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CARTESIAN PRODUCT OF AUTOMATA

MRIDUL DUTTA1, SANJOY KALITA, AND HELEN K. SAIKIA

ABSTRACT. Automaton is a system that spontaneously gives output from in-
put. Here input may be energy, information, materials etc. The system works
without intervention of man. Simply automaton (plural: automata or automa-
tions) is a self–operating machine. This article discusses and analyzes two au-
tomata to construct a product machine from two given machines. The cross-
product operation has been used as a common framework for the design and
study of new interconnection networks with various properties. Here we de-
fined the Cartesian product of two automata Σ1 = (Q1, A1, B1, F1, G1) and
Σ2 = (Q2, A2, B2, F2, G2) as another system Σ = Σ1 × Σ2 = (Q,A,B, F,G)

where Q = Q1 × Q2, A = A1 ∪ A2, B = B1 ∪ B2 and F and G are transi-
tion function and output functions. A Separable system is a generalization of
automata. With different examples we have seen that the system Σ is also an
automata. We also observed that if Σ1 and Σ2 are two separable systems then
Σ too a separable system.

1. INTRODUCTION

In automata theory different types of automata are discussed. Automata is a
five tuples consisting of a set of states, inputs, outputs, one transition function
and one output functions in between these three sets. A Semi automaton and
automaton is defined by Ginzburg(1968) firstly. Every cyclic automaton is iso-
morphic in the classical sense to an automaton whose state-space is a quotient
of its semi group[10]. W. Dorfler (1978)[2] has also studies on the Cartesian
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Product of Automata. A good number of researchers Rabin, Scott, Gecseg, Peak,
Fleck, Weeg, Bravel, Yukio etc. (approx. 1972-1980) have done considerable
work along this line[9]. It is suggested by Muir and Warner (1981), Warner
(1981) that there are advantages in using more general morphisms between au-
tomata, namely pseudomorphisms[10]. Most famous near-ringer G. F. Pliz, W.
M. I. Holecombe, J. L. Casti, G. Hofer, R. Lidl , K.C. Chowdhury et al and many
others have done considerable work (approx.1970-2000), on various aspects
of Non-linear dynamical systems, near-rings with chain conditions, automata,
reachability, feedback system etc[1]. For every semi automata where state set
is a group, G.F. Pilz, T.J. Laffey,M.R.I.A. has associate its works on syntactic
near-rins [6]. Authors Corsini, Chvalina, Leoreanu , Masami Ifo, Takahiro Ito,
Mitsuhiko Fujio, S.C. Hsieh etc. all have done their works on different alge-
braic structure of automata in between (1993-2012)[3]. Most recently, J Baskar
Babujeo, J Julie, N. Subashini, K.. Thiagaranjans , M.Novak, S. Krehlik, D.
Stanek , S. Krehlik etc.have done their work on Automata resulting from graph
operations, n-ary Cartesian composition and cartesian product of automata[4,
5, 6, 7].

The beginning of it saw the first proper automata consideration. Since then
the theory of automata has developed much and at present a sophisticated the-
ory with numbers applications in various area, namely Biology, Sociology, Eco-
nomic, Engineering, Cryptography, Mathematics etc. In recent years its connec-
tion with computer science, near-ring, dynamical systems, rooted tree, coding
theory etc.

2. PRELIMINARIES

A Semi automata[4, 6] is a triple Σ = (Q,A, F ) whereQ and A are set of states
and set of inputs respectively. For any semi automata Σ = (Q,A, F ) we obtain
a collection of mappings Fa : Q → Q, one for each a ∈ A, which are given by
Fa(q) = F (q, a). If the input a1 is followed by the input a2, the semi automaton
moves from the state qinQ first into Fa1(q) and then into Fa2(Fa1(q)). If we
extend (as usual) A to the free word monoid A∗ over A (consisting of all finite
sequences of elements of A, including the empty sequence Λ), we therefore
obtain Fa1a2 = Fa2Fa1.

An automata[6, 8] is a system of is a quintuple Σ = (Q,A,B, F,G), where Q
is a set of states,A is a set of inputs, B is a set of outputs, F : Q × A → Q and
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G : Q × A → B are functions usually known as state transition function and
output function respectively.

A system Σ (as defined above) is called separable[8] if Q,A,B are groups
(written additively, but not necessarily abelian) and if there are maps α : Q →
Q, γ : Q → B and homomorphisms β : A → Q and δ : A → B such that
F (q, a) = α(q) + β(a), G(q, a) = γ(q) + δ(a), ∀q ∈ Q and a ∈ A. We then denote
Σ by (Q,A,B, α, β, γ, δ) or simply by (α, β, γ, δ). Σ is called zero-symmetric if
α(0) = γ(0) = 0.

If Σ1 = (Q1, A1, F1) and Σ2 = (Q2, A2, F2) are two semi automata with Q1 =

{p1, p2, p3, ..., pm} and Q2 = {q1, q2, q3, ..., qn} then the Cartesian product of Σ1

and Σ2 is Σ = Σ1 × Σ2 where Σ = (Q,A, F ) with Q = Q1 × Q2, |Q| = mn,
A = A1 ∪A2, F : (Q1 ×Q2)×A→ Q1 ×Q2 is defined by F ((pi, qj), a) = (pk, ql),
1 ≤ i ≤ m, 1 ≤ j ≤ n iff (i) pi = pk and F2(qj, a) = ql for qj, ql ∈ Q2 and a ∈ A2

or (ii) qj = ql and F1(pi, a) = pk for pi, pk ∈ Q1 and a ∈ A1.

3. CARTESIAN PRODUCT OF AUTOMATA

In this section we defined Cartesian product of two automata. We also gave
some examples in support of this definition and found that the product of two
automata is again an automata. Moreover we observed that the product au-
tomata carries some behaviour of the parental automata.

We defined the Cartesian product of two automata as follows:
If Σ1 = (Q1, A1, B1, F1, G1) and Σ2 = (Q2, A2, B2, F2, G2) are two automata

with Q1 = {p1, p2, p3, ..., pm} and Q2 = {q1, q2, q3, ..., qn} then the Cartesian prod-
uct of Σ1 and Σ2 denoted as Σ = Σ1 × Σ2 is given by Σ = (Q,A,B, F,G) where
Q = Q1×Q2, A = A1∪A2, B = B1∪B2. Transition function F : (Q1×Q2)×A→
Q1 ×Q2 is defined by F ((pi, qj), a) = (pr, qs), iff any of the following conditions
hold

F1(pi, a) = pr and qj = qs a ∈ A1 or pi = pr and F2(qj, a) = qs if a ∈ A2.

Output function G : (Q1 × Q2) × A → B is defined by G((pi, qj), a) = bt, iff
any of the following conditions hold

G((pi, qj), a) =


G1(pi, a) if a ∈ A1 and F1(pi, a) = pr

or

G2(qj, a) if a ∈ A2 and F2(qj, a) = qs
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Example 1. Let Σ1 = (Q1, A1, B1, F1, G1) with Q1 = {p1, p2}, A1 = {0, 1}, B1 =

{0, 1}, transiton function F1 : Q1 ×A1 → Q1 and output function G1 : Q1 ×A1 →
B1 are defined in Table 1

TABLE 1. Transition table and Output table of Σ1

F1 0 1

p1 p1 p2

p2 p1 p2

G1 0 1

p1 0 0
p2 0 1

And the state diagram of Σ1 is given by Figure 1

FIGURE 1. State diagram of Σ1

Again let Σ2 = (Q2, A2, B2, F2, G2) with Q2 = {q1, q2, q3}, A2 = {0, 1}, B2 =

{0, 1}, transition function F2 : Q2×A2 → Q2 and output function G2 : Q2×A2 →
B2 are defined by Table 2

TABLE 2. Transition table and Output table of Σ2

F2 0 1

q1 q2 q3

q2 q2 q3

q3 q2 q3

G2 0 1

q1 0 0
q2 1 0
q3 0 1

And the state diagram of Σ2 is given by Figure 2

FIGURE 2. State diagram of Σ2
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Then Σ = Σ1 × Σ2 where Σ = (Q,A,B, F,G) with Q = Q1 ×Q2 = {(p1, q1),
(p1, q2), (p1, q3), (p2, q1), (p2, q2), (p2, q3)}, A = A1 ∪ A2 = {0, 1}, B = B1 ∪ B2 =

{0, 1} and transition function and output function F : Q×A→ Q andG : Q×A→
B are given by Table 3

TABLE 3. Transition table and Output table of Σ

F 0 1

(p1, q1) (p1, q1), (p1, q2) (p2, q1), (p1, q3)

(p1, q2) (p1, q2) (p2, q2), (p1, q3)

(p1, q3) (p1, q3), (p1, q2) (p2, q3), (p1, q3)

(p2, q1) (p1, q1), (p2, q2) (p2, q1), (p2, q3)

(p2, q2) (p1, q2), (p2, q2) (p2, q2), (p2, q3)

(p2, q3) (p2, q3), (p2, q2) (p2, q3)

G 0 1

(p1, q1) 0 0
(p1, q2) 0, 1 0
(p1, q3) 0 0,1
(p2, q1) 0 1, 0
(p2, q2) 0, 1 1, 0
(p2, q3) 0 1

The state diagram of Σ is given by Figure 3

FIGURE 3. State diagram of Σ

Example 2. Let Σ1 = (Q1, A1, B1, F1, G1) is a automata with Q1 = (Z3,+), A1 =

(Z2,+), B1 = (Z2,+) the transition function F1 : Q1×A1 → Q1 i.e. F1 : Z3×Z2 →
Z3 defined by F1(p1, a1) = p1 + a1 and output function G1 : Q1 × A1 → B1 i.e.
G1 : Z3 × Z2 → Z2 defined by G1(p1, a1) = p1a1.

The transition functin and output function are given in Table 4.
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TABLE 4. Transition table and Output table of Σ1

F1 0 1

0 0 1
1 1 2
2 2 0

G1 0 1

0 0 0
1 0 1
2 0 0

FIGURE 4. State diagram of Σ1

The state diagram of Σ1 is given by Figure 4.
Again let Σ2 = (Q2, A2, B2, F2, G2) is an automata with Q2 = (Z2,+), A2 =

(Z3,+), B2 = (Z3,+), transition function F2 : Q2×A2 → Q2 i.e. F2 : Z2×Z3 → Z2

defined by F2(q1, a2) = q1 + a2 and output function G2 : Q2 × A2 → B2 i.e.
G2 : Z2 × Z3 → Z2 defined by G2(q1, a2) = q1a2.

The transition functin and output function are given in Table 5.

TABLE 5. Transition table and Output table of Σ2

F2 0 1 2

0 0 1 0
1 1 0 1

G2 0 1 2

0 0 0 0
1 0 1 2

The state diagram of Σ2 is given by Figure 5

FIGURE 5. State diagram of Σ2

Then Σ = Σ1×Σ2 where Σ = (Q,A,B, F,G) with Q = Q1×Q2 = {(0, 0), (0, 1),

(1, 0), (1, 1), (2, 0), (2, 1)}, A = A1 ∪ A2 = {0, 1, 2}, B = B1 ∪ B2 = {0, 1, 2}, the
transition function F : Q× A → Q i.e F : (Z3 × Z2)× Z3 → Z3 × Z2 and output
function G : Q× A→ B i.e G : (Z3 × Z2)× Z3 → Z3 will be given.
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The transition functin and output function are given in Table 6

TABLE 6. Transition table and Output table of Σ

F 0 1 2

(0, 0) (0, 0) (1,0),(0,1) (0, 0)
(0, 1) (0, 1) (1,1),(0,0) (0, 1)
(1, 0) (1, 0) (2,0),(1,1) (1, 0)
(1, 1) (1, 1) (2,1),(1,0) (1, 1)
(2, 0) (2, 0) (0,0),(2,1) (2, 0)
(2, 1) (2, 1) (0,1),(2,0) (2, 1)

G 0 1 2

(0, 0) 0 0 0
(0, 1) 0 0,1 2
(1, 0) 0 1,0 0
(1, 1) 0 1 2
(2, 0) 0 0 0
(2, 1) 0 0,1 2

And the state diagram of Σ is given by Figure 6

FIGURE 6. State diagram of Σ

Example 3. We consider following two automata Σ1 = (Q1, A1, B1, F1, G1) =

(R,R,R, F1, G1) and Σ2 = (Q2, A2, B2, F2, G2) = (R,Z,Z, F2, G2) where (R,+)

and (Z,+) are groups. The functions F1 : R × R → R and G1 : R × R → R are
defined by

F1(p1, a1) = p21 + sinp1 + 3a1, ∀p1, a1 ∈ R
G1(p1, a1) = ep1 − 1 + πa1, ∀ p1, a1 ∈ R

and F2 : R× Z→ R and G2 : R× Z→ Z are defined by

F2(q1, a2) = q31 + 3a2,∀q1 ∈ R, a2 ∈ Z

G2(q1, a2) = [q1] + a2,∀q1 ∈ R, a2 ∈ Z
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Then their product will be given by Σ = Σ1 × Σ2 = (Q,A,B, F,G) = (R ×
R,R,R, F,G) where F : (R× R)× R→ R× R defined by

F ((pi, qj), a) = (p2i + sinpi + 3a, qj) if a ∈ R or (pi, q
3
j + 3a), a ∈ Z

and G : (R× R)× R→ R is defined by

G((pi, qj), a) =


epi − 1 + πa if a ∈ R and F1(pi, a) = pr

or

[qj] + a if a ∈ Z and F2(qj, a) = qs

Σ = Σ1 × Σ2 = (Q,A,B, F,G) also forms an automata.

Example 4. We consider the automata Σ1 = (Z2,Z,Z3, F1, G1) where (Z2,+),
(Z3,+) and (Z,+) are groups and F1 : Z2 × Z → Z2 and G1 : Z2 × Z → Z3 are
defined by

F1(p1, a1) = 1 +

{
[0] if a1 is even

[1] if a1 is odd
, p1 ∈ Z2, a1 ∈ Z

G1(p1, a1) = 2 + a1(mod3) ∀ p1 ∈ Z2, a1 ∈ Z.

Let us consider another automata Σ2 = (C,C,C, F2, G2) where (C,+) is a group
and F2 : C× C→ C and G2 : C× C→ C are defined by

F2(q1, a2) = q1 + 1 + a2 ∀ q1, a2 ∈ C

G2(q1, a2) = q21 + 3a2, ∀ q1, a2 ∈ C.

Then their product Σ = Σ1 × Σ2 = (Q,A,B, F,G) where Q = Z2 × C, A =

Z ∪ C = C, and B = Z3 ∪ C = C, the functions F : (Z2 × C) × C → Z2 × C and
G : (Z2 × C)× C→ C are defined by

F ((pi, qj), a) =


(

1 +

{
[0] if a is even
[1] if a is odd

, qj

)
if a ∈ Z2

or

(pi, q1 + 1 + a)) if a ∈ C

G((pi, qj), a) =


2 + a(mod 3) if a ∈ Z2 and F1(pi, a) = pr

or
q2j + 3a if a ∈ C and F2(qj, a) = qs

,

for some pr ∈ Z2 and qs ∈ C
Therefore Σ = Σ1 × Σ2 = (Q,A,B, F,G) forms again an automata.
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4. OBSERVATIONS

From above examples it is clear that the definition of Cartesian product given
in this paper is well defined. The definition also preserve various properties of
the given automata in their product automata. As we have seen in examples 3
and example 4 that the given automata are separable and that property is also
displayed by their product automata.

5. FUTURE SCOPE

We observed that the product of automata is separable if the given automata
are separable. We also know that with a separable automata we can define an
algebraic structure[8] by defining new operations on it, so we can surely extend
our study of automata linking it to algebra for more fruitful outcomes.

6. CONCLUSION

In our study we used the usual notation of automata and defined the product
automata with respect to both transition function and output function. Many
author have defined product automata earlier but our approach is little different
from those. This approach surely give us a way to construct product machine as
well as provides opportunity to study then in terms of graph theory and algebra.
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