

Advances in Mathematics: Scientific Journal **9** (2020), no.7, 5251–5255 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.7.93

$\pi G^*\beta\text{-}\text{CONTINUOUS}$ function in topological spaces

S. SAVITHA¹ AND S. GOMATHI

ABSTRACT. The current study deals with the new class of functions in a topological space called π generalized g star β -continuous function (briefly $\pi g^*\beta$ - continuous function). Further we analysis the concepts of almost $\pi g^*\beta$ -continuous function and $\pi g^*\beta$ -irresolute function.

1. INTRODUCTION

The study of sets called the generalized closed set in topological spaces initiated by Levine [1] in 1970. The class of topological spaces and -closed sets are known as quasi normal spaces institute by Zaitsev [2]. M.E.Abd EI-Monsef [3] introduced Open sets and continuous mapping in 1983. Recently Tahiliani [4] introduced the concept of $\pi g\beta$ -closed sets in topological spaces $\pi g^*\beta$ -obtain a characterizations.

In this proposed system, we institute the concepts of $\pi g^*\beta$ -continuous function, $\pi g^*\beta$ -irresolute function, almost $\pi g^*\beta$ -continuous function and some of its characteristics are studied.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54E99.

Key words and phrases. $\pi g^*\beta$ -continuous function, $\pi g^*\beta$ -irresolute function, almost $\pi g^*\beta$ -continuous function.

2. MAIN RESULT

The notion (X_1, τ) (Y_1, σ) (Z_1, η) represents topological spaces (if necessary separation axioms are assumed). The closure and interior of K is denoted by cls(K) and inte(K) inany subset K of a space (X_1, τ) . Let us recollect the successive definitions which we shall require in sequel (X_1, τ) for each regular closed set V_1 of (Y_1, σ) .

Definition 2.1. A subset K of a space (X_1, τ) is said to $becls(K) \subseteq K$

- (1) A regular closed set [4] if K=cls(inte(K)).
- (2) A g-closed set [4] if $cls(K) \subseteq V$ whenever $K \subseteq V$ and V is open in (X_1, τ) .
- (3) $A\beta^*$ -closed set [3] if cls(inte(K)) $\subseteq V$ whenever $K \subseteq V$ and V is open in (X_1, τ) .
- (4) A $\pi g^*\beta$ -closed set [5] if inte(β -cls(K)) \subseteq V whenever K \subseteq V and V is π -open in (X_1, τ) .
- (5) A space (X_1, τ) is called a $\pi g^*\beta$ - $T_{1/2}$ space [5] if each $\pi g^*\beta$ -closed set is β^* -closed.

Definition 2.2. A mapping $h : (X_1, \tau) \to (Y_1, \sigma)$ is said to be :

- (1) continuous [4] if $h^{-1}(V_1)$ is open in (X_1, τ) for each open set V_1 of (Y_1, σ) .
- (2) irresolute [4] if h⁻¹(V₁) is semi-open in (X₁, τ) whenever V₁ is semi-open in (Y₁, σ).
- (3) $\pi g\beta$ -continuous [4] if $h^{-1}(V_1)$ is $\pi g\beta$ -open in (X_1, τ) for each open set V_1 of (Y_1, σ) .
- (4) $\pi g\beta$ -irresolute [4] if $h^{-1}(V_1)$ is $\pi g\beta$ -open in (X_1, τ) for each -open set V_1 of (Y_1, σ) .
- (5) β^* -continuous if $h^{-1}(V_1)$ is β^* -open in (X_1, τ) for each open set V_1 of (Y_1, σ) .
- (6) β^* -irresolute if $h^{-1}(V_1)$ is β^* -open in (X_1, τ) for each β^* -open set V_1 of (Y_1, σ) .
- (7) almost continuous if $h^{-1}(V_1)$ is open in (X_1, τ) for each regular open set V_1 of (Y_1, σ) .
- (8) almostβ*-continuous if h⁻¹(V₁)is β -open in (X₁, τ) for each regular open set V₁ of (Y₁, σ).

Proposition 2.1. Each $\pi g^*\beta$ -irresolute function is $\pi g^*\beta$ -continuous but not conversely.

Proof. Consider: $(X_1, \tau) \to (Y_1, \sigma)$ be $\pi g^* \beta$ -irresolute function. Let V_1 be closed set in (Y_1, σ) . Then V_1 is $\pi g^* \beta$ -closed in (Y_1, σ) . We know that h is $\pi g^* \beta$ - irresolute function then $h^{-1}(V_1)$ is $\pi g^* \beta$ -closed in (X_1, τ) . Hence h is $\pi g^* \beta$ continuous.

Example 1. Consider $X_1 = Y_1 = \{p_1, q_1, r_1\}, \tau = \{\phi, X_1, \{p_1\}, \{q_1\}, \{p_1, q_1\}\}, \sigma = \{\phi, X_1, \{p_1\}\}$. The identity maph: $(X_1, \tau) \to (Y_1, \sigma)$ is $\pi g^*\beta$ -continuous but not $\pi g^*\beta$ -irresolute.

Remark 2.1. Composition of two $\pi g^*\beta$ -continuous functions need not be $\pi g^*\beta$ -continuous. It can be observable from the succeeding example.

Example 2. Let $X_1 = Y_1 = \{p_1, q_1, r_1\}, \tau = \{\phi, X_1, \{p_1\}, \{q_1\}, \{p_1, q_1\}\}, \sigma = \{\phi, X_1, \{q_1, r_1\}\}, \zeta = \{\phi, X_1, \{r_1\}\}.$ Define $h:(X_1, \tau) \to (Y_1, \sigma)$ be the identity map and $g:(Y_1, \sigma) \to (Z_1, \zeta)$ as identity mapping. Both h and g are $\pi g^*\beta$ -continuous but $(gh)^{-1}\{p_1, q_1\} = h^{-1}(g^{-1}\{p_1, q_1\}) = \{p_1, q_1\}$ is not $\pi g^*\beta$ -closed in X_1 .

Theorem 2.1. Let $h:(X_1, \tau) \to (Y_1, \sigma)$ be a function then,

- (1) If h is $\pi g^*\beta$ -irresolute and (X_1, τ) is $\pi g^*\beta$ - $T_{1/2}$ space, then h is β^* irresolute.
- (2) If h is $\pi g^*\beta$ -continuous and (X_1, τ) is $\pi g^*\beta$ - $T_{1/2}$ space, then h is β^* -continuous.
- *Proof.* (1) Let V_1 be β^* -closed in (Y_1, σ) then V_1 is $\pi g^*\beta$ -closed in (Y_1, σ) . Since h is $\pi g^*\beta$ - irresolute,
 - (2) Let V_1 be a closed set in (Y_1, σ) . We know that h is $\pi g^*\beta$ continuous, $h^{-1}(V_1)$ is $\pi g^*\beta$ -closed in (X_1, τ) . Since (X_1, τ) is $\pi g^*\beta$ - $T_{1/2}$ space, $h^{-1}(V_1)$ is β^* -closed in (X_1, τ) . Hence h is β^* -continuous.

Theorem 2.2. Let $h:(X_1, \tau) \to (Y_1, \sigma)$ and $g:(Y_1, \sigma) \to (Z_1, \zeta)$. Then

- (1) $g \circ h$ is $\pi g^*\beta$ continuous, if g is continuous and h is $\pi g^*\beta$ continuous.
- (2) $g \circ h$ is $\pi g^*\beta$ irresolute, if g is $\pi g^*\beta$ -irresolute and h is $\pi g^*\beta$ irresolute.
- (3) $g \circ h$ is $\pi g^*\beta$ continuous, if g is $\pi g^*\beta$ continuous and h is $\pi g^*\beta$ -irresolute.

Theorem 2.3. Each $\pi g^*\beta$ -continuous function is almost $\pi g^*\beta$ -continuous.

Proof. Let $h:(X_1, \tau) \to (Y_1, \sigma)$ be $\pi g^*\beta$ -continuous function. Let V_1 be a regular closed set $in(Y_1, \sigma)$. Then V_1 is closed in (Y_1, σ) . We know that hs is

 $\pi g^*\beta$ -continuous function and $h^{-1}(V_1)$ is $\pi g\beta^*$ -closed in (X_1, τ) . Hence h is almost $\pi g\beta^*$ -continuous.

Theorem 2.4. Each almost β^* -continuous function is almost $\pi g^*\beta$ -continuous.

Proof. Let $h:(X_1, \tau) \to (Y_1, \sigma)$ be $almost\beta^*$ -continuous function and let V_1 be regular closed set in (Y_1, σ) . Then $h^{-1}(V_1)$ is β^* -closed in (X_1, τ) , we know that $h^{-1}(V_1)$ is $\pi g^*\beta$ -closed in (X_1, τ) . Therefore, is almost $\pi g^*\beta$ -continuous. \Box

Theorem 2.5. Let (X_1, τ) be a $\pi g^*\beta$ $-T_{1/2}$ space. Then $h:(X_1, \tau) \to (Y_1, \sigma)$ is almost $\pi g^*\beta$ -continuous iffh is almost β^* -continuous.

Proof. Suppose $h:(X_1, \tau) \to (Y_1, \sigma)$ is almost $\pi g^*\beta$ -continuous. Consider A be a regular closed subset of (Y_1, σ) . Then $h^{-1}(A)$ is $h:(X_1, \tau) \to (Y_1, \sigma)$ is $\pi g^*\beta$ -closed in (X_1, τ) . We know that (X_1, τ) is $\pi g^*\beta$ - $T_{1/2}$ space, $h^{-1}(A)$ is β^* -closed in (X_1, τ) . Therefore h is almost β^* -continuous. Conversely,

Suppose $h : (X_1, \tau) \to (Y_1, \sigma)$ is almost $\pi g^*\beta$ -continuous and A be a regular closed subset of (Y_1, σ) . Then $h^{-1}(A)$ is β -closed in (X_1, τ) . We know that each β^* -closed is $\pi g^*\beta$ -closed, $h^{-1}(A)$ is $\pi g^*\beta$ -closed. Therefore h is almost $\pi g^*\beta$ -continuous.

REFERENCES

- N. LEVINE: Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2) (1970), 89–96.
- [2] V. ZAITSAV: On certain classes of topological spaces and their bicompactifications, Pokl. AkadNauk SSSR, **178** (1978), 778–779.
- [3] M. E. ABD EL-MONSEF, S. N. EL-DEEB, R. A. MAHMOUD: β-open sets and βcontinuous mapping, Bulletin of the faculty of science mathematics Assiut University, 12 (1983), 77–90.
- [4] S. TAHILIANI: On $\pi g\beta$ -closed sets in topological spaces, Note di mathematica, **30**(1) (2010), 49–55.
- [5] P. G. PALANIMANI, R. PARIMELAZHAN: β^* -closed set in topological spaces, ISOR Journal of mathematics, **5**(1) (2013), 47–50.

DEPARTMENT OF SCIENCE AND HUMANITIES BUILDERS ENGINEERING COLLEGE KANGAYAM, 638108, INDIA *E-mail address*: ss.maths@builders.edu.in

DEPARTMENT OF SCIENCE AND HUMANITIES KARPAGAM COLLEGE OF ENGINEERING COIMBATORE 641 032, INDIA *E-mail address*: gomathi.s@kce.ac.in