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EXISTENCE OF NONOSCILLATORY SOLUTIONS OF NONLINEAR
NEUTRAL DELAY DIFFERENCE EQUATION OF FRACTIONAL ORDER

A. GEORGE MARIA SELVAM1, MARY JACINTHA, AND R. JANAGARAJ

ABSTRACT. The objective of this article is to develop certain criteria for the ex-
istence of nonoscillatory solutions of a nonlinear neutral delay difference equa-
tion of fractional order of the form

∆
[
r(`)∆β [u(`) + c(`)u(`− τ)]

]
+ p(`)u(`− σ1)− q(`)u(`− σ2) = 0, ` ≥ `0,

where ∆β is the RL difference operator of the derivative of the order β, 0 <

β ≤ 1 and τ > 0, σ1, σ2 ≥ 0, c, p, q, r ∈ C ([`0,∞) ,R), with the aid of
Banach’s Contraction Mapping Principle.

1. INTRODUCTION

The natural extension of integer order calculus over real or complex domains
can be termed as Fractional Calculus (FC), categorically the super-set of integer
order calculus. In mathematical analysis, the study dealing with fractional order
derivatives and integral operators is considered as Fractional Calculus.

The origin of fractional calculus can be traced back to 1695 and its novelty
intrigued several scientists and the literature of pioneering research in this area
can be found in [15,16,19]. But it is only since 1985, that fractional calculus has
entered the arena of applied mathematics as novel and innovative applications
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of fractional differential equations came to fore in the most diverse areas of
science, technology and engineering [8,12,13,17,25].

The mathematical theory of discrete fractional calculus (DFC) is under devel-
oping stage in comparison to continuous fractional calculus and only in recent
decades there is an renewed interest in developing the theory of DFC which is
focused around the fractional sum and difference operators. The contributions
of Atici and Eloe [2, 3], Goodrich [10], Miller and Ross [16] and M.Holm [11]
led to the progress of the theory of DFC and more specifically the discrete delta
fractional calculus [10].

Oscillation theory is vital to gather relevant knowledge pertaining to the qual-
itative properties of fractional difference equations. In recent years, the study
of the oscillation theory of fractional difference equations is been remarkably
constructive, advancing rapidly and being the focus of research for many scien-
tists, see [1, 4, 6, 14, 21, 22] and the references therein. The oscillatory criteria
in [7,20,23] are obtained with the help of Riccati technique and and in [14,24]
with the assistance of Stirling formula.

Zhou et al. [26], obtained the sufficiency criteria for the existence of nonoscil-
latory solutions of the fractional neutral differential equation, while Zhou et
al [27] and Muthulakshmi et al [18] , discussed the sufficiency criteria for the
existence of nonoscillatory solutions of the fractional neutral functional differen-
tial equation with the help of certain new techniques and fixed point theorems.

In this paper, we derive sufficiency criteria for the existence of nonoscillatory
solution of the following fractional neutral delay difference equation

(1.1) ∆
[
r(`)∆β [u(`) + c(`)u(`− τ)]

]
+p(`)u(`−σ1)−q(`)u(`−σ2) = 0, ` ≥ `0,

where ∆β is the RL difference operator of the derivative of the order β, 0 < β ≤
1 and τ > 0, σ1, σ2 ≥ 0, c, p, q, r ∈ C ([`0,∞) ,R).

2. BASIC LEMMAS AND PRELIMINARIES

Definition 2.1. [9] A nontrivial solution of equation (1.1) is said to be nonoscil-
latory if it is either eventually positive or eventually negative and oscillatory other-
wise. Equation (1.1) is oscillatory if all of its solutions are oscillatory.
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Definition 2.2. [2] The RL βth fractional sum of f for β > 0, is defined as

∆−βf(`) =
1

Γ(β)

`−β∑
ξ=a

(`− ξ − 1)(β−1)f(ξ), for Na+β,

where f is defined for ξ ≡ a mod(1) and ∆−βf is defined for ` ≡ a+ β mod(1).
The falling factorial is given by

`(β) =
Γ(`+ 1)

Γ(`+ 1− β)
,

where Γ is the gamma function.

Definition 2.3. [2] The RL µth order fractional difference ∆µ is defined as

∆µf(`) = ∆β∆−(β−µ)f(`), ` ∈ Na

and so

∆µf(`) =
∆β

Γ(β − µ)

`−β+µ∑
ξ=a

(`− ξ − 1)(β−1)f(ξ), ` ∈ Na.

Hence, the law of exponent for fractional sum is

∆−µ
[
∆−βf(`)

]
= ∆−(µ+β)f(`) = ∆−β

[
∆−µf(`)

]
.

Lemma 2.1. [5] (Banach’s Contraction Mapping Principle)
A contraction mapping on a complete metric space has a unique fixed point.

3. EXISTENCE OF NONOSCILLATORY SOLUTIONS

In this segment, we establish sufficient conditions for the existence of nonoscil-
latory solutions of equation (1.1) using Banach contraction mapping principle.

Theorem 3.1. Suppose that r(`) > 0. If

(3.1)
∞∑
ξ=`0

ξ(β) R(ξ) p(ξ) <∞,

and

(3.2)
∞∑
ξ=`0

ξ(β) R(ξ) q(ξ) <∞,

where R(`) =
`−1∑
ξ=`0

1

r(ξ)
and c(`) satisfies one of the below mentioned ranges:
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(i) c(`) ≡ 1, (ii) 0 < c(`) ≤ c1 < 1, (iii) 1 < c2 ≤ c(`) ≤ c1,
(iv) −1 < −c2 ≤ c(`) < 0, (v) −c2 ≤ c(`) ≤ −c1 < −1,

then equation (1.1) has a bounded nonoscillatory solution.

Proof. Let L denote Lipschitz constant, α1 = max
u∈A
{u} and M = max {L, α1}.

Also σ = max{σ1, σ2}.
Case (i): c(`) ≡ 1 .

From conditions (3.1) and (3.2), we choose a `1 > `0 + σ sufficiently large
such that

(3.3)
M

Γ(β + 1)

∞∑
i=1

[
∞∑

ξ=`+iτ

(`− ξ − 1− iτ)(β)

r(ξ)

ξ−1∑
k=`1+iτ

p(k)

]
<

1

3
,

and

(3.4)
M

Γ(β + 1)

∞∑
i=1

[
∞∑

ξ=`+iτ

(`− ξ − 1− iτ)(β)

r(ξ)

ξ−1∑
k=l1+iτ

q(k)

]
<

1

3

hold for ` ≥ `1.
Let U be the set of all bounded real sequences {u(`)} defined for ` ≥ `0 with
the Supremum norm ‖u‖ = sup

` ≥ `0

|u(`)|. Set A = {u ∈ U : 1 ≤ u ≤ 3, ` ≥ `0}. It

is clear that A is a bounded, closed and convex subset of U.
Define a mapping T : A→ U as follows:

(Tu)(`) =


2− 1

Γ(β + 1)

∞∑
i=1

[
∞∑

ξ=`+iτ

(`− ξ − 1− iτ)(β)

r(ξ)

×
ξ−1∑

k=`1+iτ

p(k)u(k − σ1)− q(k)u(k − σ2)
]
, for ` ≥ `1,

(Tu)(`1), for `0 ≤ ` ≤ `1.

Clearly Tu is continuous.
For every u ∈ U and ` ≥ `1 using (3.3), we get

(Tu)(`) ≥ 2− 1

Γ(β + 1)

∞∑
i=1

[
∞∑

ξ=`+iτ

(`− ξ − 1− iτ)(β)

r(ξ)

ξ−1∑
k=`1+iτ

p(k)u(k − σ1)

]
,

(Tu)(`) ≥ 2− M

Γ(β + 1)

∞∑
i=1

[
∞∑

ξ=`+iτ

(`− ξ − 1− iτ)(β)

r(ξ)

ξ−1∑
k=`1+iτ

p(k)

]
≥ 1.
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Furthermore, using (3.4) we have

(Tu)(`) ≤ 2 +
1

Γ(β + 1)

∞∑
i=1

[
∞∑

ξ=`+iτ

(`− ξ − 1− iτ)(β)

r(ξ)

ξ−1∑
k=`1+iτ

q(k)u(k − σ2)

]
,

(Tu)(`) ≤ 2 +
M

Γ(β + 1)

∞∑
i=1

[
∞∑

ξ=`+iτ

(`− ξ − 1− iτ)(β)

r(ξ)

ξ−1∑
k=`1+iτ

q(k)

]
≤ 3.

Thus TA ⊂ A. In order to employ the Contraction Mapping Principle, we show
that T is a contraction mapping on A. Now for u, v ∈ A and ` ≥ `1, we have

|(Tu)(`)− (Tv)(`)| ≤ 1

Γ(β + 1)

∞∑
i=1

[
∞∑

ξ=`+iτ

(`− ξ − 1− iτ)(β)

r(ξ)

ξ−1∑
k=`1+iτ

L[p(k) |u− v|+ q(k) |u− v|]

]
,

≤ M

Γ(β + 1)

∞∑
i=1

[
∞∑

ξ=`+iτ

(`− ξ − 1− iτ)(β)

r(ξ)

ξ−1∑
k=`1+iτ

p(k) + q(k)

]
‖u− v‖ ≤

[
1

3
+

1

3

]
‖u− v‖

|(Tu)(`)− (Tv)(`)| ≤2

3
‖u− v‖ .

This implies that T is a contraction mapping on A as
2

3
< 1 and by Lemma 2.1,

T has a unique fixed point which is a positive and bounded solution of (1.1).
Case (ii): 0 < c(`) ≤ c1 < 1 .

From conditions (3.1) and (3.2), we can choose a `1 > `0 + σ sufficiently large
such that

1

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1)(β)R(ξ) [p(ξ) + q(ξ)] <
1− c1

2L
,

(3.5)
1

Γ(β + 1)

∞∑
ξ=`1

α1 (`− ξ − 1)(β) R(ξ) p(ξ) ≤ N1 − 1

and

(3.6)
1

Γ(β + 1)

∞∑
ξ=`1

α1 (`− ξ − 1)(β)R(ξ) q(ξ) ≤ 1− c1N1 −M1,
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where M1 and N1 are positive constants such that 1 < N1 <
1−M1

c1
.

Let U be the set of all bounded real sequences {u(`)} defined for ` ≥ `0 with
Supremum norm ‖u‖ = sup

` ≥ `0

|u(`)|. Set A = {u ∈ U : M1 ≤ u ≤ N1, ` ≥ `0}. It

is clear that A is a bounded, closed and convex subset of U.
Define a mapping T : A→ U as follows:

(Tu)(`) =



1− c(`)u(`− τ) +
R(`)

Γ(β + 1)

∞∑
ξ=`

(`− ξ − 1)(β)

× [p(ξ)u(ξ − σ1)− q(ξ)u(ξ − σ2)] +
1

Γ(β + 1)

l∑
ξ=`1

(`− ξ − 1)(β)R(ξ)

× [p(ξ)u(ξ − σ1)− q(ξ)u(ξ − σ2)] for ` ≥ `1,

(Tu)(`1) for `0 ≤ ` ≤ `1.

Clearly Tu is continuous.
For every u ∈ U and ` ≥ `1 using (3.5) we get

(Tu)(`) ≤ 1 +
1

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1)(β)R(ξ) p(ξ) u(ξ − σ1),

≤ 1 +
1

Γ(β + 1)

∞∑
ξ=`1

α1(`− ξ − 1)(β) R(ξ) p(ξ) ≤ N1.

Furthermore, using (3.6) we have

(Tu)(`) ≥ 1− c1N1 −
1

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1)(β)R(ξ) q(ξ) u(ξ − σ2),

(Tu)(`) ≥ 1− c1N1 −
1

Γ(β + 1)

∞∑
ξ=`1

α1(`− ξ − 1)(β)R(ξ) q(ξ) ≥M1.

Thus TA ⊂ A. We will show that T is a contraction mapping on A. Now for
u, v ∈ A and ` ≥ `1, we have

|(Tu)(`)− (Tv)(`)| ≤

[
c1 +

L

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1)(β)R(ξ) [p(ξ) + q(ξ)]

]
‖u− v‖

|(Tu)(`)− (Tv)(`)| ≤
[
c1 + L

1− c1
2L

]
‖u− v‖ ≤

[
c1 + 1

2

]
‖u− v‖ ≤ λ1 ‖u− v‖ .

Since λ1 =
c1 + 1

2
< 1, T is a contraction mapping on A. By Contraction Map-

ping Principle stated in Lemma 2.1, T has a unique fixed point which is a
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positive and bounded solution of equation (1.1).
Case (iii): 1 < c2 ≤ c(`) ≤ c1 <∞ .

From conditions (3.1) and (3.2), we can choose a `1 > `0 + σ, sufficiently large
such that

1

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1− τ)(β)R(ξ) [p(ξ) + q(ξ)] <
c2 − 1

2L
,

(3.7)
1

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1− τ)(β)α1 R(ξ) p(ξ) ≤ c2N2 − 1,

(3.8)
1

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1− τ)(β) α1 R(ξ) q(ξ) ≤ 1− c1N1

c2
− c1M2,

where M2 and N2 are positive constants such that 1 < c1N1 < c2 (1− c1M2).
Let U be the set of all bounded real sequences {u(`)} defined for ` ≥ `0 with

the Supremum norm ‖u‖ = sup
` ≥ `0

|u(`)|. Set A = {u ∈ U : M2 ≤ u ≤ N2, ` ≥ `0}.

It is clear that A is a bounded, closed and convex subset of U.
Define a mapping T : A→ U as follows:

(Tu)(`) =



1

c(`+ τ)
− u(`+ τ)

c(`+ τ)
+
R(`+ τ)

c(`+ τ)

1

Γ(β + 1)

∞∑
ξ=`+τ

(`− ξ − 1− τ)(β)

× [p(ξ)u(ξ − σ1)− q(ξ)u(ξ − σ2)] +
1

c(`+ τ)

1

Γ(β + 1)

l+τ∑
ξ=`1

R(ξ)

×(`− ξ − 1− τ)(β) [p(ξ)u(ξ − σ1)− q(ξ)u(ξ − σ2)] for ` ≥ `1,

(Tu)(`1) for `0 ≤ ` ≤ `1.

Clearly Tu is continuous.
For every u ∈ U and ` ≥ `1 using (3.7), we get

(Tu)(`) ≤ 1

c2
+

1

c2

1

Γ(β + 1)

∞∑
ξ=`1

R(ξ) (`− ξ − 1− τ)(β)p(ξ)u(ξ − σ1),

≤ 1

c2
+

1

c2

1

Γ(β + 1)

∞∑
ξ=`1

α1 R(ξ)(`− ξ − 1− τ)(β)p(ξ) ≤ N2.
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Furthermore using (3.8), we have

(Tu)(`) ≥ 1

c1
− N2

c2
− 1

c1

1

Γ(β + 1)

∞∑
ξ=`1

R(ξ)(`− ξ − 1− τ)(β)q(ξ)u(ξ − σ2),

≥ 1

c1
− N2

c2
− 1

c1

1

Γ(β + 1)

∞∑
ξ=`1

α1R(ξ)(`− ξ − 1− τ)(β)q(ξ) ≥M2.

Thus TA ⊂ A. Let us show that T is a contraction mapping on A. Now for
u, v ∈ A and ` ≥ `1, we have

|(Tu)(`)− (Tv)(`)| ≤ 1

c2

[
1 +

L

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1− τ)(β)R(ξ)

× [p(ξ) + q(ξ)]] ‖u− v‖ ≤ 1

c2

[
1 + L

c2 − 1

2L

]
‖u− v‖ ,

|(Tu)(`)− (Tv)(`)| ≤ 1

c2

[
1 + c2

2

]
‖u− v‖ ≤ λ2 ‖u− v‖ .

Since λ2 =
1 + c2

2c2
< 1, T is a contraction mapping on A . Lemma 2.1 implies

that T has a unique fixed point which is a positive and bounded solution of
equation (1.1).
Case (iv): −1 < −c2 ≤ c(`) < 0 .

From conditions (3.1) and (3.2), we can choose a `1 > `0 + σ, sufficiently large
such that

1

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1)(β)R(ξ) [p(ξ) + q(ξ)] <
1− c2

2L
,

(3.9)
1

Γ(β + 1)

∞∑
ξ=`1

α1(`− ξ − 1)(β)R(ξ) p(ξ) ≤ N3(1− c2)− 1,

and

(3.10)
1

Γ(β + 1)

∞∑
ξ=`1

α1 (`− ξ − 1)(β)R(ξ)q(ξ) ≤ 1−M3,

whereM3 and N3 are positive constants such thatM3 < 1 < N3(1−c2). Let U be
the set of all bounded real sequences {u(`)} defined for ` ≥ `0 with Supremum
norm ‖u‖ = sup

` ≥ `0

|u(`)|. Set A = {u ∈ U : M3 ≤ u ≤ N3, ` ≥ `0}. It is clear that

A is a bounded, closed and convex subset of U.
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Define a mapping T : A→ U as follows:

(Tu)(`) =



1− c(`)u(`− τ) +
R(`)

Γ(β + 1)

∞∑
ξ=`

(`− ξ − 1)(β)

× [p(ξ)u(ξ − σ1)− q(ξ)u(ξ − σ2)] +
1

Γ(β + 1)

∑̀
ξ=`1

(`− ξ − 1)(β)

×R(ξ) [p(ξ)u(ξ − σ1)− q(ξ)u(ξ − σ2)] for ` ≥ `1,

(Tu)(`1) for `0 ≤ ` ≤ `1.

Clearly Tu is continuous.
For every u ∈ U and ` ≥ `1 using (3.9) we get

(Tu)(`) ≤ 1 + c2N3 +
1

Γ(β + 1)

`−1∑
ξ=`1

(`− ξ − 1)(β)R(ξ) p(ξ) u(ξ − σ1),

≤ 1 + c2N3 +
1

Γ(β + 1)

∑̀
ξ=`1

α1(`− ξ − 1)(β)R(ξ) p(ξ) ≤ N3.

Furthermore, using (3.10), we have

(Tu)(`) ≥ 1− 1

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1)(β)R(ξ) q(ξ)u(ξ − σ2),

≥ 1− 1

Γ(β + 1)

∞∑
ξ=`1

α1(`− ξ − 1)(β)R(ξ) q(ξ) ≥M3.

Thus TA ⊂ A. We show that T is a contraction mapping on A. Now for u, v ∈ A
and ` ≥ `1, we have

|(Tu)(`)− (Tv)(`)| ≤

[
c2 +

L

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1)(β)R(ξ)

[p(ξ) + q(ξ)]] ‖u− v‖ ≤
[
c2 + L

1− c2
2L

]
‖u− v‖ ,

|(Tu)(`)− (Tv)(`)| ≤c2 + 1

2
‖u− v‖ ≤ λ3 ‖u− v‖ .

Since λ3 =
1 + c2

2
< 1, we conclude that T is a contraction mapping on A . By

Lemma 2.1, T has a unique fixed point which is a positive and bounded solution
of equation (1.1).
Case (v): −∞ < −c2 ≤ c(`) ≤ −c1 < −1
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From condition (3.1) and (3.2), we can choose a `1 > `0 + σ sufficiently large
such that

1

Γ(β + 1)

∞∑
ξ=`1

(`− ξ − 1− τ)(β)R(ξ) [p(ξ) + q(ξ)] <
c1 − 1

2L
,

(3.11)
1

Γ(β + 1)

∞∑
ξ=`1

α1 (`− ξ − 1− τ)(β)R(ξ) p(ξ) ≤ c1
c2

[1− (c2 − 1)M4] ,

and

(3.12)
1

Γ(β + 1)

∞∑
ξ=`1

α1(`− ξ − 1− τ)(β)R(ξ) q(ξ) ≤ N4(c1 − 1)− 1,

where M4 and N4 are positive constants such that N4(c1− 1) > 1 > (c2− 1)M4.
Let U be the set of all bounded real sequences {u(`)} defined for ` ≥ `0 with

Supremum norm ‖u‖ = sup
l ≥ l0

|u(`)|. Set A = {u ∈ U : M4 ≤ u ≤ N4, ` ≥ `0}. It

is clear that A is a bounded, closed and convex subset of U.
Define a mapping T : A→ U as follows:

(Tu)(`) =



− 1

c(`+ τ)
− u(`+ τ)

c(`+ τ)
+
R(`+ τ)

c(`+ τ)

1

Γ(β + 1)

∞∑
ξ=`+τ

(`− ξ − 1− τ)(β)

× [p(ξ)u(ξ − σ1)− q(ξ)u(ξ − σ2)] +
1

c(`+ τ)

1

Γ(β + 1)

`+τ∑
ξ=`1

R(ξ)

×(`− ξ − 1− τ)(β) [p(ξ)u(ξ − σ1)− q(ξ)u(ξ − σ2)] for ` ≥ `1,

(Tu)(`1) for `0 ≤ ` ≤ `1.

Clearly Tu is continuous.
For every u ∈ U and ` ≥ `1 using (3.11) we get

(Tu)(`) ≥ 1

c2
+
M4

c2
− 1

c1

∞∑
ξ=`1

(`− ξ − 1− τ)(β)R(ξ) p(ξ)u(ξ − σ1),

≥ 1

c2
+
M4

c2
− 1

c1

∞∑
ξ=`1

α1 (`− ξ − 1− τ)(β)R(ξ) p(ξ) ≥M4.
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Furthermore, using (3.12) we have

(Tu)(`) ≤ 1

c1
+
N4

c1
+

1

c1

∞∑
ξ=`1

(`− ξ − 1− τ)(β)R(ξ) q(ξ) u(ξ − σ2),

≤ 1

c1
+
N4

c1
+

1

c1

∞∑
ξ=`1

α1(`− ξ − 1− τ)(β)R(ξ) q(ξ) ≤ N4.

Thus TA ⊂ A. To apply the Contraction Principle, we show that T is a contrac-
tion mapping on A. Now for u, v ∈ A and ` ≥ `1, we have

|(Tu)(`)− (Tv)(`)| ≤ 1

c1

[
1 +

L

Γ(β + 1)

∞∑
ξ=1

(`− ξ − 1− τ)(β)

R(ξ) [p(ξ) + q(ξ)]] ‖u− v‖ ≤ 1

c1

[
1 + L

c1 − 1

2L

]
‖u− v‖

|(Tu)(`)− (Tv)(`)| ≤c1 + 1

2c1
‖u− v‖ ≤ λ4 ‖u− v‖ .

Hence T is a contraction mapping on A, since λ4 =
1 + c1

2c1
< 1. By Lemma 2.1,

T has a unique fixed point which is a positive and bounded solution of equation
(1.1). This completes the proof. �

4. CONCLUDING REMARKS

The authors in this article established the existence of nonoscillatory solutions
of a nonlinear neutral delay difference equation of fractional order with the
aid of Banach’s Contraction Mapping Principle. These results are new in the
literature and opens new arena for the researchers to explore. In future, we
intend to extend the results further for the following equation

∆
[
r(`)∆β [u(`) +m(`)u(`− τ1 +m(`)u(`+ τ2)]

]
+ p(`)u(`− σ1)

− q(`)u(`− σ2) = h(`), ` ≥ `0.
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