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NUMERICAL SOLUTION FOR DUFFING-VAN DER POL OSCILLATOR VIA
BLOCK METHOD

AHMAD FADLY NURULLAH RASEDEE1, MOHAMAD HASSAN ABDUL SATHAR, TZE JIN WONG,
LEE FENG KOO, AND NUR AINNA RAMLI

ABSTRACT. The Duffing-Van Der Pol Oscillators is an interesting differential prob-
lem with many applications in mechanics and fluid dynamics. Among its most
known application involves the chaotic motions in periodic-self excited oscillators
and occasionally used to model hydrodynamic forces on canonical structures. The
current work aims to provide a numerical solution for the Duffing-Van Der Pol
Oscillators in second order differential form using a two-point block method. The
two-point block algorithm will be coded in C programming to minimize compu-
tational cost (calculation time). Results will show that the proposed method is a
practical tool for solving nonlinear differential equation.

1. INTRODUCTION

The development of multistep method in solving ordinary differential equa-
tion (ODEs) throughout the years has been immense. These developments in-
clude techniques for solving higher order ODES. Previous methods would propose
solving these higher order ODEs by reducing them to a system of ODEs. These
reduction methods were considered as robust until authors such as Gear [1],
Krogh [2] and Suleiman [3] proposed techniques for solving these problems di-
rectly. Gear [1] provided a Nordsiek version of the multistep method for solving
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two second order problems. This was than rivalled by Krogh [2], when he intro-
duced a variation of the divided difference approach. In his research, Krogh sug-
gests that the back values were to be interpolated for any point of the derivative.
The works in Krogh [2] was then extended by Suleiman [3] using an adaption of
the divided difference approach for solving higher order nonstiff ODEs (dth order)
which is currently known as the Direct Integration (DI) method. In [4], Rasedee
then developed a one-point predict-corrector algorithm in backward difference
form for solving higher order ODEs directly. His work was then continued by Md
Ijam et al. [5]. Md Ijam converted Rasedee’s [4] backward difference method into
a two-point sequential block algorithm. Since then, many variation works derived
from Suleiman’s initial algorithm can be found. These works include Suleiman et
al. [6], Rasedee et al. [7] and others.

2. METHODOLOGY

Although the Duffing-Van Der Pol oscillator can be used to model of hydrody-
namic forces on canonical structures in fluid dynamics, it is frequently related with
the study of chaotic motion of nonlinear periodic self-excited oscillators with ap-
plications commonly found in electrical circuits. The Duffing-Van Der Pol oscillator
has the following general form

d2y

dt2
− α

(
1− t2

) dy
dt

+ ω0t+ δt3 = f (t) ,

given then constants α, ω0 and δ where α > 0 and f (t) function in time.
The current research will establish a two-point block method for solving higher

order ODEs in the form of second order Duffing-Van Der Pol oscillator. Consider
the second order ODE

(2.1) y′′ = f (t, y, y′) ,

with t ∈ [a, b] and the initial condition

y (a) = η, y′ (a) = η′.

The proposed two-point block method is constructed in an explicit-implicit mode
where the explicit coefficients acts as the predictor and the implicit coefficients acts
as the corrector. Construction of the predictor-corrector algorithm begins with the
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derivation of the predictor. The derivation of the predictor begins by integrating
(2.1) once. Integrating (2.1) once, with the limit of integration tn to tn+b, gives

(2.2) y′ (tn+b) = y′ (tn) + h
k−1∑
j=0

pαb,1,j∇
jfn, pαb,1,j = (−1)j

∫ b

0

(
−s
j

)
ds,

where b = 1, 2 and f (t, y, y′) is approximated by the Newton Gregory polynomial

(2.3) Pn (t) =
k−1∑
j=0

(−1)j
(
−s
j

)
∇jfn, s =

t− tn
h

,

at k back values. Next, we denote the generating function by pGb,1 (t) where

(2.4) pGb,1 (t) =
∞∑
j=0

pαb,1,jt
j.

Then αb,1,j from (2.2) is replaced with (2.3) thus

pGb,1 (t) =
∞∑
j=0

(−t)i
∫ b

0

(
−s
j

)
ds.

By mathematical inference, the first and second point explicit generating function
can be established as follows,

(2.5) pGb,1 (t) = −

[
(1− t)−b

log (1− t)
− 1

log (1− t)

]
,

Subsequent to the first integration, equation (2.1) is then integrated twice in sim-
ilar manner to prior integration, resulting in

y (tn+b) = y (tn) + hy′ (tn) + h2
k−1∑
j=0

pαb,2,j∇
jfn,

where

pαb,2,j =

∫ b

0

(b− s)
1!

(
−s
j

)
ds.

Then, the generating function of the second integration is denoted by

pGb,2 (t) =
∞∑
j=0

pαb,2,jt
j.



22 A.F. NURULLAH, M. HASSAN, T.J. WONG, L.F. KOO, AND N.A. RAMLI

Replacing αb,2,j in pG2,1 and consequently solving the integral

pGb,2 (t) =
∞∑
j=0

(−t)j
∫ b

0

(b− s)
(
−s
j

)
ds

yields the following

(2.6) pGb,2 (t) =

[
1

log (1− t)
−

pGb,1(t)

log (1− t)

]
.

As for the latter, the corrector can be established similar to the predictor with
minor differences. This include changing the limit of integration to t ∈ [−b, 0] and
denoting the Newton -Gregory polynomial as

Pn (t) =
k∑

j=0

(−1)j
(
−s
j

)
∇jfn+b, s =

t− tn+b

h
.

This produces the following corrector formula

y (tn+b) = y (tn) + hy′ (tn) + h2
k∑

j=0

cαb,2,j∇jfn+b,

with the corresponding implicit generating function

cGb,1 (t) =
∞∑
j=0

cαb,2,jt
j,

and by mathematical induction can be written as

(2.7) cGb,1 (t) = −

[
1

log (1− t)
− (1− t)b

log (1− t)

]
.

By repeating similar process for the second integration establishes the following

(2.8) cGb,2 (t) =

[
2 (1− t)b

log (1− t)
− cGb,1 (t)

log (1− t)

]
.
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3. THE COEFFICIENTS

The purpose of a two-point block method is to reduce computational cost. In
line with reducing the computational cost, establishing a recursive relationship
between explicit and implicit integration coefficients allows authors to reduce nu-
merous lines of computational code. Next, we derive the relationship between
the explicit and implicit coefficients. Firstly, the first order implicit integration
generating functions from (2.7) are rearranged as follows

cG1,1 (t) = − (1− t)

[
(1− t)−1

log (1− t)
− 1

log (1− t)

]
,

(3.1) cG2,1 (t) = − (1− t)2
[
(1− t)−2

log (1− t)
− 1

log (1− t)

]
.

Next, the first order explicit generating functions from (2.4) and (2.5) are sub-
stituted in (2.8) respectively, thus providing a recursive relationship as shown
below

cG1,1 (t) = (1− t) pG1,1 (t) , cG2,1 (t) = (1− t) 2
pG2,1

(t) .

Then the second order explicit generating functions (equation (2.6)) and the
second order implicit generating functions (equations (2.8)) are rewritten in sim-
ilar nature to its first order counterpart, hence establishing the following relation-
ship

cG1,2 (t) = (1− t) pG1,2 (t) , cG2,2 (t) = (1− t) 2
pG2,2

(t) .

The integration coefficients can then be established with expanding the generating
functions(3.1) by way of (2.3) and (2.6) then rewritten as

k∑
j=0

cαb,2,j = pαb,2,j.

More detailed discussions and example of coefficients can be found in the works
by Rasedee et al. [8]. The upcoming section will present numerical results of the
proposed method.
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4. RESULTS AND DISCUSSIONS

Most real-life applications of engineering system behaviour are in the form
of nonlinear processes which nearly impossible to be solve analytically. In this
research, examples selected are of coupled vibrations in the form of nonlinear
Duffing-Van Der Pol oscillators. The examples selected are of various types of
Duffing-Van Der Pol oscillators to highlight the accuracy of the method.

Example 1. Nonlinear oscillator,

d2y (t)

dt2
= −

(
1 + y2 (t)

) dy (t)
dt
− y (t) + 2cos (t)− cos2 (t) ,

with the following initial conditions

y (0) = 0,
dy (0)

dt
= 1,

and the analytic solution given by

y (t) = cos (t) .

Example 1 is a non-homogeneous Duffing-Van Der Pol oscillator with an ana-
lytical solution. It is selected as a control environment to validate the accuracy
of the proposed method. Numerical results for Example 1 are illustrated in Table
1. Results displayed in Table 1 compares the proposed two point backward differ-
ence method (2PB) with the Alternative Variation Iteration method (AVI). The AVI
which was established in [9] has proven to be successful in approximating solu-
tions for Duffing-Van Der Pol oscillator. Results show that AVI manages to obtain a
better approximate for t = 0.1 and t = 0.2 but is outperformed by the 2PB method
thereafter.

Example 2. Nonlinear oscillator,

d2y (t)

dt2
=

1

10

(
1− y2 (t)

) dy (t)
dt
− y (t)− 1

100
y3 (t) ,

with the following initial conditions

y (0) = 2,
dy (0)

dt
= 0.

Example 2 is a homogeneous nonlinear oscillator without any known analytical
solution which was obtained from [8]. From Table 1, the absolute error provided
substantiate the reliability of the 2PB method. To further explore the validity of
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TABLE 1. Comparison of numerical results for Problem 1 between
AVI and 2BP method

t
AVI 2PB

Approximation Absolute Error Approximation Absolute Error

0.1 0.099833503766 8.71190E-8 0.09983108741 2.32923E-6
0.2 0.198672306412 2.97562E-6 0.19866463190 4.69889E-6
0.3 0.295544761414 2.45548E-5 0.29551318542 7.02124E-6
0.4 0.389532415382 1.14073E-4 0.38940906938 9.27293E-6
0.5 0.479813376489 3.87838E-4 0.47941410725 1.14314E-5
0.6 0.565724718495 1.08225E-3 0.56462899848 1.34749E-4
0.7 0.646848217682 2.63053E-3 0.64420230404 1.53832E-4
0.8 0.723119718202 5.76363E-3 0.71733895367 1.71372E-5
0.9 0.794955142884 1.16282E-2 0.78330819004 1.87196E-5
1.0 0.863375606677 2.19046E-2 0.84145087018 2.01146E-5

its accuracy, for Problem 2 the approximated solution attained by the 2PB method
is then compared with the Lindsteds method (LSD) and one point backward dif-
ference method (1PB). Numerical approximation presented in Table 2 shows that
accuracy of the 2PB method is as competitive as its numerical counterpart.

Example 3. Nonlinear oscillator,

d2y (t)

dt2
= cos (0.7t) +

(
1− y2 (t)

) dy (t)
dt

+ y (t)− y3 (t) ,

with the following initial conditions

y (0) = 0.1,
dy (0)

dt
= −0.2.

Example 3 is a nonhomogeneous nonlinear oscillator without any known ana-
lytical solution. For this particular problem, the divide difference direct integra-
tion method (DD) and 1PB method were selected for comparison. These methods
were selected because of their similar nature with the 2PB. Both methods are also
variation of the multistep method programmed in predictor-corrector mode. This
allows for a more well-matched comparison. Table 3 exhibits numerical result for
DD, 1PB and 2PB method for the time step, h = 0.5 in the interval 0 ≤ t ≤ 4.5. The
approximation of the 2PB shows to be comparable at every time step to its numer-
ical peers. Next, Figure 1 displays the plotted graph of the 2PB method for every
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TABLE

2. Comparison
of numerical approx-
imation for Problem
2

t LSD 1PB 2PB

0.1 1.98971 1.98971 1.98971
0.2 1.95936 1.95936 1.95936
0.3 1.90980 1.90980 1.90980
0.4 1.84202 1.84202 1.84202
0.5 1.75702 1.75702 1.75702
0.6 1.65586 1.65586 1.65586
0.7 1.53958 1.53958 1.53958
0.8 1.40922 1.40923 1.40923
0.9 1.26581 1.26586 1.26586
1.0 1.11033 1.11054 1.11054

TABLE

3. Comparison
of numerical approx-
imation for Problem
3

t LSD 1PB 2PB

0.0 0.1 0.1 0.1
0.5 0.13038 0.13047 0.13050
1.0 0.52399 0.52428 0.52433
1.5 1.33649 1.33689 1.33685
2.0 1.74809 1.74814 1.74806
2.5 1.42639 1.42613 1.42613
3.0 0.88625 0.88594 0.88594
3.5 0.16497 0.16456 1.64555
4.0 -1.12614 -1.12676 -1.12676
4.5 -2.08061 -2.08006 -2.08006

point t paired with its corresponding approximated solution y whereas Figure 2
plots approximated points of y and the corresponding approximated y′. To provide
a more comprehensive understanding of the oscillatory nature of the Duffing Van
Der Pol oscillator, the approximation interval is extended to 0 ≤ t ≤ 200.

FIGURE 1. Numerical
approximation of y for
every time step t

FIGURE 2. Numerical
approximation of y′ for
against approximation
of y.
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5. CONCLUSIONS

The 2PB method is feasible method for solving ODEs with period solutions no-
ticeably the Duffing-Van Der Pol oscillator. Numerical results prove the accuracy of
the 2PB method, which increases significantly when using finer time steps. Notes
on convergence of the 2PB method can be found in [10].
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