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OSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR FORCED
IMPULSIVE DIFFERENTIAL EQUATIONS WITH DAMPING TERM UNDER
VARIABLE DELAY

G. PURUSHOTHAMAN

ABSTRACT. In this paper, the oscillation criteria for second order nonlinear
forced impulsive differential equations with damping term under variable delay
are studied. We use arithmetic-geometric mean inequality, Riccati transforma-
tion to obtain the oscillation criteria. In literature there are no results for second
order impulsive differential equations involving damping term with variable de-
lay. The results obtained in this paper extend some of the existing result. An
example is provided to illustrate the main result.

1. INTRODUCTION

The theory of impulsive differential equation have applications in control the-
ory, physics, population dynamics, industrial robotics etc. The oscillation of solu-
tions of second order impulsive differential equations are systematically studied
by several authors [2-6]. In [7-9],the authors studied the oscillation of solu-
tions of second order differential equations with constant delay and in [10-12]
authors studied the oscillation of solutions of second order differential equations
with variable delay. Motivated by the work of [8,11], we obtain the oscillation
criteria for second order nonlinear forced impulsive differential equation with
damping term under variable delay. The results obtained in this paper extend
some of the existing results and are illustrated by an example.
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Consider the second-order impulsive differential equation,

(r()Ba(@' ()" + p()Ba(@ () + g0 (t)Pa (1))
(1.1) + Z G(8)Ps, (x(t — 0(1))) = e(t), t# %,

(") = apx(ms), (") = b’ (1), t =Tk,
where @, (s) = |s|* s, k € N, t > t, 7, is the impulse moments sequence with

0<ty = o<T <+ <7 <...limm=o00z(r")= lim z(t),
k—o0 t—W:O

(e + h) — (1) x(mp +h) — z(7%)

4N . =\ 7 o
i) = g MO ) < g ORI
x(r,) = lim x(t) = z(m).

-0
t—7,

Let J C R be an interval and define
PLC(J,R) ={x: J — R: x(t) is piecewise-left continuous
and has discontinuity of first kind at 7/s}.
Define a delay function Dy (t) =t — 7, — o(t),t € [7g, Tks1], k € N.
Throughout this paper, we always assume the following conditions hold:
(A1) r € C([ty, 00),(0,00)), p, @i, e € PLC([ty,00),R), i =0,1,2...,n;
(A2) By >+ > Bp>a> By > -+ > [, > 0 are constants;
(A3) by > ax > 0, k € N are constants.
(A4) o(t) € C([ty, 00)),there exists a nonnegative constant ¢ such that
0<o(t)<ocforallt>tyand 744y — 7, > o forall k € N
(A5) There is one zero point ¢ € (7%, 7x+1] such that Dy(t) < 0 for t € (7, tx),
Dy(t) > 0 for t € (ty, try1] and Dy (tx) = 0.
By a solution of (1.1), we mean a function z € PC([ty,o0),R) such that 2’ €
PC([ty,0),R) and z(t) satisfies (1.1) for ¢ > to. A nontrivial solution is called
oscillatory if it is neither eventually positive nor eventually negative; otherwise,
it is called nonoscillatory. An equation is called oscillatory if all its solutions are
oscillatory.

2. MAIN RESULTS

We begin with the following notation. Let k(s) = max{i : tp < 7, < s},
let r; = max{r(t) : t € [¢;,d;]} and F(c¢;,d;) = {u € C([¢;,d;],R)) : u(t) #
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0,u(c;) = u(d;) = 0},7 = 1,2. For two constants ¢,d ¢ {7} with ¢ < d and a
function ¢ € C(]c,d],R), we define an operator 2 : C([¢c,d],R) — R by

Q4] = 0, for k(c) = k(d),

) (T 11)0(0) + i) 42 0(7)e(m), - for k(c) < k(d),

where

o) = Or+1)® = (aree)41)” ) = (b)* — (a)*
(ak(c)ﬂ)a(Tk(c)H —c)* (@) (7 — Tio1)®
For the discusion of the impulse moments of z(¢) and z(t — o(t)), we need to
consider the following four cases for k(c;) < k(d;),j = 1,2.
(C1) Ty, + 0 < c¢jand Ty(q;) + 0 < d;
(C2) Th(c;) T 0 <G5 and Th(d;) T 0 > dj
(C3) Th(c;) T 0 > €5 and Th(d;) T+ 0 < dj
(C4) Ti(e;) + 0 > ¢ and Ty, + 0 > dj,
and three cases for k(c¢;) = k(d;),j = 1,2
(C1) Th(c;) T 0 < ¢
(C2) ¢; < Ty(ey) + 0 < d;
(C3) Th(c;) T 0 > d;.
Combining (C*) with (Cx), we get 12 cases. Throughout the paper we consider
(C1) with (C1) only. The discussions for other cases are similar and omitted.

The following preparatory lemmas will be useful to prove main theorem.

Lemma 2.1. Let {f;}, i = 1,2,...,n, be the n-tuple satisfying 5, > -+ > B, >

a> By > -+ > B, > 0. Then there exist an n-tuple (ny, 72, ..., n,) satisfying
2.1 > B = a,
=1

which also satisfies
(2.2) dom<1, 0<np<1,
=1

The proof of Lemma 2.1 can be obtained easily from Lemma 1 of [2] by taking
Q; = Bi/ .

The Lemma below can be found in [1].
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Lemma 2.2. Let X and Y be non-negative real numbers.Then
AXYME - XA < (A= 1)V A > 1,
where inequality holds if and only if X =Y.

o o a2
Leta>0,A>0,B>0andy> 0. Put X = B=31,Y = (L) AeBatT

a+1

A=1+1tinL 2.2 we have Ay — By < (A )" ()"
=1+ 7 in Lemma 2.2, we have Ay — By « < (5 5 -

Theorem 2.1. Suppose that for any T' > t,, there exist ¢;,d; ¢ {7}, j = 1,2 such
thatT <ci—o<c; <dy <cy—0 <y <dy, and

(2.3) p(t),qi(t) > 0,(—1)e(t) > 0,t € lc; —o,dj]\{m},i=0,1,2...n,j =1,2.

Let {n;}, i = 1,2,...,n, be an n tuple satisfying (2.1)and (2.2). If there exist u
€ F(cj,d;) such that,

Th(ej)+1 (t — Th(c;) — O‘(t))a _
2.4 : t)dt
2.4 / (T = Th(e;))* @

k(d;)—1

U-n? g (== o(1)”
+l k%:“ /l b (t+ ot _Tl)aQ(t)dtJr/tl = m)e Q(t)dt)
e (E= )" QY (=T — o)
+/w) b <t+0(t>_7—k(d)) + e (0 — 7)) Q(t)dt

- /dj (L [(a + 1)/ (t) — M]a+ldt + /dj go(t)[u(t)|* " dt

, (et 1)t r(t) ’
> 17 [Ju(t)|**]

where, Q1) = QU™ and Q) = noMlellP Ty (w0,
no=1->"mn, then (1.1) is oscillatory.

Proof. Let us suppose that z(¢) is a nonoscillatory solution of (1.1). Without loss
of generality, we may assume that z(¢) > 0 for ¢ € [c, d;]. Define

r(t)Pa (2’ (1))
Po(x(t))

Then for ¢t € [c1,d;] and t # 73, we have

w(t) =
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, - le(t)] Do (z(t — o(t)))
2.5 t)=| — () Pg _o(x(t —o(t))) —
@8 w/(t) = [ = 3 atPamnlalt =00 = G o)~ aute)
p(t) o at1
— Bt — )% = golt).
0 Ol )
By arithmetic-geometric mean inequality, > . ,nv; > [l v/, v; > 0. Take
=10 ' gmatyy and v; = ;' i(t)®s, o (x(t— o (1)) and from (2.1) and (2.2),
we get

le(®)]
P ((t = (1))

o ™e(t |”°Hm

=D a5 alalt o (1) -

Now equation (2.5) becomes

Pulalt —o(t)
Ba(a(0))

(2.6) w'(t) <-Q()

where Q(t) = 1o~ |e(t)|™ H i

If k(c1) < k(d,), then there are impulsive mOmMeNts Ty(c,)11, Th(c1)42> - - > Th(dy)
in [c1,d,] and zero point t; of D,(t) in each (7, 741) for | = k(c1) + 1, k(c1) +
2, ..., k(dy)—1. Multiplying both sides of (2.6) by |u(¢)|*"!,where u(t) € F(cy,d;)
and integrating over [c;,d;], then using integration by parts and the fact that
u(cy) = u(d,), we obtain

3 () - wr)
o
e @)1 - iy pds
e L)L
e et Gl o [ R )
- B )] = e ) QO(t)|U(t)|a+1] i
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k(d1

L ) /
<t—a< >>dt+/dl (

0 (a+ 1) (t) —
()] fu !““] /1qo(t)!u(t)\°‘“dt

(r(1))5
i A |ty POROL o a
Use Lemma 2.2 with A = ‘( +1)u'(¢) @ B O lw(t)||u(t)|”,
! Zﬂu wt)|[ut)]® — —2= ()|t
@7 ([(a+ D) = Tl )@l = @) ue)
r(t) 1y POu(t)1ett
< Gy pm e o -5l

Apply (2.7) in above inequality we get

k(d1)

(2.8) Z \U(Tz)’aﬂ[w(ﬁ) - w(71+)]
I=k(c1)+1
1

/W o / /Tl+1 /tk(dl) /d1
< |:
Th(dy) tk<d1

Q) u(p) - =) g,

x*(t)
hr) oy PO
* / (a+ 1)t [CEROR W] dt — / qo(8) u(®)|"* dt
Fort=m,k=1,2,..., we have w(r, ") = Z—Zw(m),

Therefore from (2.8) we get
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k(d1)—

eo [[+ 5 / /

= k Cl +1
[ [ e,
Th(dy) ti(dy) (t)

[ e v - 20 )]a+1dt+/:l o(B)uft) [t
k(d1)

< D lum)t [blaa;

laala} w(m), where Q(t) - Q(t)|u(t)|a+1 ‘
l=k(c1)+1

Now for ¢ € [c1,dy]\{n}, from (1.1), it is clear that

(r(t)®a(a’ (1)) + p()Pala’ (1)) = e(t) — qolt Zqz )P, (2(t)) < 0.

Multiplying both side of above inequality by p(t) = exp ( J* %ds), we get

/

(BOrOPa(a (1)) = 5(8) (e(t) — ao(1) qu )85, (2(t))) <0,

which implies that [p(¢)r(t)®.(2'(t))] is non-increasing on [, di]\{7}.Because
there are different integrations in (2.9), we will estimate % in each interval
of t.

Case (i): If t, <t < 74y, for i = k(1) + 1,...,k(d1) — 1, then (¢t — o(t),t) C
(71, 7141]. Thus there is no impulsive moment in (¢ — o(¢),t). Therefore for any
s € (t —o(t),t), there exists a § € (m,s) such that z(s) > z(s) — z(r;") =
7'(§)(s — 7). Since z(7;") > 0, the function &,(.) is an increasing function and
[B(t)r(t)®,(2'(t))] is non-increasing on (7, 7141), we have

Bo(x(s)) > Bula! (&) (s — )] = %%@'(m)(s )
PES) )
= () TN
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PE)r ()
p(s)r(s)

. Integrating both sides from ¢ — o(t) to t, we obtain

Therefore, @, (2'(s)(s — 7)) <

o) _

x(s) s—m

a(z(s)) < D4(2(9)),& € (1, s). Thus

x(t—o(t) t—m—o(t)
O = .

,t € (tlaTl—&-l]'

Case (ii): If , <t < t;, forl = k(c1)+1,...,k(dy), thenty—o <t—0o(t) <7 < L.
There is an impulsive moment 7; in (¢t — o(t),t). For any t € (7,t;), we have
z(t) — z(r;") = 2(Q)(t — 1), G € (7m,t). Using the impulsive conditions and the
monotone properties of r(t), $,(.) and [p(t)r(t)Da(2'(t))], we get

B e  BEIE)
@O((l'(t) { (l>> ]3((1)7‘({1)@&( (Cl))(t l) < ]3(Q>7,<Cl) éa( (z ))(t l)
_ p(ri)r(7i) (s -
N ﬁ(Cz)T(Cl)qja(bl () - )
Since x(7;) > 0, we have
o) N B, (),
(210 %o ) = Barcr % (e ¢ ):

In addition, x(n) > JJ(T[) — ;C(Tl — O'(t)) = ml(él)a(t ) 5l € (Tl - U(t>7Tl>‘

Similar to the analysis in case(i), we have
(1) 1

< .
z(m) o)
From (2.10) and (2.11) and note that the monotone properties of @,(.), p(t) and

r(t), we get 2 <a+ i(t — 7). In view of assumption (Aj3), we have
() a(t)
x(7m o(t o(t
(2.12) x((t)) o(t)a —l—(bl)(t —7) = bi(t + a<(t)) —7)
On the other hand, using similar analysis of case(i), we get
2'(s) 1
z(s) s—m+o(t)

(2.11)

> 0.

(2.13)

se€(n—o(t),n).
Integrating (2.13) from ¢t — o(t) to 7, where ¢t € (7,7, + o(t)), we have

z(t—o(t) t—m
(2.14) e > =y > 0.
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From (2.12) to (2.14), we obtain wt=olt) t— T
Ji(t) bl(t+0(t) —Tl)
Using same as the proof of Case(i) and Case(ii), we can prove the following

cases.

, U € (Tl,tl>.

z(t—o(t)  t—Tie) — O'(t>'

Case (iii): If ¢; <t < 7y(c, 41, then >
(t) b= Th(er)

z(t—o(t))  t— T —o(t)
Qi(t) t— Tk di) '
On the other hand, for t € (r,_1,7) C [c1,d4],l = k(cl) , ..., k(dy), there

exists v, € (-1, t) such that z(t) — z(r," ) = 2/(m)(t — 7).
In view of z(7;",) > 0 and the monotone properties of @,(.), p(t)r(t)P,(t) we

obtain @, (x(t)) > Bu( (W)t — 1y)® > L™ 5 )t — 71)e which

p(y)r(v)

Case (iv): If t;4,) <t < dy, then

o T(8)Pa((F)) p(w)r(n) r(m)
implies, < — < .
P o) TRt —ne T e
This is w(t) < % Letting ¢ tends to 7,", we obtain
(t — Tl_l)a
(2.15) win) < ——2 for n € [er,di], 1= k() + 2, k(dy);

(1 —7-1)”
Using similar analysis we can get

r

(11— c1)®

(216) w(n) < ,fOI' T € [Cl,dl], l = k(Cl) +1

Using case(i)-(iv), (2.9), (2.15), (2.16) and (A3), we obtain

/Tk<c1>+1 (t = Thien) — U(t)>aQ(t)dt

. (t - Tk(cl))a
(t — Tz _ ot -1 —o(t)” A
t)dt ) dt
t’““” (t—Tk(d ) - Wt = Theay — (1) ~
+/ - - Q(t dt+/ - Q(t)dt
riayy Uk (& () = Tean))® ) tay  (E = Than)® )

& r U a+l &
- / #[(a%—l)u'(t)—p(?@)@)] dt + / ao(8) (1) dt
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k(d1)

< > (D mltutm)

ay
l:k(cl )+1

<

)|t

e —a®
( k(C1)+L k(cl)+1> |U(Tk(cl)+1
ey 41

= Qg [Ju(®)|**],

1

which contradicts (2.4) for j = 1.
If k(c;) = k(d,) then by condition (C}) there is no impulsive moments in
[c1, d1].By similar method as used above we obtain

/ O Ta o 1yl - POy | atlua

(v 1)t r(t) o

Wt—c—o(t)” 5
+ / Tt <o

It is again a contradiction with (2.4). This completes the proof when z(¢) is
positive.The proof when z(t) is eventually negative is analogous by repeating a

similar argument on the interval [cy, dy]. O

Remark 2.1. When p(t) = 0 and o(t) = o, Theorem 2.1 reduces to Theorem 2.3
of [7].

Remark 2.2. When p(t) = 0, result is reduces to the result of [11].

3. EXAMPLE
In this section, we give an example to illustrate our results.
Example 1. Consider the impulsive differential equation
2(t) + (sin )/ () + v:1®s (x(t — % sin? 1))
(3.1) +v2¢%(x(t ~ T sin? t)) = —sin2t,t # 7

12
r(n ) = apz(mh), (7)) =ba'(rs), t=m
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where 7, : T,; = 2nm + & + (i — 1)5,i = 1,2,n € N, v, i = 1,2 are positive
constants, b, > ai, k € N.

We see that r(t) = 1,p(t) = sint,qo(t) = 0,q:(t) = v1,q(t) = vg,e(t) =
—sin2t,a = 1,5, = 5/2,0, = 1/2. Choose n; = 1/3,1m2 = 1/3 and ny = 1/3.
So the conditions of Lemma 2.1 are satisfied. For any T > 0,we can choose ng
large enough such that T < ¢; = 2nmw + 3,dy = 2nm + 3,¢0 = 2nmw + §dy =
2nm + 28 n = 1,2,.... There are impulsive moments 7, in [c;,d;] and 7,5 in
[c2, da). The variable delay o(t) = % sin’t satisfies 0 < o(t) < 0 = 7/12. From
Tpa — Tog = 7/3 > m/12and 7,411 — Tn2 = 57/3 > 7/12 for all n > ny.Therefore
That — Tk > 0. Let Dyp(t) =t — 1, —o(t) =t — (2nm + & + (i — 1)%) — Ssin’¢
and there exist zero points t; ~ 0.8445 € (7,1, d1] and ty ~ 1.9680 € (7,2, ds].
Moreover, conditions (C1) and (2.3) are satisfied.

For t € [cy,d;],let u(t) = sin6t. Then Q(t) = 3(v1v,)'/3| sin 2¢|'/3 sin? 6t and the
left side of (2.4) is

/2”’”“2”/9 t— (2nm — I?’T’T) -5 sin? t@(t)dt
2nm+m/6 t— (2TZ7T - BTW)
/277,7T+0 .8445 t— (2n7T + 27T/9) Q(t)dt
onmton9 boa(t — (2nm + Z5) + Zsin® )
2nm+m/3 t— 2 + 2\ _ w t
/ nm+ %) 271r2 sin? O(t)dt
2nm+0.8445 t— (27” +5)
/2"””/3 [12 cos 6t — sin ¢ sin 6t]2dt
2nmw+m/6 4
0.04604
~ 3(v1vs) /3 [0.04958 +0.01358 + — ] — 9.5496
n,l
0.04604
~ 3(v1vs) /3 [0.06316 +— ] — 9.5496.
n,1

On the other hand, the right side of (2.4) is

2711 —a
Qd1 a+17] _ 6 2 9 9 nl an,l _ _[ n,1 n,1:|.
Thus condition (2.4) is satisfied if

0.04604 27 (b1 —
3(v102) /3] 0.06316 + — 9.5496 > [#]
a

bn,l m

n,l



4904

G. PURUSHOTHAMAN

Similarly for t € [c, ds], let u(t) = sin 6t. Then the left side of (2.4) is

and

0.04421
~ 3(v10p) '/ [0.02665 + —] — 9.4516.

n,2

: o 27 b — ay, i :
Also the right side is Q% [Ju(t)|*™"] = gy [Q—M} Thus condition (2.4) is
m Qp 2
satisfied if
: 0.044211 27 (byo — Ao
3(0102)/30.02665 + ————— | —9.4516 > — | 22— In2
L bmg 4 2m L Qp 2
Hence by Theorem 2.1, equation (3.1) is oscillatory if
I 0.04604 27 1bp1 — Gna
3(v102)/30.06316 + ———— | — 9.5496 > —_ | L~ Int
L by 2r L apy
: 0.04421 1 27 (byo — Qo]
3(v102)/3]0.02665 + ————— | — 9.4516 > —_ | n2 2]
o bn,2 - 2m L Q2
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