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GENERALIZED NARAYANA SEQUENCES AND QUADRATIC SEQUENCES

R. SIVARAMAN

ABSTRACT. Among several amusing sequences that exist in mathematics, Fi-
bonacci sequence is the most common and famous sequence that is known to
everyone. An equally absorbing sequence was described by Indian mathemati-
cian Narayana Pandita. In this paper, we try to generalize Narayana sequence
using Quadratic sequences coefficients in its recurrence relations and try to de-
termine the limiting ratios of such sequences. In this sense, this paper explores
the interesting mathematical relationship between Generalized Narayana se-
quences and Quadratic sequences.

1. INTRODUCTION

Around 14th century CE, notable Indian mathematician Narayana Pandita in-
troduced a wonderful sequence using immortal cows resembling immortal rab-
bits of Fibonacci sequence. The behavior of Narayana sequence and the ratio of
its successive terms are well known. The generalizations of Narayana sequence
in various forms are dealt by several authors. In this paper, we shall consider
generalizations of Narayana sequence using Quadratic sequence as coefficients.
The main objective of this paper is to obtain interesting results regarding the
limiting ratios of such generalized Narayana sequences. First, we begin with
some definitions (for details see [1-10]).
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2. DEFINITION

Narayana Pandita described the Narayana sequence in such a way that the
number of cows present each year is equal to the number of cows in previous
year plus the number of cows present three years ago. We assume that no cow
die during this process. Using this convention, we form the following Recurrence
Relation describing Narayana Sequence

(2.1) Nn+1 = Nn +Nn−2;n ≥ 2, N0 = 0, N1 = 1, N2 = 1.

Here n may be considered as number of years. Then according to (2.1), the
number of cows in the year n+ 1 will be equal to number of cows in the year n
(previous year) plus the number of cows three years ago (since n+1−3 = n−2).
Hence, equation (2.1) describes the condition exactly as stated by Narayana
Pandita. Using (2.1), if we compute the other terms of the sequence we get:

(2.2) 0, 1, 1, 1, 2, 3, 4, 6, 9, 13, . . . .

The sequence in (2.2) is called “Narayana Sequence” named in the honor of its
proposer Narayana Pandita.

2.1. Limiting Ratio and Characteristic Equation. The ratio of successive terms
of a sequence is called its “Limiting Ratio”. In particular the ratio of the (n+1)th

term to nth term of a sequence as n → ∞ is defined as the Limiting Ratio of
that sequence. In this paper, we denote the limiting ratio by λ. A polynomial
equation whose roots are limiting ratios is called as “Characteristic Equation”.

It is well known that the limiting ratio of Narayana sequence given by the
numbers in (2.2) is a number given by λ = 1.46557. This number 1.46557 is
called “Supergolden Ratio” (see [1]).

2.2. Quadratic Sequence. The sequence defined by:

(2.3)
{
Ak2 +Bk + C

}∞
k=0

is called the Quadratic sequence because the kth term is described through a sec-
ond degree expression. The coefficients A,B,C are real numbers. For any Qua-
dratic sequence as defined in (2.3), the second forward differences will always
be constant. We will use this sequence as coefficients of generalized Narayana
sequences to explore further.
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3. GENERALIZING THROUGH NATURAL NUMBERS AND QUADRATIC SEQUENCES

We consider the generalization of Narayana sequence by considering coeffi-
cients which are kth terms of natural numbers and quadratic sequences. Let k
be a positive integer. We define the generalized Narayana sequence through the
recurrence relation

Nk,n+1 = kNk,n +
(
Ak2 +Bk + C

)
Nk,n−2; n ≥ 2,

Nk,0 = 0, Nk,1 = 1, Nk,2 = k,A+B + C = 1.
(3.1)

We notice that for k = 1, this will reduce to usual Narayana sequence defined
in (2.1). The coefficients of generalized Narayana sequence defined in (3.1) are
k and Ak2 +Bk + C which represent natural numbers and quadratic sequences
for each value of k = 1, 2, 3. . . .

If we assume that the limiting ratio of generalized Narayana sequence is λ
then by definition we have lim

(
Nk,n+1

Nk,n

)
= λ as n→∞.

Now for any integer r, we have the following equation:

lim

(
Nk,n+r

Nk,n

)
= lim

(
Nk,n+r

Nkn+ r − 1
× Nk,n+r−1

Nk,n+r−2
× Nk,n+r−2

Nk,n+r−3
×

· · · × Nk,n+1

Nk,n

)
λ× . . .× λ = λr.

(3.2)

Thus from (3.1), we get:

lim

(
Nk,n+1

Nk,n

)
= lim

(
kNk,n + (Ak2 +Bk + C)Nk,n−2

Nk,n

)
= lim

(
k +

(
Ak2 +Bk + C

) Nk,n−2

Nk,n

)
.

Now using (3.2), as n→∞ we get:

(3.3) λ = k +
Ak2 +Bk + C

λ2
.

This leads us to the characteristic equation:

(3.4) λ3 − kλ2 −
(
Ak2 +Bk + C

)
= 0.

If λ = O(k), then Ak2+Bk+C
λ2

→ A as k →∞. Thus if k is very large, then from
(3.3) we get λ = k + A. Hence, the limiting ratio of the generalized Narayana
sequence defined in (3.1) is:

(3.5) λ = k + A
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for large values of k. We notice that A is a real number which is coefficient of k2

in the quadratic sequence.

4. GENERALIZING THROUGH TWO QUADRATIC SEQUENCES

We consider the generalization of Narayana sequence by considering coeffi-
cients which are two quadratic sequences. Let k be a positive integer. We define
the generalized Narayana sequence through the recurrence relation:

(4.1)
Nk,n+1 = (Pk2 +Qk +R)Nk,n + (Ak2 +Bk + C)Nk,n−2;

n ≥ 2, Nk,0 = 0, Nk,1 = 1, Nk,2 = k

P +Q+R = 1, A+B + C = 1

We notice that for k = 1, this will reduce to usual Narayana sequence defined
in (2.1). The coefficients of generalized Narayana sequence defined in (4.1) are
Pk2 + Qk + R and Ak2 + Bk + C which represent two quadratic sequences for
each value of k = 1, 2, 3. . . .

If we now try to determine the limiting ratio, then from (4.1), we get

lim

(
Nk,n+1

Nk,n

)
= lim

(
(Pk2 +Qk +R)Nk,n + (Ak2 +Bk + C)Nk,n−2

Nk,n

)
= lim

((
Pk2 +Qk +R

)
+
(
Ak2 +Bk + C

) Nk,n−2

Nk,n

)
.

Using (3.2), as n→∞, we have:

(4.2) λ =
(
Pk2 +Qk +R

)
+
Ak2 +Bk + C

λ2
.

This leads to the characteristic equation:

(4.3) λ3 −
(
Pk2 +Qk +R

)
λ2 −

(
Ak2 +Bk + C

)
= 0

If λ = O(k), then Ak2+Bk+C
λ2

→ A as k → ∞ Thus if k is very large, then from
(4.2) we get λ = Pk2+Qk+R+A. Hence, the limiting ratio of the generalized
Narayana sequence defined in (4.1) is:

(4.4) λ = Pk2 +Qk +R + A

for large values of k.
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5. VERIFICATION

We now consider couple of illustrations to verify the results obtained in sec-
tions 3 and 4.

5.1. Corresponding to the characteristic equation of section 3 given by (3.4),
we consider k = 1000, A = 4, B = −2, C = −1. We notice k is large and
A + B + C = 1 satisfying our assumptions. Thus the characteristic equation
corresponding to (3.1), is given by:

(5.1) λ3 − 1000λ2 − 3997999 = 0.

First, using Descarte’s rule of signs, we find that there is only one positive real
root and two imaginary roots. Using Newton-Raphson method, we find that
the positive real root of equation (5.1) is λ = 1003.96647. Thus the limiting
ratio for this case is λ = 1003.96647. We notice that λ = 1003.96647 ≈ 1004 =

1000 + 4 = k +A as obtained in (3.5).Thus the limiting ratio value verifies with
our mathematical proof for this case.

5.2. Now corresponding to the characteristic equation of section 4 given by
(4.3), we consider: k = 1000, P = 1, Q = −1000, R = 1000, A = 3, B = −4, C =

2. We notice that P + Q + R = 1 and A + B + C = 1. Thus the coefficients of
our quadratic sequences satisfy our assumption in (4.1). Thus the characteristic
equation corresponding to (4.1) is:

(5.2) λ3 − 1000λ2 − 2996002 = 0.

Using Descarte’s rule of signs, we find that there is only one positive real
root and two imaginary roots. Using Newton-Raphson method, we find that the
positive real root of equation (5.2) is λ = 1002.97824. Thus the limiting ratio for
this case is λ = 1002.97824. We observe that Pk2 + Qk + R = 1000, A = 3.
Thus, λ = 1002.97824 ≈ 1003 = 1000 + 3 = (Pk2 +Qk +R) + A as obtained in
(4.4). Hence the limiting ratio value verifies with our mathematical proof for
this case.

CONCLUSION

By generalizing the usual Narayana sequence using quadratic sequences we
have obtained interesting results for their limiting ratios as in equations (3.5)
and (4.4) of sections 3 and 4 respectively. In particular, if we consider natural
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numbers and a quadratic sequence as coefficients then in section 3 we proved
that the limiting ratio is λ = k + A and if we consider two quadratic sequences
as coefficients as in section 4, we proved that the limiting ratio is λ = (Pk2 +

Qk + R) + A. We have verified these results through two suitable illustrations
presented in 5.1 and 5.2 respectively. We notice that these results are valid only
if k is very large. In the limiting case when k →∞. the results obtained in (3.5)
and (4.4) will be certainly true as derived in sections 3 and 4 of this paper.

Equations (3.4) and (4.3) provide with many choices of forming characteristic
equations by altering the coefficients of the quadratic sequences considered in
their recurrence relation. This gives us several limiting ratios accordingly. For
example, by choosing A = m−2

2
, B = 4−m

2
, C = 0 we get the quadratic sequence

representing figurate numbers of order m. The limiting ratio according to (3.5)
would be λ = k + m−2

2
and according to (4.4) would be λ = (Pk2 +Qk +R) +

m−2
2

whenever k → ∞. Likewise, we can modify our quadratic sequences to
represent several interesting quadratic sequences and obtain the limiting ratios
according to (3.5) and (4.4). But we have to remember that the limiting ratios
are true only in the limiting case as k → ∞, that is, k is practically a very large
number.
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