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To my father Harry I. Miller, we keep going

ABSTRACT. Many authors studied properties related to distribution and summa-
bility of sequences of real numbers and the same properties of their subse-
quences. In these studies, Lebesgue measure and category were used as gauges
of size of the classes of subsequences of a sequence with a certain property. In
this paper, we aim to prove some new results on subsequences of a sequence,
this time connected to the notions of equidistributed and well distributed se-
quences.

1. INTRODUCTION

In recent years, many mathematicians studied properties of real valued se-
quences and the relationship of a sequence and its subsequences regarding some
property. In these studies two different gauges of size were used: Lebesgue mea-
sure and category, yielding different, interesting results.

Buck [4] has initiated the study of the relationship between the convergence
of a given sequence and the summability of its subsequences. Agnew [1], Buck
[5], Buck and Pollard [6], Dawson [7], Miller [11], Miller and Orhan [13],
Zeager [20] have studied this relation changing the concept of convergence.
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Later on, in [2], [8], [9], [14], [15], [18], [19] different types of convergence
of a sequence and the related summability of its subsequences were studied,
using Lebesgue measure as a gauge of the size of convergent subsequences.
Also similar relations between sequences and their subsequences were studied,
using category, by several authors, [3], [10], [16].

Recently, in one of his last papers [12], Miller specifically studied equidis-
tributed sequences and their subsequences, using both measure and category as
gauges of size, and came up with some new and interesting results.

In this paper, we wish to further elaborate on some properties of equidis-
tributed sequences and subsequences. Additionally we study analogous proper-
ties of well distributed sequences and subsequences.

2. PRELIMINARIES

Now let us recall some known notions. Let K ⊆ N where N is the set of
natural numbers. If m,n ∈ N, by K(m,n) we denote the cardinality of the set of
numbers i in K such that m ≤ i ≤ n. The numbers

d
¯
(K) = lim inf

n→∞

K(1, n)

n
, d̄(K) = lim sup

n→∞

K(1, n)

n

are called the lower and the upper asymptotic density of the set K, respectively.
If d

¯
(K) = d̄(K) then it is said that d(K) =d

¯
(K) = d̄(K) is the asymptotic

density of K. The uniform density of K ⊆ N has been introduced as follows:

u
¯
(K) = lim

n→∞

min
i≥0

K (i + 1, i + n)

n
, ū(K) = lim

n→∞

max
i≥0

K (i + 1, i + n)

n

are respectively called the lower and the upper uniform density of the set K

(the existence of these bounds is also mentioned in [2]). If u
¯
(K) = ū(K), then

u(K) =u
¯
(K) is called the uniform density of K. It is clear that for each K ⊆ N

we have

u
¯
(K) ≤ d

¯
(K) ≤ d̄(K) ≤ ū(K).

Subsequences of a sequence x can be naturally identified with numbers t ∈
(0, 1] written by a binary expansion with infinitely many 1’s. Thus we can denote
by {x(t)} the subsequence of x corresponding to t.
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3. EQUIDISTRIBUTED SEQUENCES

Here we give our attention to equidistributed sequences, first introduced by
Herman Weyl, 100 years ago (see [17]).

Definition 3.1. A sequence x = {xn} contained in (0, 1] is said to be equally
distributed if for every [a, b], subinterval of (0, 1],

lim
n→∞

|{1 ≤ i ≤ n, xi ∈ [a, b]}|
n

= m([a, b]).

(Trivially closed intervals in (0, 1] can be replaced with all intervals in (0, 1].)

Example 1. Let x = {xn} where xn = [cn], where c is irrational and [r] is the
fractional part of r. It is well known that this sequence is equidistributed.

In his paper, [12], Miller studied the relationship between equidistributed
sequences and their subsequences. He proved the following results.

Theorem 3.1. Suppose x = {xn} is a sequence of reals in (0, 1]. If x is equidis-
tributed, then the set of t ∈ (0, 1] for which x(t) is equidistributed has Lebesgue
measure 1.

Concerning category, in place of measure, Miller proved the next theorem.

Theorem 3.2. Suppose x = {xn} is a sequence of reals in (0, 1]. The set of t ∈ (0, 1]

for which x(t) is equidistributed is meager.

Here we prove the converse of Theorem 3.1.

Theorem 3.3. Suppose x = {xn} is a sequence of reals in (0, 1]. If the set of
t ∈ (0, 1] for which x(t) is equidistributed has Lebesgue measure 1, then x is equidis-
tributed.

Proof. Let X denote the set of t ∈ (0, 1] for which x(t) is equidistributed. Suppose
that X has measure 1. Let N denote the set normal numbers in (0, 1], i.e. the set
of t ∈ (0, 1], t = 0, t1, t2, . . . , tn, . . . (binary representation with infinitely many
1’s) for which the asymptotic density of 1’s (0’s) is exactly 1

2
. It is well known

that m(N) = 1.
Since m(X) = 1 implies that m(1−X) = 1 where 1−X = {1− t : t ∈ (0, 1]},

we can fix some t ∈ X
⋂

(1−X)
⋂
N .

Suppose [a, b] ⊆ (0, 1] is arbitrarily fixed.
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Now suppose n is arbitrarily fixed. Let n1 denote the number of 1’s among the
first n indices of t, and n2 the number of 0’s among the first n indices of t.

Then:
|{1 ≤ i ≤ n, xi ∈ [a, b]}|

n
=
|{1 ≤ i ≤ n1, (x(t))i ∈ [a, b]}|

n

+
|{1 ≤ i ≤ n2, (x(1− t))i ∈ [a, b]}|

n

=
|{1 ≤ i ≤ n1, (x(t))i ∈ [a, b]}|

n1

· n1

n

+
|{1 ≤ i ≤ n2, (x(1− t))i ∈ [a, b]}|

n2

· n2

n
.

Now if we let n → ∞, we have that n1 → ∞, n2 → ∞, and that n1

n
→ 1

2
,

n2

n
→ 1

2
.

Hence, since x(t) and x(1 − t) are equidistributed, from the above we can
conclude that

lim
n→∞

|{1 ≤ i ≤ n, xi ∈ [a, b]}|
n

= m([a, b]).

Since [a, b] ⊆ (0, 1] was arbitrary, the proof is complete. �

Finally we can unify Theorems 3.1 and 3.3 as the following.

Theorem 3.4. Suppose x = {xn} is a sequence of reals in (0, 1]. Then the set
of t ∈ (0, 1] for which x(t) is equidistributed has Lebesgue measure 1 or 0. The
measure is 1 if x is equidistributed, and 0 if x is not equidistributed.

Proof. Let X denote the set of t ∈ (0, 1] for which x(t) is equidistributed. If x is
equidistributed, from Theorem 3.1 we know that m(X) = 1.

Suppose x is not equidistributed. The set X is a tail set, and therefore has
measure 0 or 1, or is nonmeasurable. We will verify that X is measurable.

For 0 < a < b ≤ 1 arbitrary, let

Xa,b = {t ∈ (0, 1] : lim
n→∞

|{1 ≤ i ≤ n, (x(t))i ∈ [a, b]}|
n

= m([a, b])}.

Then

Xa,b =
⋂
l

⋃
N

⋂
n≥N

{
t ∈ (0, 1] :

∣∣∣∣ |{1 ≤ i ≤ n : (xt)i ∈ [a, b]}|
n

−m([a, b])

∣∣∣∣ < 1

l

}
.
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Now it is easy to see that
{
t ∈ (0, 1] :

∣∣∣{ |{1≤i≤n:(xt)i∈[a,b]}|n
−m([a, b])

∣∣∣} < 1
l

}
is of

the form G\M where G is open, M countable and therefore Xa,b is measurable.
Consequently

X =
⋂

a≤b:a,b∈Q
⋂
(0,1]

Xa,b

is measurable. Now since x is not equidistributed, from Theorem 3.3 we con-
clude that m(X) = 0. �

4. RESULTS ON WELL DISTRIBUTED SEQUENCES

In summability the concept of uniform statistical density and convergence are
introduced as more strict than asymptotic density and statistical convergence.
Parallel with these notions, from the concept of equidistributed sequences, we
move to the more strict notion of well distributed sequences.

Definition 4.1. A sequence x = {xn} contained in (0, 1] is said to be well dis-
tributed if for every [a, b], subinterval of (0, 1],

lim
n→∞

|{m + 1 ≤ i ≤ m + n, xi ∈ [a, b]}|
n

= m([a, b])

uniformly in m. (Trivially closed intervals in (0, 1] can be replaced with all intervals
in (0, 1].)

Now we can formulate some results concerning the relationships of sequences
and their subsequences and the property of well distributiveness, analogous to
the results in the previous section.

First, we show that the class of well distributed subsequences of a sequence
is small in category (meager). The following theorem is a corollary of Theorem
3.2.

Theorem 4.1. If x = {xn} is a sequence of reals in (0, 1], the set of t ∈ (0, 1] for
which x(t) is well distributed is meager.

Proof. From Theorem 3.2, we know that the set of t ∈ (0, 1] for which x(t) is
equidistributed is meager. Since every well distributed sequence is also equidis-
tributed, the conclusion follows. �
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Now, we study the Lebesgue measure of the set of well distributed sequences
of a given sequence. We have the following result.

Theorem 4.2. If x = {xn} is a sequence of reals in (0, 1], the set of t ∈ (0, 1] for
which x(t) is well distributed has Lebesgue measure 0.

Proof. Clearly ū({i, xi ∈ (0, 1
2
]} ≥ 1

2
or ū({i, xi ∈ (1

2
, 1]} ≥ 1

2
. Without loss of

generality we can assume that ū({i, xi ∈ (0, 1
2
]} ≥ 1

2
.

We will show that, for n ∈ N,

Xn = {t ∈ (0, 1], x(t)contains n consecutive terms in (0,
1

2
]}

has measure 1.
Assume that n is fixed. Since ū({i, xi ∈ (0, 1

2
]} ≥ 1

2
, there exist positive integers

N1 < N2 < N3 < · · · < N2k−1 < N2k < · · · such that (N2k −N2k−1)→∞ and

|{i : N2k−1 ≤ i ≤ N2k : xi ∈ (0, 1
2
]}|

N2k −N2k−1
≥ 1

3
.

Without loss of generality we can assume that N2k − N2k−1 > 6n for k =

1, 2, . . . . Setting m = 6n, from the above it is easy to show that we can find mk,
k = 1, 2, . . . so that N2k−1 ≤ mk < mk + m− 1 ≤ N2k such that

|{i : mk ≤ i ≤ mk + m− 1 : xi ∈ (0, 1
2
]}|

m
≥ 1

6
.

Now for k = 1, 2 . . . let Tk denote the set of all t ∈ (0, 1], t = 0.t(1)t(2) · · · t(n) · · ·
(binary representation with infinitely many 1’s) such that for mk ≤ i ≤ mk +

m− 1:

ti =

{
1 ; xi ∈ (0, 1

2
]

0 ; otherwise

(and ti is 0 or 1 for i /∈ [mk,mk + m− 1]).
Then for all k, m(Tk) = 1

2m
and m((0, 1] \ Tk) = 1− 1

2m
.

Since [mk,mk + m− 1] are mutually disjoint,

m(
⋂
k

((0, 1] \ Tk) = (1− 1

2m
)(1− 1

2m
) · · · = 0

and hence

m(
⋃
k

Tk) = 1.
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Since m = 6n, from the definition of Tk it is clear that if t ∈ Tk, then x(t) contains
n (or more) consecutive terms from (0, 1

2
], for k = 1, 2 . . . .

Hence
⋃

k Tk ⊆ Xn and consequently m(Xn) = 1 for n ∈ N. Therefore
m(
⋂

n Xn) = 1. Now t ∈
⋂

nXn implies that ū({i, (x(t))i ∈ (0, 1
2
]}) = 1.

This means that for almost all t ∈ [0, 1), ū({i, (x(t))i ∈ (0, 1
2
]}) = 1. Therefore

the set of all t ∈ (0, 1] such that

lim
n→∞

|{i : m ≤ i ≤ m + n : (x(t))i ∈ (0, 1
2
]}|

n
=

1

2

uniformly in m, has measure 0. Hence the set of all t ∈ (0, 1] such that x(t) is
well distributed has measure 0. �
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