ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **10** (2021), no.1, 311–317 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.1.31

UNIQUE METRO DOMINATION OF POWER OF PATHS

Kishori P. Narayankar, Denzil Jason Saldanha¹, and John Sherra

ABSTRACT. A dominating set D of G which is also a resolving set of G is called a *metro dominating set*. A metro dominating set D of a graph G(V, E) is a *unique metro dominating set* (in short an *UMD-set*) if $|N(v) \cap D| = 1$ for each vertex $v \in V - D$ and the minimum of cardinalities of an *UMD-sets of G* is the *unique metro domination number of G* denoted by $\gamma_{\mu\beta}(G)$. In this paper we determine unique metro domination number of power of paths.

1. INTRODUCTION

All the graphs considered in this paper are simple, connected and undirected. The length of a shortest path between two vertices u and v in a graph G is called the distance between u and v and is denoted by d(u, v). For a vertex v of a graph, N(v) denote the set of all vertices adjacent to v and is called open neighborhood of v. Similarly, the closed neighborhood of v is defined as $N[v] = N(v) \cup \{v\}$.

Let G(V, E) be a graph. For each ordered subset $S = \{v_1, v_2, \ldots, v_k\}$ of V, each vertex $v \in V$ can be associated with a vector of distances denoted by $\Gamma(v/S) = (d(v_1, v), d(v_2, v), \ldots, d(v_k, v))$. The set S is said to be a *resolving set* of G if $\Gamma(v/S) \neq \Gamma(u/S)$ for every $u, v \in V - S$, see [1]. A resolving set of minimum cardinality is a *metric basis* and cardinality of a metric basis is the *metric dimension* of G, see [2]. The k-tuple, $\Gamma(v/S)$ associated to the vertex

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. Domination, metric dimension, metro domination, unique metro domination.

 $v \in V$ with respect to a metric basis S, is referred as a *code generated by* S for that vertex v. If $\Gamma(v/S) = (c_1, c_2, \ldots, c_k)$, then $c_1, c_2, c_3, \ldots, c_k$ are called components of the code of v generated by S and in particular $c_i, 1 \leq i \leq k$, is called *i*th-component of the code of v generated by S.

A dominating set D of a graph G(V, E) is the subset of V having the property that for each vertex $v \in V - D$, there exists a vertex $u \in D$ such that uv is in E, see [3]. A dominating set D of G which is also a resolving set of G is called a *metro dominating set*.

A metro dominating set D of a graph G(V, E) is a unique metro dominating set (in short an UMD set) if $|N(v) \cap D| = 1$ for each vertex $v \in V - D$. Generally, if $|N(v) \cap D| = k$ for each vertex $v \in V - D, k \ge 1$, such a metro dominating set Dis called a *Smarandachely distance k dominating set* (Smarandachely k DD-sets of G) and the minimum of cardinalities of the Smarandachely DD-sets of G is the number of Smarandachely k UDD-sets of G, denoted by $\gamma_{S\mu\beta}^k(G)$. Particularly, if k = 1, i.e., the unique metro domination number of G denoted by $\gamma_{\mu\beta}(G)$, see [4–6].

2. MAIN RESULTS

Take $P_n, n > k$. If $k < i \le n - k$, join v_i to $v_{i-2}, v_{i-3}, \ldots, v_{i-k}$ and v_{i+2}, \ldots, v_{i+k} . If i > n - k, then join v_i to $v_{i-2}, v_{i-3}, \ldots, v_{i-k}$ and all $v_j, j > i + 1$. Similarly if $i \le k$, then join v_i to $v_j, j < i - 1$ and to v_{i+2}, \ldots, v_{i+k} . The resulting graph is called P_n^k .

If $k < i \le n - k$, then v_i dominates $v_i, v_{i-1}, v_{i-2}, ..., v_{i-k}, v_{i+1}, v_{i+2}, ..., v_{i+k}$. If $|i - j| \le 2k + 1$, then vertex $v_{i+1}, v_{i+2}, ..., v_{j-1}$ are dominated by v_i and v_j .

The set $D = \{v_1, v_6, v_9\}$ is a dominating set in Figure 1 for P_9^2 . It is also a metro dominating set. Note that v_7 is dominated by v_6 and v_9 . Hence D is not a UMD set.

The set $D = \{v_3, v_8\}$ is a dominating set for P_9^2 in Figure 2. All vertices are dominated uniquely by $\{v_3, v_8\}$. But code generated by D to v_4 and v_5 is same. Hence $\{v_3, v_8\}$ does not resolve the vertex set V of P_9^2 and hence D is not a UMD set. If $v_1 \in D$, it dominates $v_2, v_3, \ldots, v_{k+1}$. If $v_i \in D$ and if i < 2k + 2, then v_{k+1} is dominated by v_1 and v_i . If i > 2k + 2, then v_{k+2} is not dominated. Further if i = 2k + 2 then the vertices $v_2, v_3, \ldots, v_{i-1}$ are uniquely dominated.

A vertex in P_n^k can dominate a maximum of 2k + 1 vertices.

312

UNIQUE METRO DOMINATION...

313

FIGURE 1. P_9^2

FIGURE 2. P_9^2

Lemma 2.1. If *D* is a minimal dominating set then $|D| \ge \left\lceil \frac{n}{2k+1} \right\rceil$.

However if n = k + 1 + (2k+1)p, $(p \in \mathbb{N})$, then $D = \{v_{k+1}, v_{3k+2}, v_{5k+3}, \dots, v_{n-k}\}$ is a minimal dominating set and $|D| = \frac{n}{2k+1}$. Hence we have

Lemma 2.2. When n = k + 1 + (2k+1)p, $p \in \mathbb{N}$, the domination number $\gamma(P_n^k) = \frac{n}{2k+1} = \left\lceil \frac{n}{2k+1} \right\rceil$.

Observe that when $n = (k + 1) + (2k + 1)p, p \in \mathbb{N}$, $D = \{v_{k+1}, v_{3k+2}, \dots, v_n\}$ dominates V - D uniquely. For any v_i and v_j ,

$$d(v_i, v_j) = \left\lceil \frac{|i-j|}{k} \right\rceil.$$

Consider $1 \le i < j \le n-k$, such that $j-i \equiv 0 \pmod{k}$. Then we get $d(v_i, v_{j+1}) = d(v_i, v_{j+2}) = \ldots = d(v_i, v_{j+k}) = \frac{j-i+k}{k}$. If $k+1 \le t < i < j \le n-k$, 2i = j+t, $j-i \equiv 0 \pmod{k}$ and $i-t \equiv 0 \pmod{k}$, then $d(v_i, v_{t-1}) = d(v_i, v_{t-2}) = , \ldots = d(v_i, v_{t-k}) = d(v_i, v_{j+1}) = d(v_i, v_{j+2}) = \ldots = d(v_i, v_{j+k}) = \frac{j-t+2k}{2k}$. K. P. Narayankar, D. J. Saldanha, and J. Sherra

Now consider the unique dominating set $D = \{v_{k+1}, v_{3k+2}, \ldots\}$ for P_n^k . The vertices v_i and $v_j \in D$, i = (k+1) + (2k+1)l and j = (k+1) + (2k+1)(l+1), generate the same code to all the vertices in $U = \{v_{i+1}, v_{i+2}, \ldots, v_{i+k}\}$ and the same code to all the vertices in $W = \{v_{i+k+1}, v_{i+k+2}, \ldots, v_{j-1}\}$.

For example, $\{v_{k+1}, v_{3k+2}\}$ generates the same code (1, 2) for $v_{k+2}, v_{k+3}, \ldots, v_{2k+1}$ and same code (2, 1) for $v_{2k+2}, v_{2k+3} \ldots v_{3k+1}$.

Take $v_h \in D$, h = (k+1) + (2k+1)(l+2). Then $\frac{|h-i|}{k} = \frac{4k+2}{k} = 4 + \frac{2}{k}$. Hence $d(v_h, v_i) = \left[4 + \frac{2}{k}\right] = 5$ and $d(v_k, v_{i+1}) = \left[4 + \frac{1}{k}\right] = 5$.

All other vertices of U will have the same distance 4 from v_h . Now |h - (i+k+1)| = |3k+1|. Therefore $d(v_h, v_{i+k+1}) = \left\lceil \frac{3k+1}{k} \right\rceil = \left\lceil 3 + \frac{1}{k} \right\rceil = 4$ and all other vertices of W will have the same distance 3 from v_h . Hence code generated by $\{v_i, v_j, v_h\}$ will be the same for vertices in $U - \{v_{i+1}\}$ and is the same for vertices in $W - \{v_{i+k+1}\}$.

For example, the code generated by $\{v_{k+1}, v_{3k+2}, v_{5k+3}\}$ to v_{k+2} is (1,2,5) and to v_{2k+2} is (2,1,4) where as same code (1,2,4) is generated to $v_{k+3}, \ldots, v_{2k+1}$, same code (2,1,3) is generated to $v_{2k+3}, \ldots, v_{3k+1}$.

Now take $v_h \in D$, h = (k+1) + (2k+1)(l-1). Then $\frac{|h-i|}{k} = \frac{2k+1}{k} = 2 + \frac{1}{k}$ and $\frac{|h-(i+k)|}{k} = 3 + \frac{1}{k}$. Therefore $d(v_h, v_i) = 3 = d(v_h, v_{i+1}) = \ldots = d(v_h, v_{i+k-1})$ and $d(v_h, v_{i+k}) = 4$. Further $\frac{|h-(j-1)|}{k} = \frac{|4k+1|}{k} = 4 + \frac{1}{k}$, and therefore $d(v_h, v_{j-1}) = 5$ and $d(v_k, v_{j-2}) = 4 = d(v_h, v_{j-3}) = \ldots = d(v_h, v_{i+k+1})$. Therefore code generated by $\{v_i, v_j, v_h\}$ will be same for vertices in $U - \{v_{i+k}\}$ which is different from the code of v_{i+k} and code generated will be the same for vertices in $W - \{v_{i+k+1}\}$, which is different from the code of v_{i+k} and code of v_{i+k+1} .

Every vertex of D, when added to $\{v_i, v_j\}$, it produces different code to exactly one vertex of U and exactly one vertex of W. Hence to resolve all the vertices betweeen v_i and v_j , we require k - 1 vertices of D. Therefore minimum |D| = k + 1. For each l, $0 \le l \le k + 1$, there are 2k vertices between v_i and v_j . Also we have $v_1, v_2, \ldots v_k$. Thus to resolve V - D, it is necessary to have atleast $k(2k) + (k + 1) + k = 2k^2 + 2k + 1$ vertices in V. Thus we have

Lemma 2.3. If $n = 2k^2 + 2k + 1$, then $D = \{v_{k+1}, v_{3k+2}, ...\}$ is a unique metro dominating set.

314

Further we observe, that if $n \ge 2k^2 + 2k + 1$, and $(2k+1)p - k \le n \le (2k+1)p - 1$, then $D = \{v_{k+1}, v_{3k+2}, \dots, v_{(2k+1)p-k}\}$ is a UMD set. Also if $n \ge 2k^2 + 2k + 1$ and $(2k + 1)p - 2k \le n < (2k + 1)p - k$, then $D = \{v_1, v_{2k+2}, v_{4k+3}, \dots, v_{(2k+1)p-2k}\}$ is a UMD set.

UNIQUE METRO DOMINATION...

In any case $|D| = p = \left\lceil \frac{n}{2k+1} \right\rceil$. Hence we have the following theorem.

Theorem 2.1.
$$\gamma_{\mu\beta}(P_n^k) = \begin{cases} \left\lceil \frac{n}{2k+1} \right\rceil, & \text{for } n \ge 2k^2 + k + 1 \\ n, & \text{for } n < 2k^2 + k + 1 \end{cases}$$

REFERENCES

- [1] F. HARARY, R. MELTER: On the Metric Dimension of a graph, Ars Combin., 2 (1976), 191–195.
- [2] C. POISSON, P. ZHANG: *The Metric Dimension Of Unicyclic Graphs*, J. Comb. Math Comb. Compu., **40** (2002), 17–32.
- [3] P. J. SLATER: Domination and location in acyclic graphs, Networks, 17 (1987), 55-64.
- [4] B. SOORYANARYANA, J. SHERRA: Unique metro domination in graphs, Adv. Appl. Discrete Math., **14**(2) (2014), 125–149.
- [5] B. SOORYANARYANA, J. SHERRA: Unique metro domination of Circulant graphs, International J. Math. Combin., (1) (2019), 53–61.
- [6] H. B. WALIKAR, K. P. NARAYANKAR, S. S.SHIRAKOL: The number of minimum dominating sets in $P_n \times P_2$, International J. Math. Combin., (3) (2010), 17–21.

DEPARTMENT OF MATHEMATICS MANGALORE UNIVERSITY MANGALAGANGOTHRI, MANGALORE-574199, INDIA *Email address*: kishori_pn@yahoo.co.in

DEPARTMENT OF MATHEMATICS MANGALORE UNIVERSITY MANGALAGANGOTHRI, MANGALORE-574199, INDIA *Email address*: denzi1530gmail.com

DEPARTMENT OF MATHEMATICS ST ALOYSIUS COLLEGE (AUTONOMOUS) MANGALORE-575003, INDIA *Email address*: johnsherra@gmail.com