

Advances in Mathematics: Scientific Journal **9** (2020), no.7, 4917–4922 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.7.56

SOME PROPERTIES OF G-SPACES ACTED WITH TOPOLOGICAL GROUPS

S. SIVAKUMAR AND D. LOHANAYAKI¹

ABSTRACT. In this paper, We mainly discuss some properties of O-soft and the character of limit G-space and extend several results of subspectrum. We also introduce some basic concepts and elementary results on actions of topological groups on G-Spaces.

1. INTRODUCTION

On G-Spaces of topological groups on topological spaces provide a natural general background dynamics. At the heart of it is the fundamental idea of a topological group of transformations and the roots of the notion of O-Soft and we also introduce the fundamental concept of a topological group on G-space. In this paper we define the basic definition of G-space and more details on the topology of the limit G-Space of inverse spectrum. Since 2008, Arhangel'skill's has done a series of sinificant work on Actions of topological groups with topological spaces.

For further reference see [1–6].

Definition 1.1. Let G be a topological group and X be a topological space. An action θ of G on X is called continuous if θ is continuous as a mapping of $G \times X$ to X. The space X is called a G-space.

Definition 1.2. A continuous mapping $p : A \rightarrow B$ is called O-soft if for every zero-dimensional compact G-space C, every continuous mapping $q : C \rightarrow B$ and a

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 08A99,20J99.

Key words and phrases. G-space, O-soft, limit G-Space, Subspectrum.

FIGURE 1

continuous mapping $r : X \to A$ of a closed subset X of C satisfying $q [X = p \circ r]$, there exists a continuous mapping $\psi : C \to A$ extending r which makes the above diagram commutative.

Definition 1.3. Consider the product G-Space $\prod = \prod_{\beta < \gamma} A_{\beta}$ and denote by \prod_{β} the projection of \prod to the factor A_{β} where $\beta < \gamma$. Let A be the G-Subspace of \prod defined by $A = \{(\alpha_{\beta})_{\beta < \gamma} \in \prod : S^{\alpha}_{\beta}(\alpha_{\alpha}) = a_{\beta} \text{ whenever } \beta < \alpha < \gamma\}$ then A is the limit G-Space of the Spectrum P.

Definition 1.4. Let $P = A_{\beta}, S_{\beta}^{\alpha} : \beta < \alpha < \gamma$ be a well ordered inverse spectrum with continuous projections S_{β}^{α} , and X be the limit G-Space of P. For every $\alpha < K$, denote by S_{β} the limit projection of A to A_{β}' . If $B \subset A$ is a G-Space of A, we put $B_{\beta} = S_{\beta}(b)$ for each $\beta < \gamma$ and define W_{β}^{α} as the restriction of S_{β}^{α} to B_{α} , where $\beta < \alpha < \gamma$. Clearly, $P_{B} = \{b_{\beta}, W_{\beta}^{\alpha} : \beta < \alpha < \gamma\}$ is a well-ordered inverse spectrum; this spectrum is called the subspectrum of P generated by B.

2. MAIN RESILTS

Theorem 2.1. The composition of O-soft mapping of compact G-Spaces is O-soft.

Proof. Let $P_1 : A_1 \to A_2$ and $P_2 : A_2 \to A_3$ be O-soft mapping of compact G-Spaces A_1, A_2, A_3 , and $P = P_2 \circ P_1$. suppose that $q : C \to A_3$ and $r : X \to A_1$ are a continuous mapping such that $P \circ r = q \circ s$, where X is a closed subsetof a zero-dimensional compact G-Space C, and $j : X \to C$ is natural embedding.

Put $K_1 = P_1 \circ K$. Since P_2 is O-soft, K_1 can be extended to a continuous mapping $\psi_1 : C \to A_2$ such that $P_2 \circ \psi_2 = q$.

Clearly, the mapping ψ satisfies the equality $P_1 \circ \psi = P_2 \circ \psi_1$, So the mapping

FIGURE 2 Again, since P_1 is O-soft, we can find a continuous mapping $\psi : C \to A$, extending K such that the diagram below commutes.

FIGURE 3

P is O-soft.

Theorem 2.2. Let A be the limit G-Space of a well-ordered inverse spectrum $P = \{A_{\beta}, S_{\beta}^{\alpha} : \beta < \alpha < \gamma\}$ with Hausdorff G-Space A_{β} . Then A is closed G-subSpace of the product G-Space $\prod = \prod_{\beta < \gamma} A_{\beta}$. In addition, the sets of the from $(S_{\beta})^{-1}(O)$, where $\beta < \gamma$, $S_{\beta} : A \to A_{\beta}$ is the limit projection and O is open in A_{β} , constitute a base for the topology of A.

Proof. Take an arbitrary $a = (a_{\beta})_{\beta < \gamma}$ in $\prod \langle A \rangle$

By the definition of A, there exist α, β with $\beta < \alpha < \gamma$ such that $S^{\alpha}_{\beta}(a_{\alpha}) \neq a_{\beta}$. Since A_{β} is a Hausdorff G-Space and the connecting mapping S^{α}_{β} is continuous, we can find open neighbourhoods X and Y of a_{α} and a_{β} in A_{α} and A_{β} respectively, such that $S^{\alpha}_{\beta}(X) \cap Y = \phi$. It is clear that the set $C = (\prod_{\alpha})^{-1}(X) \cap$

4919

 $(\prod_{\beta})^{-1}(Y)$ is open in \prod and $C \cap A = \phi$ where \prod_{β} and \prod_{α} are the projections of \prod to the factors A_{β} and A_{α} respectively, therefore the complement $\prod \setminus A$ is open in \prod .

To prove the second part of the theorem, take any $a \in A$ and any neighbourhood X of a in A. Since A is a G-Subspace of \prod , there exists a canonical open set Y in \prod such that $a \in Y \cap A \subset X$. Choose ordinals $\beta_1 < \cdots < \beta_n < K$ and open sets Y_1, Y_2, \ldots, Y_n in $A_{\beta_1}, \ldots, A_{\beta_n}$ respectively, such that $Y = (\prod_{\beta_1})^{-1}(Y_1) \cap$ $\cdots \cap (\prod_{\beta_n})^{-1}(Y_n)$. Since each limit projection $S_\beta : A \to A_\beta$ is the restriction of \prod_β to A, the open neighbourhood $O = (S_{\beta_1})^{-1}(Y_1) \cap \cdots \cap (\prod_{\beta_n})^{-1}(Y_n)$ of a in A is contained in X. Clearly the set $O = (S_{\beta_1})^{-1}(Y_1) \cap \cdots \cap (S_{\beta_{n-1}})^{-1}(Y_{n-1}) \cap Y_n$ is open in Y_n is open in A_{β_n} and it follows that $a \in T = (S_{\beta_n})^{-1}(S) \subset X$.

Theorem 2.3. Let $P = \{A_{\beta}, S_{\beta}^{\alpha} : \beta < \alpha < \gamma\}$ be an inverse spectrum of *G*-Space A_{β} and continuous connecting mapping S_{β}^{α} then the limit *G*-Space *A* of *P* is compact. In addition, if each S_{β}^{α} is surjective, then so are the limit projections $S_{\beta} : A \to A_{\beta}$

Proof. The product G-space $\prod = \prod_{\beta < \gamma} A_{\beta}$ is compact and X is a closed G-Subspace of \prod . Hence X is compact.

Suppose that each connecting mapping S^{α}_{β} is surjective. For every $\alpha < \gamma$, let $\prod_{\alpha} = \{(a \in \prod : S^{\alpha}_{\beta}(\prod_{\alpha})(a)) = \prod_{\beta}(a) \text{ for each } \beta < \alpha\}$, where $\prod_{\beta} : \prod_{\rightarrow} A_{\alpha}$ is the natural projection of \prod onto A_{β} . Clearly, \prod_{α} is compact, as a closed subset of \prod and in addition, $\prod_{\alpha}(\prod_{\alpha}) = \prod_{\alpha}$, for each $\alpha < \gamma$. Indeed, let $b \in A_{\alpha}$, and take $a = (a_{\beta})_{\beta < \gamma} \in \prod$ such that $a_{\alpha} = b, a_{\beta} = S^{\alpha}_{\beta}(b)$, for each $\beta < \alpha\}$, where the coordinates a_{δ} with $\alpha < \delta < K$ are chosen arbitrary. Then $a \in \prod_{\alpha}$ and $\prod_{\alpha}(a) = b$.

It follows from the definition of the the limit G-Space A of the spectrum P that $A = \bigcap_{\alpha < \gamma} \prod_{\alpha}$. Let $\beta < \gamma$ and $b \in A_{\beta}$ be arbitrary. Then $b \in \prod_{\beta} (\prod_{\alpha})$ or, equivalantly, $(\prod_{\beta})^{-1}(b) \cap \prod_{\alpha} \neq \phi$ for each α , where $\beta \leq \alpha < \gamma$. Since $\{\prod_{\alpha} : \beta \leq \alpha < \gamma\}$ is a decreasing sequence of compact subsets of \prod , and the set $(\prod_{\beta})^{-1}(b)$ is closed in \prod . We conclude that the intersection $(\prod_{\beta})^{-1}(b) \cap \prod_{\beta \leq \alpha < \gamma} \prod_{\alpha} = (\prod_{\beta})^{-1}(b) \cap A$ is not empty.

Hence $b \in \prod_{\beta} (A) = S^{\beta}(A)$ and therefore $S_{\beta}(A) = A_{\beta}$.

Theorem 2.4. Suppose that A is a limit G-Space of a well-ordered inverse spectrum $P = \{A_{\beta}, S_{\beta}^{\alpha} : \beta < \alpha < \gamma\}$, and that B is a closed G-Subspce of A. Then the limit G-Space of the inverse spectrum P_{β} is naturally homeomorphic to B.

Proof. By the definition of the subspectrum $P_B = \{b_\beta, W_\beta^\alpha : \beta < \alpha < \gamma\}$ of P that B can be identified with a G-Subspace of the limit G-Space B^* of P_B which is, in its turn, a G-Subspace of A. Therefore, it sufficies to show that $B^* \subset B$. Suppose to the contrary that there exists a point $a \in B^* \setminus B$. B is closed in A, So we can find an ordinal $\beta < \alpha$ and an open set $X \subset A_\beta$ such that $a \in (S_\beta)^{-1}(X) \subset A \setminus B$. Hence $(S_\beta)^{-1}(X) \cap B = \phi$ and $X \cap S_\beta(B) = \phi$, that is, does not intesect the set B_α , a contrdiction with $S_\beta(a) \in X \cap B_\beta$.

3. CONCLUSION

In this paper, we have solved some properties of G-Spaces and related theorems.

ACKNOWLEDGMENT

The authors would like to thank the referee for the valuable comments, that helped us improve this article.

REFERENCES

- S. A. ANTONYAN, M. SANCHIS: *Extension of locally group actions*, Annali di Matematica Pura ed Applicata, 181 (2002), 239–246.
- [2] A. V. ARHANGELSKII, M. HUSEK: *Extensions of topological and semitopological groups and the product operation*, Comment. Math. Univ. Carolin., **42**(1) (2001), 173âĂŞ186.
- [3] A. V. ARHANGELSKII, M. TKACHENKO: *Atlantis Studies in Mathematics Series*, Editor: J. van Mill,VU University Amsterdam, the Netherlands, (ISSN: 1875-7634), 2008.
- [4] S. SIVAKUMAR, P. PALANICHAMY: On orbit space of B-compact group action, Acta ciencia indica, XXXVIIM(4) (2011), 813–817.
- [5] S. SIVAKUMAR, D. LOHANAYAKI: *Homotopy groups acted on fibration in algebraric topology*, Advances and applications in mathematical sciences, (in press).
- [6] S. SIVAKUMAR, D. LOHANAYAKI: Free group actions on finite metrizable spaces, Journal of Xian university of architecture and technology, 12(5) (2020), 1327-1335.

S. SIVAKUMAR AND D. LOHANAYAKI

DEPARTMENT OF MATHEMATICS GOVRNMENT ARTS COLLEGE C. MUTLUR, CHIDAMBARAM TK 608102 *E-mail address*: ssk.2012@yahoo.in

DEPARTMENT OF MATHEMATICS GOVRNMENT ARTS COLLEGE C. MUTLUR, CHIDAMBARAM TK 608102 *E-mail address*: lohanayakiappar@gmail.com