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IMPACT OF SUCTION OR BLOWING ON ELASTICO-VISCOUS
HYDROMAGNETIC FLUID FLOW PAST A STRETCHING PERMEABLE

SHEET

KAMAL DEBNATH1, SANKAR SINGHA, AND BIMALENDU KALITA

ABSTRACT. The analytical study using Homotopy perturbation technique has
been initiated for two-dimensional steady elastico-viscous hydromagnetic fluid
flow past a stretching permeable sheet. The elastico-viscous property in the
fluid exhibited by Walters Liquid (Model B′). The stretching permeable sheet
is exposed to suction or blowing. Similarity solutions are obtained by care-
ful inspection to convert the governing equations of fluid motion into self-
similar solvable ordinary differential equations. The velocity expression and
shear stress at the stretching permeable sheet have been retrieved and numeri-
cally evaluated for different values of elastico-viscous, magnetic and suction or
blowing parameters. The velocity distribution and skin friction expression are
plotted to study the effects of involved flow feature parameters.

1. INTRODUCTION

The stretching sheet problem in fluid dynamics find its place in industry be-
cause of it’s numerous important applications. This type of problem often no-
ticed in industry in manufacturing unit, such as rolling of artificial fibres, extrac-
tion of polymer sheet, glass-fibre production, crystal growing, paper production,
crystal growing and so on.
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Sakiadis [1] investigated the flow of boundary layer maintaing constant ve-
locity past a moving rigid surface of it’s own plane. The viscous boundary layer
fluid flow past a linearly stretching sheet taking similarity transformation exam-
ined by Crane [2] analytically. Gupta et al. [3] has extended the heat transition
and mass transport analysis of Crane’s problem with suction or blowing effect.
Parlov [4] presented the hydromagnetic viscous fluid past a plane deformed sur-
face. Chakrabarti et al. [5] investigated the magnetohydrodynamic Newtonian
fluid past a streatching sheet taking uniform temperature.

Crane’s preliminary study further extended by research scientists like Vajrav-
elu and Rollins [6], Chamkha [7], Zhang and Wang [8], Khan and Pop [9],
Mahmoud [10], Hayat et al. [11], Chauhan and Olkha [12], Mahapatra et al.
[13] and Ishak et al. [14] taking fluids of different classes with different physical
situations. The above mentioned works are noteworthy because in each paper
undeniable important properties of boundary layer and the heat transition be-
cause of motion of the sheet are explained. He [15-18] laid the mathematical
foundation of HPM. His work inspired many researchers at later stage to solve
coupled nonlinear differential equations involved in fluid dynamics problems
with this method.

The present study aims to examine the boundary layer electrically conducting
hydromagnetic steady elastico-viscous fluid flow along a stretching permeable
sheet using Homotopy Perturbation method. Walters liquid (Model B′) [19-20]
exhibits the elastico-viscous property in the fluid. To study the impact of elastico-
viscous parameter, magnetics parameter, suction and blowing parameters in the
flow field, the analytically computed results of velocity expression and shear
stress are plotted to bring out physical insight of the problem.

2. MATHEMATICAL FORMULATION

The steady electrically conducting hydromagnetic elastico-viscous boundary
layer fluid flow along a stretching permeable sheet is considered. Using usual
boundary layer and MHD approximation, the fluid motion governed by:
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where u and v denote the components of velocity along x and y directions, ν = µ
ρ

is the kinematic fluid viscosity, µ is the coefficient of fluid viscosity, ρ is the fluid
density, κ0 is the elastic-viscous parameter, ρ represents constant electrical fluid
conductivity, B1 is the magnetic parameter. The last term of equation (2.1) is
the contribution of electromagnetic force termed as Lorentz force under MHD
approximation.

FIGURE 1. Geometrical model of flow problem

The approximate boundary conditions are:

u = Uw = cx, v = vw at y = 0; u = 0 as y →∞,(2.2)

where Uw is the stretching velocity, c is the stretching constant with c > 0. Here
vw is a specified distribution of suction (vw < 0) or, blowing (vw > 0). Similarity
solution of the above system of equations are:

u = cxf ′(η), v = −(cν)
1
2f(η),(2.3)

where η = y(c/ν)
1
2 .
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Using (2.3) in (2.1), the self-similar equations obtained as:

f ′′′(η) + f(η)f ′′(η)− [f ′(η)]2 −Mf ′(η)

−k1
[
2f ′(η)f ′′′(η)− [f ′′(η)]2 − f(η)f iv(η)

]
= 0,

(2.4)

where M = σB1

cρ
and k1 = κ0c

ρν
are the modified magnetic and elastico-viscous

parameter.
The boundary condition (2.2) reduces to

At η = 0, f(η) = S, f ′(η) = 1; as η →∞ f(η) = 0,

where S = − vw

(cν)
1
2

represents suction for vw < 0 and blowing for vw > 0.

3. METHOD OF SOLUTION

Using Homotopy Perturbation Method, equation (2.4) is constructed as fol-
lows:

(1− p)(f ′′′ −Mf ′)

+p
[
f ′′′ −Mf ′ + ff ′′ − f ′2 − k1(2f ′f ′′′ − ff

′v − f ′′2)
]
= 0.

(3.1)

We consider f = f0 + pf1 + p2f2 + . . . ,and thus equation (3.1) becomes

(1− p)[(f ′′′0 + pf ′′′1 + p2f ′′′2 + . . . )−M(f ′0 + pf ′1 + p2f ′2 + . . . )]

+p[(f ′′′0 + pf ′′′1 + p2f ′′′2 + . . . )−M(f ′0 + pf ′1 + p2f ′2 + . . . )

+(f0 + pf1 + p2f2 + . . . )(f ′′0 + pf ′′1 + p2f ′′2 + . . . )− (f ′0 + pf ′1 + p2f ′2 + . . . )2

−k1{2(f ′0 + pf ′1 + p2f ′2 + . . . )(f ′′′0 + pf ′′′1 + p2f ′′′2 + . . . )

−(f0 + pf1 + p2f2 + . . . )(f iv0 + pf iv1 + p2f iv2 + . . . )

−(f ′′0 + pf ′′1 + p2f ′′2 + . . . )2}] = 0.

Terms independence of p gives,

(3.2) f ′′′0 −Mf ′0 = 0.

Transformed conditions at boundary are,

(3.3) f0(0) = S, f ′0(0) = 1, f ′0(∞) = 0.

Term containing only p gives,

(3.4) f ′′′1 −Mf ′1 = −f0f ′′0 − f
′2
0 + k1(2f

′
0f
′′′
0 − ff iv0 − f

′2
0 ).
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Transformed conditions at boundary are,

(3.5) f1(0) = 0, f ′1(0) = 0, f ′1(∞) = 0.

Terms containing only p2 gives,

(3.6) f ′′′2 −Mf ′2 = −f0f ′′1−f1f ′′0 +2f ′0f
′
1+k1(2f

′
0f
′′′
1 +f ′1f

′′′
0 −f0f iv1 −f1f iv0 −2f ′′0 f ′′1 ).

Transformed conditions at boundary are,

(3.7) f2(0) = 0, f ′2(0) = 0, f ′2(∞) = 0.

Solving equations (3.2), (3.4), and (3.6) with the help of boundary conditions
(3.3), (3.5), and (3.7), we get

f0 = A1 + A2e
−
√
M η

f1 = D8 +D9e
−
√
M η +K2(D5e

−2
√
M η +D6e

−
√
M η)

f2 = D33 +D34e
−
√
M η +D28e

−2
√
M η

+K2(D29e
−2
√
M η +D30e

−2
√
M η +D31e

−3
√
M η).

(3.8)

Hence,

f(η) = A1 + A2e
−
√
M η + p[D8 +D9e

−
√
M η +K2(D5e

−2
√
M η +D6e

−
√
M η)]

+ p2[D33 +D34e
−
√
M η +D28e

−2
√
M η(3.9)

+ K2(D29e
−2
√
M η +D30e

−2
√
M η +D31e

−3
√
M η)] + . . . .

Differentiating equation (3.9) with respect to η, we obtain

f ′(η) = D35e
−
√
M η + p[D36e

−
√
M η +K2(D37e

−2
√
M η +D38e

−
√
M η)]

+ p2[D39e
−
√
M η +D40e

−2
√
M η

+K2(D41e
−2
√
M η +D42e

−2
√
M η +D43e

−3
√
M η)] + . . . .

The constants of the above equations are obtained but not given here for the
sake of brevity.



216 K. DEBNATH, S. SINGHA, AND B. KALITA

4. RESULTS AND DISCUSSION

The skin friction at the sheet is obtained as

τ = f ′′(0) + k1{f(0)f ′′′(0) + 3f ′(0)f ′′(0)}.

The numerical computations for the velocity component and skin friction at
the sheet are obtained by analytic method. The Matlab software is used for com-
putation and graphical repressentation to observe the effects of different flow
parameters viz., visco-elastic parameter k1, magnetic parameter M and suction
or blowing parameter S. The elastico-viscous effect is displayed by the parame-
ter k1. Setting k1 = 0, it is possible to obtain the results for Newtonian fluid.

Figure 2 illustrates the velocity distribution with variation of elastico-viscous
parameter k1 for S = 0 with M = 4, p = 1. With the rising magnitude of elastico-
viscous parameter, the motion of the fluid diminishes and gradually vanishes
with progressive distance from the sheet. Further, it is noticed that velocity di-
minishing rate is higher for non-Newtonian case in comparison with Newtonian
case.

The velocity distribution with variation of magnetic parameter is depicted
in figure 3 for S = 0 with k1 = 0.1, p = 1. With the growth of M, velocity
reduces for fixed η. The magnetic field exerts Lorenz force which retards the
fluid motion. With increasing distance, the velocity vanishes. The thickness
reduces for boundary layer with the growth of M which can be found from
velocity curves.

Figures 4 and 5 depict the velocity profile against η across the boundary layer
for suction and blowing parameter variation for fixed values of M = 4, k1 = 0.1

and p = 1. It has been observed that the velocity curves rise with the growth
of applied suction but diminishes for the growth of blowing. Thus, blowing
helps to diminish the thickness of boundary layer but suction shows opposite
behaviors.

Figures 6 to 8 reveal the shearing stress at the stretching sheet against M and
S for different values of k1. Figure 6 demonstrates that the shearing stress re-
duces initially for fixed values ofM for elastico-viscosity growth. But it enhances
with the rising magnitude of magnetic parameter M = 4 onwards. Figure 7 il-
lustrates that the shearing stress enhances in the beginning as elastic-viscous
parameter rises for fixed M = 4, k1 = 0.1 and p = 1, but it reduces gradually
as applied suction increases. Further, figure 8 displays that the shearing stress
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diminishes in the beginning with rising magnitude of elastico-viscous parameter
for fixed M = 4, k1 = 0.1 and p = 1 but it enhances gradually as applied blowing
increases.

FIGURE 2. Velocity profile f ′(η) against η for variation of k1

FIGURE 3. Velocity profile f ′(η) against η for variation of M
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FIGURE 4. Velocity profile f ′(η) against η for variation of S (suction)

FIGURE 5. Velocity profile f ′(η) against η for variation of S (blowing)

FIGURE 6. Skin friction curves τ against M for variation of k1
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FIGURE 7. Skin friction curves τ against S (suction) for variation
of k1

FIGURE 8. Skin friction curves τ against S (blowing) for variation
of k1

5. CONCLUSION

The highly coupled nonlinear differential equations involved in this paper
solved by homotopy perturbation technique. This method has advantage over
the regular perturbation method. The effects of elastico-viscous, magnetic and
suction or blowing parameters on the velocity components and skin friction are
investigated graphically. It is noticed that the flow field is significantly influ-
enced by the elastico-viscous, magnetic and suction or blowing parameters A
future study investigating the flow simulation of the problem would be very in-
teresting. Besides this, numerical method can also be implemented to find the
solution of the same problem and the results obtained can be compared by ana-
lytical method. The flow simulation may give the clear picture of the problem.

The present study reveals the following important points:
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• The fluid velocity reduces for elastico-viscous fluid as compared to New-
tonian fluid (k1 = 0).

• Setting k1 = 0 provides all results corresponding to Newtonian fluid.
• The fluid velocity gradually reduces and ultimately vanishes with pro-

gressive distance for variations of elastico-viscous and magnetic param-
eters.
• The boundary layer thickness diminishes with the growth of magnetic

parameter.
• The velocity profile enhances as applied suction rises whereas reverse

pattern is observed for blowing.
• The boundary layer thickness reduces when blowing parameter acts on

the flow field but suction acts oppositely
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