 2t^2 - 2st) \left(1 + 2C_d^k(\mu) \right)^{\beta} - (2\gamma(s+t-\gamma+1) - s^2 - 2st - t^2) \right]$$
$$\left(1 + C_d^k(\mu) \right)^{2\beta} n_2^2 - \left[(3\gamma - s^2 - t^2 - st) \left(1 + 2C_d^k(\mu) \right)^{\beta} \right] n_3 = (1 - \phi) x_2.$$

From (3.6) and (3.8) we get

$$y_1 = -x_1$$

and

(3.10)
$$2(2\gamma - s - t)^2 \left(1 + C_d^k(\mu)\right)^{2\beta} n_2^2 = (1 - \phi)^2 (y_1^2 + x_1^2).$$

Now adding (3.7) and (3.9), we deduce that

$$\left[(6\gamma - 2s^2 - 2t^2 - 2st) \left(1 + 2C_d^k(\mu) \right)^{\beta} - (4\gamma(s+t-\gamma+1) - s^2 - 2st - t^2) \right]$$

$$\left(1 + C_d^k(\mu) \right)^{2\beta} n_2^2 = (1 - \phi)(y_2 + x_2).$$

Thus, we have

$$n_2^2 = \frac{(1-\phi)(y_2+x_2)}{(6\gamma-2s^2-2t^2-2st)\left(1+2C_d^k(\mu)\right)^{\beta}-(4\gamma(s+t-\gamma+1)-s^2-2st-t^2)\left(1+C_d^k(\mu)\right)^{2\beta}},$$

$$|n_2^2| \leq \frac{(1-\phi)(|y_2|+|x_2|)}{|(6\gamma-2s^2-2t^2-2st)\left(1+2C_d^k(\mu)\right)^{\beta}-(4\gamma(s+t-\gamma+1)-s^2-2st-t^2)\left(1+C_d^k(\mu)\right)^{2\beta}|}.$$

Applying Lemma 1.1 we have:

$$|n_2^2| \leq \frac{2(1-\phi)}{\left|(3\gamma - s^2 - t^2 - st)\left(1 + 2C_d^k(\mu)\right)^{\beta} - (2\gamma(s+t-\gamma+1) - s^2 - 2st - t^2)\left(1 + C_d^k(\mu)\right)^{2\beta}\right|}$$

$$|n_2| \leq \sqrt{\frac{2(1-\phi)}{|(3\gamma-s^2-t^2-st)(1+2C_d^k(\mu))^{\beta}-(2\gamma(s+t-\gamma+1))-s^2-2st-t^2)(1+C_d^k(\mu))^{2\beta}|}}.$$

Also, subtracting (3.9) from (3.7), we get

$$2(3\gamma - s^2 - st - t^2) (1 + 2C_d^k(\mu))^{\beta} n_3 - 2(3\gamma - s^2 - t^2 - st) (1 + 2C_d^k(\mu))^{\beta} n_2^2$$
$$= (1 - \phi)(y_2 - x_2)$$

$$n_3 = n_2^2 + \frac{(1 - \phi)(y_2 - x_2)}{2(3\gamma - s^2 - st - t^2) (1 + 2C_d^k(\mu))^{\beta}}.$$

Then from (3.10), we have

$$n_3 = \frac{(1-\phi)^2(y_1^2+x_1^2)}{2(2\gamma-s-t)^2\left(1+C_d^k(\mu)\right)^{2\beta}} + \frac{(1-\phi)(y_2-x_2)}{2(3\gamma-s^2-st-t^2)\left(1+2C_d^k(\mu)\right)^{\beta}}.$$

Applying Lemma 1.1 for the coefficients y_1, y_2, x_1 and x_2 , we have

$$n_3 \le \frac{4(1-\phi)^2}{|(2\gamma-s-t)^2| (1+C_d^k(\mu))^{2\beta}} + \frac{2(1-\phi)}{|(3\gamma-s^2-st-t^2)| (1+2C_d^k(\mu))^{\beta}}.$$

We get desired estimate on $|n_3|$ as asserted in (3.3).

Putting $\beta = 0$ in Theorem 3.1, we have:

Corollary 3.1. Suppose $\psi(z) \in \mathcal{L}$ is in the class $\mathfrak{H}^0_{\mathfrak{E}}(\gamma, \phi, s, t)$, then

$$|n_2| \le \sqrt{\frac{2(1-\phi)}{|3\gamma - 2\gamma(s+t-\gamma+1) + st|}}$$

and

$$|n_3| \le \frac{4(1-\phi)^2}{|(2\gamma-s-t)^2|} + \frac{2(1-\phi)}{|(3\gamma-s^2-st-t^2)|}$$

where $0 < \phi < 1$.

which is the results obtain by Emeka and Opoola [8]. Setting $\gamma=1$ in Theorem 3.1, we have:

Corollary 3.2. Suppose $\psi(z) \in \mathcal{L}$ is in the class $\mathfrak{H}^{\beta}_{\mathfrak{E}}(\mu, 1, \phi, s, t)$, then

$$|n_2| \quad \leq \quad \sqrt{\frac{2(1-\phi)}{\left|(3-s^2-t^2-st)\left(1+2C_d^k(\mu)\right)^{\beta}-(2s+2t-s^2-2st-t^2)\left(1+C_d^k(\mu)\right)^{2\beta}\right|}}$$

and

$$|n_3| \le \frac{4(1-\phi)^2}{|(2-s-t)^2| \left(1+C_d^k(\mu)\right)^{2\beta}} + \frac{2(1-\phi)}{|(3-s^2-st-t^2)| \left(1+2C_d^k(\mu)\right)^{\beta}}$$

where $0 \le \phi < 1$.

which is the results obtain by Aldawish et. al. [1]. Putting $\gamma=1$ and $\beta=0$ in Corollary 3.2, we have:

Corollary 3.3. Suppose $\psi(z) \in \mathcal{L}$ is in the class $\mathfrak{H}^0_{\mathfrak{E}}(1, \phi, s, t)$, then

$$|n_2| \le \sqrt{\frac{2(1-\phi)}{|3-2(s+t)+st|}}$$

and

$$|n_3| \le \frac{4(1-\phi)^2}{|(2-s-t)^2|} + \frac{2(1-\phi)}{|(3-s^2-st-t^2)|},$$

where $0 \le \phi < 1$.

Putting s = 1 and t = -1 in Corollary 3.3, we have:

Corollary 3.4. Suppose $\psi(z) \in \mathcal{L}$ is in the class $\mathfrak{H}^0_{\mathfrak{E}}(1, \phi, 1, -1)$, then

$$|n_2| \le \sqrt{1-\phi}$$

and

$$|n_3| \le (1 - \phi)(2 - \phi),$$

where $0 \le \phi < 1$.

Taking t = 0 and s = 1 in Corollary 3.3, we have:

Corollary 3.5. Suppose $\psi(z) \in \mathcal{L}$ is in the class $\mathfrak{H}^0_{\mathfrak{E}}(1, \phi, 1, 0)$, then

$$|n_2| \le \sqrt{2(1-\phi)}$$

and

$$|n_3| \le (1-\phi)(5-4\phi),$$

where $0 < \phi < 1$.

ACKNOWLEDGMENT

The authors thank the referees(s) for their relevant contributions which improved this research.

REFERENCES

- [1] A. ALDAWISH, T. AL-HAWARY, B. A. FRASIN: Subclasses of bi-univalent function defined by Frasin differential operator, E. Mathematics., 8 (2020), 1–11.
- [2] F. M. AL-OBOUDI: On univalent functions defined by a generalized Salagean operator, Int. J. Math. Sci., (2004), 1429-1436.
- [3] K. O. BABALOLA: On λ -pseudo-starlike function, J. Class. Anal., 3 (2013), 137-147.
- [4] D. A. Brannan, T. S. Taha: *On some classes of bi-univalent functions*, In Mathematical Analysis and its Applications; Pergamon Press: Pergamon, Turkey., 2009, 53-60.
- [5] D. A. Brannan, J. Clunie, W. E. Kirwan: Coefficient estimate for a class of starlike functions, Canad. J. Math., 22 (2009), 476-485.
- [6] B. A. FRASIN: A new differential operator of analytic functions involving binomial series, Bol. Soc. Paran. Math., **38** (2020), 205-213.
- [7] M. LEWIN: On a coefficients problem of bi-univalent functions, Proc. Am. Math. Soc., 18 (1967), 63-68.
- [8] E. P. MAZI, T. O. OPOOLA: On some subclasses of bi-univalent functions associating pseudo-starlike functions with sakaguchi type functions, General Mathematics., **25** (2017), 85-95.
- [9] G. MURUGUSUNDARAMOORTHY, N. MAGESH, V. PRAMEELA: Coefficient bounds for certain subclasses of bi-univalent functions, Abs. Appl. Anal., (2013), 1-3.
- [10] E. NETANYAHU: The minimal distance of the image boundary from the origin and the second coefficient of univalent function in |z| < 1, Proc. Arch. Ration. Mech. Anal., **32** (1969), 100-112.
- [11] S. O. OLATUNJI, P. T. AJAYI: On subclasses of bi-univalent functions of Bazelevic type involving linear salagean operator, Internat. J. Pure. Appl. Math., **92** (2014), 645-656.
- [12] C. H. POMMERENKE: Univalent Functions, Vandendoeck and Rupercht, Gottingen, 1975.
- [13] K. SAKAGUCHI: On certain a certain univalent mapping, J. Math. Soc. Jpn., 11 (1959), 72-75.
- [14] G. S. SALAGEAN: *Subclasses of Univalent functions*, Lecture Notes in Math., Spinger Verlag, Berlin., **1013** (1983), 362–372.
- [15] T. S. TAHA: *Topics in univalent functions theory*, Ph.D. Thesis, University of London, London, UK, 1998.
- [16] Q. H. Xu, Y. C. Gui, H. M. Srivastava: A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., (2012), 11461-11465.

DEPARTMENT OF MATHEMATICS

University of Ilorin, Ilorin, Nigeria

 $\textit{E-mail address:} \verb| shaba_timilehin@yahoo.com| \\$

DEPARTMENT OF MATHEMATICS BAZE UNIVERSITY, NIGERIA

E-mail address: abdullahi.ibrahim@bazeuniversity.edu.ng

DEPARTMENT OF MATHEMATICS

University of Ilorin, Ilorin, Nigeria *E-mail address*: azeez.jimohade@gmail.com