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πG∗β-CONTINUOUS FUNCTION IN TOPOLOGICAL SPACES

S. SAVITHA1 AND S. GOMATHI

ABSTRACT. The current study deals with the new class of functions in a topo-
logical space called π generalized g star β -continuous function (briefly πg∗β -
continuous function). Further we analysis the concepts of almost πg∗β -continuous
function and πg∗β -irresolute function.

1. INTRODUCTION

The study of sets called the generalized closed set in topological spaces initi-
ated by Levine [1] in 1970. The class of topological spacesand -closed sets are
known as quasi normal spaces institute by Zaitsev [2]. M.E.Abd EI-Monsef [3]
introduced Open sets and continuous mapping in 1983. Recently Tahiliani [4]
introduced the concept of πgβ -closed sets in topological spaces πg∗β -obtain a
characterizations.

In this proposed system, we institute the concepts of πg∗β -continuous func-
tion, πg∗β -irresolute function, almost πg∗β -continuous function and some of
its characteristics are studied.
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2. MAIN RESULT

The notion(X1, τ) (Y1, σ) (Z1, η) represents topological spaces (if necessary
separation axioms are assumed).The closure and interior of K is denoted by
cls(K) and inte(K) inany subset K of a space (X1, τ). Let us recollect the succes-
sive definitions which we shall require in sequel (X1, τ) for each regular closed
set V1of (Y1, σ).

Definition 2.1. A subset K of a space (X1, τ) is said to becls(K) ⊆ K

(1) A regular closed set [4] if K=cls(inte(K)).
(2) A g-closed set [4] if cls(K) ⊆ V whenever K ⊆ V and V is open in (X1, τ).
(3) Aβ∗-closed set [3] if cls(inte(K)) ⊆V whenever K ⊆ V and V is open in

(X1, τ).
(4) A πg∗β -closed set [5] if inte(β -cls(K)) ⊆ V whenever K ⊆ V and V is π

-open in (X1, τ).
(5) A space (X1, τ) is called a πg∗β -T1/2 space [5] if eachπg∗β -closed set is

β∗-closed.

Definition 2.2. A mapping h : (X1, τ)→ (Y1, σ) is said to be :

(1) continuous [4] if h−1(V1) is open in (X1, τ) for eachopen set V1 of (Y1, σ).
(2) irresolute [4] if h−1(V1) is semi-open in (X1, τ) whenever V1 is semi-open

in (Y1, σ).
(3) πgβ-continuous [4] if h−1(V1) is πgβ-open in (X1, τ) for each open set V1

of (Y1, σ).
(4) πgβ-irresolute [4] if h−1(V1) is πgβ-open in (X1, τ)for each -open set V1 of

(Y1, σ).
(5) β∗-continuous if h−1(V1) is β∗-open in (X1, τ) for each open set V1 of

(Y1, σ).
(6) β∗-irresolute if h−1(V1) is β∗-open in (X1, τ) for each β∗-open set V1 of

(Y1, σ).
(7) almost continuous if h−1(V1)is open in (X1, τ) for each regular open set

V1of (Y1, σ).
(8) almostβ∗-continuous if h−1(V1)is β -open in (X1, τ) for each regular open

set V1 of (Y1, σ).

Proposition 2.1. Eachπg∗β -irresolute function is πg∗β -continuous but not con-
versely.
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Proof. Consider:(X1, τ) → (Y1, σ) be πg∗β -irresolute function. Let V1 be closed
set in (Y1, σ). Then V1 is πg∗β -closed in (Y1, σ).We know that h is πg∗β - ir-
resolute function then h−1(V1) is πg∗β -closed in (X1, τ). Hence h is πg∗β -
continuous. �

Example 1. Consider X1 = Y1 = {p1, q1, r1}, τ = {φ,X1, {p1}, {q1}, {p1, q1}},
σ = {φ,X1, {p1}}. The identity maph:(X1, τ) → (Y1, σ) is πg∗β -continuous but
not πg∗β -irresolute.

Remark 2.1. Composition of two πg∗β -continuous functions need not be πg∗β
-continuous. It can be observable from the succeeding example.

Example 2. Let X1 = Y1 = {p1, q1, r1}, τ = {φ,X1, {p1}, {q1}, {p1, q1}}, σ =

{φ,X1, {q1, r1}}, ζ = {φ,X1, {r1}}. Define h:(X1, τ)→ (Y1, σ) be the identity map
and g:(Y1, σ)→ (Z1, ζ) as identity mapping.Both h and g are πg∗β -continuous but
(gh)−1{p1, q1} = h−1(g−1{p1, q1}) = {p1, q1} is not πg∗β -closed in X1.

Theorem 2.1. Let h:(X1, τ)→ (Y1, σ) be a function then,

(1) If h is πg∗β -irresolute and (X1, τ)is πg∗β -T1/2 space, then h is β∗ -
irresolute.

(2) If h is πg∗β -continuous and (X1, τ) is πg∗β -T1/2 space, then h is β∗-
continuous.

Proof. (1) Let V1 be β∗-closed in (Y1, σ) then V1 is πg∗β -closed in (Y1, σ).
Since h is πg∗β - irresolute,

(2) Let V1 be a closed set in (Y1, σ). We know that h is πg∗β - continu-
ous, h−1(V1) is πg∗β -closed in (X1, τ). Since(X1, τ) is πg∗β -T1/2 space,
h−1(V1) is β∗-closed in (X1, τ).Hence h is β∗-continuous.

�

Theorem 2.2. Let h:(X1, τ)→ (Y1, σ)and g:(Y1, σ)→ (Z1, ζ). Then

(1) g ◦ h is πg∗β - continuous, if g is continuous and h is πg∗β - continuous.
(2) g ◦ h is πg∗β - irresolute, if g is πg∗β -irresolute and h is πg∗β - irresolute.
(3) g◦h is πg∗β - continuous, if g is πg∗β - continuous and h is πg∗β -irresolute.

Theorem 2.3. Each πg∗β -continuous function is almostπg∗β -continuous.

Proof. Let h:(X1, τ) → (Y1, σ) be πg∗β -continuous function. Let V1 be a reg-
ular closed set in(Y1, σ). Then V1 is closed in (Y1, σ). We know that hs is
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πg∗β -continuous function and h−1(V1) is πgβ∗-closed in (X1, τ). Hence h is
almostπgβ∗-continuous. �

Theorem 2.4. Each almostβ∗-continuous function is almostπg∗β -continuous.

Proof. Let h:(X1, τ) → (Y1, σ)be almostβ∗-continuous function and let V1 be
regular closed set in (Y1, σ). Then h−1(V1) is β∗-closed in (X1, τ), we know
thath−1(V1) is πg∗β -closed in (X1, τ).Thereforeh is almost πg∗β -continuous. �

Theorem 2.5. Let (X1, τ) be a πg∗β -T1/2 space. Then h:(X1, τ) → (Y1, σ) is
almost πg∗β -continuous iffh is almost β∗-continuous.

Proof. Suppose h:(X1, τ) → (Y1, σ) is almost πg∗β -continuous. Consider A be
a regular closed subset of (Y1, σ). Then h−1(A) is h:(X1, τ) → (Y1, σ)is πg∗β
-closed in(X1, τ). We know that (X1, τ) is πg∗β -T1/2 space, h−1(A) is β∗-closed
in (X1, τ). Therefore h is almostβ∗-continuous. Conversely,
Suppose h : (X1, τ) → (Y1, σ) is almost πg∗β -continuous and A be a regular
closed subset of (Y1, σ). Then h−1(A) is β -closed in (X1, τ). We know that each
β∗-closed is πg∗β -closed, h−1(A) is πg∗β -closed. Therefore h is almost πg∗β
-continuous. �
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