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A NEW MODIFICATION OF NPRP CONJUGATE GRADIENT METHOD
FOR UNCONSTRAINED OPTIMIZATION

MAULANA MALIK!, MUSTAFA MAMAT, SITI S. ABAS, IBRAHIM M. SULAIMAN, AND SUKONO

ABSTRACT. The conjugate gradient method is among the efficient method for
solving unconstrained optimization problems. In this paper, we propose a new
formula for the conjugate gradient method based on the modification of the
NPRP formula (Zhang, 2009). The proposed method satisfies the sufficient
descent condition, and global convergence proof was established under some
assumptions and strong Wolfe line search. Numerical results based on 98 test
problems show that the new method very efficient as compared with the classi-
cal conjugate gradient method.

1. INTRODUCTION
We consider the following unconstrained optimization problems
(1.1) min { f(x)|x € R"}

where f : R” — R is continuous and differentiable function. The conjugate gra-
dient method is of an iterative method to solving (1.1) with formula as follows:

(12) Xk:Xk—i—Oékdk 7]{,’:0,1,2,...,

where x, is initial point, x;, is the point in kth iterative, d, is the search direction,
and «y, is the stepsize [1]. There are numerous methods used for calculation the
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stepsize, including the exact and inexact line search. In this paper, we apply
the inexact line search to compute the stepsize a,. The inexact line search that
is often used in practice is the strong Wolfe line search. The strong Wolfe line
search is defined as

F(xk + arpdy) < f(xk) + dougt di,

(1.3) - .
g (xx + agdy)” di| < —og, dy

where g, = V f(x;) is a gradient of f at point x;, g{ is transpose of g, and §, o
are the parameters with value 0 < § < o < 1, see [2]. In conjugate gradient
method, the search direction is defined by formula as follows:

. k=0
(1.4) d, = { ®*

—gr + Ordi—1, kE>1

where [, is a scalar; we often say as conjugate formula. There are many param-

eters §r known to date, including them

H2 cD Hng2 DY HngQ

PR d;{—1 (gk - gkq)’

FR _ gx _
g Hgk—1”2’ b d}fgkfl

T _ ekl
PRP _ g (8s —8k1) wyvr _ Bk (gk Hgk—ngk—1>

" lgr—1]? P llgr—1]? ’
RMIL _ gf (gk - gkq)
: [fs Py

where ||.|| is the Euclidean norm of vectors. The above corresponding parameter
are known as Fletcher-Reeves (FR) [3] method, Conjugate Descent (CD) method
[4], Dai-Yuan (DY) method [5], Polak-Ribiére-Polyak (PRP) method [6], Wei-
Yao-Liu (WYL) method [7], and Rivaie-Mustafa-Ismail-Leong (RMIL) method
[8].

In the conjugate gradient method research, many researchers focus on its
global convergence properties and descent condition. For the FR method, Zou-
tendijk has proved the global convergence properties under the exact line search
[9]. As well as, Al-Baali also shows the FR method fulfill global convergence
properties under inexact line search [10]. The CD method generated a descent
search direction in each iteration for the parameter ¢ < 1 under the strong
Wolfe line search, but its global convergence properties are not excellent. The
DY method is a modification of the FR method, under the strong Wolfe line
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search the DY method fulfills the descent condition, but this method has bad
numerical results.

Under strong Wolfe line search, Yuan and Stoer in [11] proved the PRP
method has the global convergence properties and fulfills the descent condition.
The WYL method is a modification of the PRP method; this method satisfies
the descent condition and global convergence properties under an exact line
search and strong Wolfe line search. The RMIL method is a modification of the
PRP method by changing its denominator. Rivaie et al. proved the convergence
properties of the RMIL method using an exact line search.

Based on the illustration above, in this article, we propose a new formula
of conjugate gradient method [, based on modification of NPRP method and
we will compare the performance with other classic methods. The sufficient
descent condition and global convergence properties of our new method are
proved using the strong Wolfe line search.

2. NEw FORMULA AND ALGORITHM

In 2009, Zhang [12] proposed a new conjugate gradient formula as follows:

1) yone 10 e el

lgx—1]l?
that is, modification of the WYL method. In this section, we form a new formula
with replace the term ”lff ‘1‘” in the numerator (2.1) by %, add a negative
|glgi_1|, extend the denominator by (1 — )||dx-1]/* + pl/gk—1]|*, and prevent
negative value, so we define the new formulas as
(2.2) MMSSS? _ A, ifB

0, otherwise
where
B lgnll* — % ’gzgkfl‘ - |g£gk—1‘

?

(1= wlldr—[I* + ell g [I?

B — gl > (ﬁ n 1) -
gk — gr—1]|

i = 0.6, and MMSSS2 denotes Malik-Mustafa-Sabariah-Sulaiman-Sukono-the
second.

Y
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Based on (1.2), (1.3), (1.4), and (2.2), we establish an algorithm of the
MMSSS2 method as follows:

Algorithm 1. (MMSSS2 method)

Step 1. Given a initial point x,. Choose value for stopping criteria ¢, and parameter
0,0. Set k = 0.

Step 2. Compute ||gx||, if ||gr|| < € then x; is optimal point. Else, go to next step.

Step 3. Compute [ using (2.2).

Step 4. Compute search direction dy, using (1.4).

Step 5. Compute stepsize oy, using (1.3).

Step 6. Set k := k + 1 and generate the next iteration x; using (1.2).

Step 7. Go to Step 2.

3. ANALYSIS CONVERGENCE UNDER STRONG WOLFE LINE SEARCH

In this section, we will analyze the sufficient descent condition and global
convergence properties of the MMSSS2 method under the strong Wolfe line
search. Further, the definition of the sufficient descent condition and global
convergence properties [13] as follows are needed.

Definition 3.1. Sufficient descent condition holds when there exist C' > 0 such
that
gid, < —C|lgel, Yk > 0.

Definition 3.2. The conjugate gradient method is global convergence if
lim inf ||g|| = 0.
k—o0
Next, we provide lemma and theorem, which are meaningful relationships to

help prove the sufficient descent condition and global convergence properties of
the MMSSS2 method.

Lemma 3.1. The relation

5 g2
(3.1) O S MMSSS2 S e
i 2|

holds for all k > 0.

Proof. Based on (2.2), there are two cases.
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2 gkl T _
Case 1. If ||g|]” < (nggm + 1) |2t = 0.
Case 2. If ||g|* > (% - 1) £ BMMSSS2 — A, Since p = 0.6

and p|gg_1|*> > 0, then

2 _ gkl T
sz _ 18 (e + 1) lefs] 5 jg2
* 0.4f|dp—1[]* +0.6llge—1> 2| de—a*
ﬁé\/[MSSSQ > 0.

and

Hence, 0 < gMMS552 < g||cH1ng||2 The proof is completed. O

Theorem 3.1. Suppose sequences {gr} and {d;} be generated by Algorithm 1,
with paramater 0 < o < g5. Then

(3.2) %<4, Yk > 0.

k
Proof. By induction, for £ = 0, then from (1.4) we have dy = —g, and obtained
”iﬁ“ = —1 < 4. So, (3.2) is true. Further, suppose (3.2) is true for k£ = n, so we
have
(3.3) % <4

We will be proven for £ = n + 1, the (3.2) is true. Based on (1.4) and multiply
by g! ., we have

T T _ AMMSSS2 T
gn+1dn+1 + 8,118n+1 = Ppia gn+1d

and then we will get it

||gn+1||2 = _gZ—&-ldn-&-l + BMMSSS2g£+1dn
(3.4 < ‘gn+1 n+1‘ + WMMSSSanHdn} -
From (3.4) and applied together (1.3), Lemma 3.1, and using Cauchy-Schwartz
inequality, we obtain

Igniill® < |gli1dnt] +5£4MSSSQ| oo

5 ||gn1|”
2 ||da|®

Dividing both sides of (3.5) by ||g,.1|| and using (3.3), we get

(3.5) < llgnalllldnsall +o Ignllldall-

Ign1ll < ldnsall + 100l gnral],
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which means that (1 —100)||g,+1 < [[dn+1]. Since 0 < o < &5, then 1—100 > 0,

so we have

[y 1
< 4.
|dpiaf] 1 —100
This shows that (3.2) is true for £ = n + 1. The proof is finished. O

The theorem below states that the MMSSS2 method satisfies the sufficient
descent condition.

Theorem 3.2. Suppose the sequences {g;} and {d} be generated by Algorithm 1,
with parameter 0 < o < g. Then

1 g'd, 800 — 1
1—400  |lgkll> 1—400’

Hence, the sufficient descent condition in Definition 3.1 holds.

(3.6)

Vk > 0.

Proof. The proof is by induction. For k£ = 0 and using (1.4), we have dy, = —g),
and further

—1 < gono _ —g(?go _ 800 — 1
1—400  [[goll* g0l 1 — 400’
it states that (3.6) is true for k& = 0; furthermore, we get gldy = —||go||?, so

based on Definition 3.1, the sufficient descent condition holds. Next, we prove
for £ > 1. Suppose that (3.6) is true for k = n, so we have

-1 gfd, 800 —1
1—400  |lgnl? 1-—400
Furthermore, we need to proof that (3.6) is true for £ = n + 1. Rewriting (1.4)
for k =n+ 1, we get

3.7)

MMSSS2
dpi1 = —8nt1 + B dy.

Multiply the both sides by g ,, we have

g1 = —llgn[? + B9, d,
By dividing the both sides by ||g,..1||>, we obtain
T d T d 2
(3.8) 8ni1 nzl = —1 4 pMMSSS? 8ni1 n2HgnH2
[gn+1 I8n+111? llgnll

Based on relation the strong Wolfe line search in (1.3), we get

ng;dn < gg+1dn < —Uggdn-
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Since pMMS552 > (), the relation above becomes

MMSSS2_T MMSSS2_T MMSSS2_T
(3.9) OPn51 gndn S n+1 gn+1dn S _O-Bk gndn

Apply (3.8) and (3.9) together, we obtain

I I

Sri1dnt < —1 — gpMMSSS? g.dn llgn

T
g.dn llgn
—1+O'6MMSSSQ n < A ]
T gall? lgnall?

" lgal? llgnall? T llgn

From Lemma 3.1, the inequality above becomes

g llennl? srdn llgal® _ gnidais ) Slgenil grdn gl
20 dall® Ngnll® lgn+1l® = llgnsal® ~ 2> Tenll llgnsal?
which implies
51e,? gZd,, T d, 51e,? ¢7d,
(3.10) ool gidn  gladin 5l gide
2|[dnll? llgnll* = llgnll 21, |2 lgs |

Combining (3.2), (3.7), and (3.10), we obtain
5 -1 gl d,i 5 -1
_1 _42 n+1 _1 o _42 )
T3 (1—4%) S gl 727 \1-100

~1_ghaden _ 8001
1—400 ~ |lgep|® ~ 1—400

This shows that (3.6) is true for k = n + 1. Denotes ¢ = 52—, since 0 < 0 < g
then ¢ is positive number. So that we have relation g/, d,+1 < —c||gn 1%
which indicate the sufficient descent condition holds. The proof is completed.

g

Hence,

To prove the convergence properties of the MMSSS2 method, we need the
following assumptions for objective functions.

Assumption 1. (A1) The objective function f has lower bond on the level set w =
{x|f(x) < f(x0)} where xq is the initial point. (A2) In neighbourhood wy of w,
the objective function f is continuously differentiable , and its gradient is Lipschitz
continuous; then there exists a constant L such that ||g(x) — g(y)|| < L||x —
v, VX,y € wo.

We also needed the following lemma, which was known as Zoutendijk condi-
tion. Proof of this lemma can be seen in [9].
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Lemma 3.2. Suppose Assumption 1 holds. Let a conjugate gradient method of the
form (1.2) and (1.4), where «y, is calculated by strong Wolfe line search and search
direction dy, satisfies the sufficient descent condition. Then,

00 T 2
(gk dk)
(3.11) < 00
2. Tl
The following theorem shows that the MMSSS2 method is global conver-
gence.

Theorem 3.3. Suppose that Assumption 1 holds true, x; is generated by Algorithm
1, d;. is obtained by formula (1.4), «y is calculated under strong Wolfe line search
(1.3), By is calculated by pMM5552 and the sufficient descent condition hold true.
Then,

(3.12) lim inf ||gg|| =0
k—o0

Proof. We use contradiction. Let (3.12) be not true, then there exist a constant
M > 0 such that ||gx|| > M, further
1 1
— < — VE>0.
lexll> — M?
Rewrite (1.4) as
dp +gr = B%Msswdk—h

and squaring the both sides, we get

(3.13) e = (B2™5552) ||dya |* — 287 dx — [l
Combining (3.1), (3.6), and (3.13), we obtain
2
d.II2 MMSSS2\2 do 112 2 2
el < (B5552) o2+ (1= ) el = il

25 ||gxll 14 400 9
Clde e T 1= 100 ) 180

By dividing the both sides of relation above by ||g||*, and applying (3.2), (3.13)
together, we have

Idel* 25 1 (1+400) 1 _ 100 (1+400> 1
1l 4 [|de—a]* \1—400) [lgrll* = llge-all*  \1—400/ |l
1+400\ 1 101 — 3600 1

1—4OU)W: 1—400 M?’

< (100 +
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that implies,
2
lexl* _ (gkds) 1400
Idel2 [|def2 T 101 —3600

Furthermore,
0 T3 )2 n T 1 \2
(gide)” (gFds) . 1400 1
=1 B ( L= L Y.
(kZ:O [} ”gg%zzo ]2 s (D)0 3600 32~
Hence,

i (gfdk)Q

2,2
this contradict with Zoutendijk condition (3.11). So (3.12) is true. Based on
Definition 3.2, the MMSSS2 is global convergent. The proof is completed. [

> 00,

4. NUMERICAL EXPERIMENTS

In this section, we conducted some numerical experiments to test the per-
formance of the MMSSS2 method. To see the MMSSS2 method’s performance,
we used some test functions mostly considered from Andrei [14]. Some initial
point variations are also suggested by Andrei [14], and the dimensional varia-
tions used are the same as in paper Malik et al. [15, 16]. Several test functions,
dimensions, and initial points in 98 problems are stated in Table 1.

Numerical results are obtained by running programs written in Matlab R2019a
software and using a personal laptop with specification processor Intel Core i7,
16 GB RAM, and operating system Windows 10 Pro 64 bit. In the program, we
consider ¢ = 107, so the stopping criteria is ||g|| < 10~° and we use parameters
o = 0.001 and 0 = 0.0001. Numerical results are said to fail if the number of
iterations (NOI) exceeds 10,000 or never reaches the optimum value. In this
paper, we will compare the performance of the MMSSS2 method with the RMIL
method, FR method, CD method, DY method, WYL method, and NPRP method
based on NOI and central processing unit (CPU) times. Summary of numerical
results written in Table 2.

From the numerical results, we can determine the performance profile curve.
The performance profile curve results using a performance profile introduced
by Dolan and Moré [17]. In the performance profile figure, the p,(7) is the
probability for solvers s at 7 and 7(p, s) is computing time (NOI or CPU) needed
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to solve problem p by solver s. In general, solvers with high values of p,(7)
or in the upper right of the curves represent the best solvers. The results of
performance profiles in Figure 1 and Figure 2.

Table 1: List of the test functions, dimensions, and ini-
tial points

Problem Test Function Dimension Initial point
1 Extended White & Holst 1000 (-1.2,1,...,-1.2,1)
2 Extended White & Holst 1000 (10,...,10)
3 Extended White & Holst 10000 (-1.2,1,...,-1.2,1)
4 Extended White & Holst 10000 (5,...,5)
5 Extended Rosenbrock 1000 (-1.2,1,...,-1.2,1)
6 Extended Rosenbrock 1000 (10,...,10)
7 Extended Rosenbrock 10000 (-1.2,1,...,-1.2,1)
8 Extended Rosenbrock 10000 (5,...,5)
9 Extended Freudenstein & Roth 4 (0.5,-2,0.5,-2)
10 Extended Freudenstein & Roth 4 (5,5,5,5)
11 Extended Beale 1000 (1,0.8,...,1,0.8)
12 Extended Beale 1000 (0.5,...,0.5)
13 Extended Beale 10000 (-1,...,-1)
14 Extended Beale 10000 (0.5,...,0.5)
15 Extended wood 4 (-3,-1,-3,-1)
16 Extended wood 4 (5,5,5,5)
17 Raydan 1 10 1,...,1)
18 Raydan 1 10 (10,...,10)
19 Raydan 1 100 (-1,...,-1)
20 Raydan 1 100 (-10....,-10)
21 Extended Tridiagonal 1 500 2,...,2)
22 Extended Tridiagonal 1 500 (10,...,10)
23 Extended Tridiagonal 1 1000 1,...,1)
24 Extended Tridiagonal 1 1000 (-10,...,-10)
25 Diagonal 4 500 1,...,1)
26 Diagonal 4 500 (-20,...,-20)

(Continued on next page)
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Problem Test Function Dimension Initial point
27 Diagonal 4 1000 1,...,1)
28 Diagonal 4 1000 (-30,...,-30)
29 Extended Himmelblau 1000 1,...,1)
30 Extended Himmelblau 1000 (20,...,20)
31 Extended Himmelblau 10000 (-1,...,-1)
32 Extended Himmelblau 10000 (50,...,50)
33 FLETCHCR 10 (0,...,0)
34 FLETCHCR 10 (10,...,10)
35 Extended Powel 100 (3,-1,0,1,...,1)
36 Extended Powel 100 (5,...,5)
37 NONSCOMP 2 3,3)

38 NONSCOMP 2 (10,10)
39 Extended DENSCHNB 10 1,...,1)
40 Extended DENSCHNB 10 (10,...,10)
41 Extended DENSCHNB 100 (10,...,10)
42 Extended DENSCHNB 100 (-50.,...,-50)
43 Extended Penalty 10 (1,2,3,...,10)
44 Extended Penalty 10 (-10.,...,-10)
45 Extended Penalty 100 (5,...,5)
46 Extended Penalty 100 (10,...,10)
47 Hager 10 (1,...,1)
48 Hager 10 (-10,...,-10)
49 Extended Maratos 10 (1.1,0.1)
50 Extended Maratos 10 (-1,...,-1)
51 Six hump camel 2 (-1,2)
52 Six hump camel 2 (-5,10)
53 Three hump camel 2 (-1,2)
54 Three hump camel 2 (2,-1)
55 Booth 2 (5,5)

56 Booth 2 (10,10)
57 Trecanni 2 (-1,0.5)

(Continued on next page)
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Table 1 — Continued

Problem Test Function Dimension Initial point
58 Trecanni 2 (-5,10)
59 Zettl 2 (-1,2)
60 Zettl 2 (10,10)
61 Shallow 1000 (0,...,0)
62 Shallow 1000 (10.,...,10)
63 Shallow 10000 (-1,...,-1)
64 Shallow 10000 (-10,...,-10)
65 Generalized Quartic 1000 1,...,1)
66 Generalized Quartic 1000 (20,...,20)
67 Quadratic QF2 50 (0.5,...,0.5)
68 Quadratic QF2 50 (30,...,30)
69 Leon 2 (2,2)
70 Leon 2 (8,8)
71 Gen. Tridiagonal 1 10 2,...,2)
72 Gen. Tridiagonal 1 10 (10,...,10)
73 Gen. Tridiagonal 2 4 (1,1,1,1)
74 Gen. Tridiagonal 2 4 (10,10,10,10)
75 POWER 10 (1,1,1,1)
76 POWER 10 (10,10,10,10)
77 Quadratic QF1 50 1,...,1)
78 Quadratic QF1 50 (10,...,10)
79 Quadratic QF1 500 1,...,1)
80 Quadratic QF1 500 (-5,...,-5)
81 Extended quadratic penalty QP2 100 (1,...,1)
82 Extended quadratic penalty QP2 100 (10,...,10)
83 Extended quadratic penalty QP2 500 (10,...,10)
84 Extended quadratic penalty QP2 500 (50,...,50)
85 Extended quadratic penalty QP1 4 (1,1,1,1)
86 Extended quadratic penalty QP1 4 (10,10,10,10)
87 Quartic 4 (10,10,10,10)
88 Quartic 4 (15,15,15,15)

(Continued on next page)



A NEW MODIFICATION OF NPRP CONJUGATE GRADIENT METHOD ... 4967

Table 1 — Continued

Problem Test Function Dimension Initial point
89 Matyas 2 (1,1)
90 Matyas 2 (20,20)
91 Colville 4 (2,2,2,2)
92 Colville 4 (10,10,10,10)
93 Dixon and Price 3 (1,1,1)
94 Dixon and Price 3 (10,10,10)
95 Sphere 5000 1,...,1)
96 Sphere 5000 (10,...,10)
97 Sum squares 50 (0,1,...,0,1)
98 Sum squares 50 (10,...,10)

TABLE 2. Summary of numerical results

Methods Total of NOI Total of CPU times Successful

MMSSS2 4,675 4.8846 100%
RMIL 8,419 5.568807 89%
FR 35,402 28.7177298 93%
CD 37,031 26.830327 93%
DY 32,135 26.5542355 91%
WYL 69,374 157.0359284 97%
NPRP 9,625 7.1383309 96%

Figure 1 and Figure 2 below illustrate the performance profiles respect to
NOI and CPU times, respectively. Both figures show that the MMSSS2 method
curve is at the top of all curves; this indicates that the MMSSS2 method is the
best solver. As well as in Table 2, we can see that the MMSSS2 method has
a total of NOI and a total of CPU times a fewest compared to other methods,
and successfully 100% solved 98 problems. Hence, the proposed methods very
efficient as compared with the other methods.
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5. CONCLUSION

The main objective of this paper is to propose the new formula of the conju-
gate gradient method. The proposed method is the modification of the NPRP
method, which we denote as the MMSSS2 method. The MMSSS2 method satis-
fies the sufficient descent condition and global convergence properties under the

strong Wolfe line search with parameter o € (0

1

, 35)- Based on 98 test problems,

the numerical experiments have shown that the MMSSS2 method very efficient
as compared with the RMIL method, FR method, CD method, DY method, WYL
method, and NPRP method.
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