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MAGNETO-THERMOELASTIC PROBLEM WITH EDDY CURRENT LOSS OF
A THERMOSENSITIVE CONDUCTIVE PLATE

L.C. Bawankar1 and G.D. Kedar

ABSTRACT. In this paper a two dimensional magneto-thermoelastic problem of
a thermosensitive finite conducting plate with eddy current loss is considered.
It is assumed that the plate is influenced by a time-varying external magnetic
field and that the heating is caused by Joule heat. The fundamental equations
for magnetic field, heat conduction and elastic fields are formulated. Tempera-
ture dependent material properties and heat source as eddy current loss is con-
sidered in the heat conduction equation. Kirchhoff’s variable transformation
is employed to convert nonlinear to linear heat conduction equation. Integral
transform technique is used to solve the magnetic field and temperature dis-
tribution. The stresses in a plane state are determined by using Airy’s stress
function. The numerical analysis is carried out and the results are graphically
displayed.

1. INTRODUCTION

The much attention has received in the study of magneto-thermoelasticity
from recent years because of its practical uses of electro-magnetism in the era
of continuum mechanics. Magneto-thermoelasticity is the combined study of

1corresponding author
2020 Mathematics Subject Classification. 74A10, 74A15, 78A25, 78A30, 78A40.
Key words and phrases. Magneto-thermoelasticity, Thermosensitive, Kirchoff’s Variable, Eddy

current, Airy’s stress function.
Submitted: 18.11.2020; Accepted: 25.12.2020; Published: 22.01.2021.

557



558 L.C. Bawankar and G.D. Kedar

the temperature field, magnetic field, and elastic field. Study of magneto- ther-
moelasticity plays an important role in diverse topics, such as earthquakes, seis-
mology, geophysical problems, certain topics in optics, and acoustics. Maxwell’s
electromagnetic field has been related to the motion of elastic solids and influ-
ence with the wave propagation from the earth material. The skin effect occurs
in the plate by opposing eddy current created by the time-varying magnetic field.
The eddy current loss is created because of eddy current. Due to the loss of eddy
current, the power degenerated in the form of heat raises the temperature of the
conducting plate. Many authors [1–3] studied magneto-thermoelastic problems
under the effect of time varying magnetic field in a conducting medium and ex-
plained different problems of magneto-elasticity and magneto-thermoelasticity.
[4,5] discussed the quasistatic and dynamic behaviour of magneto-thermoelastic
stresses caused by the transient magnetic field in the infinite conducting plate
and by the excitement of the ramp function with the sine function profile. [6]
studied the effect of a sinusoidally time-varying magnetic field in a rectangular
cylinder due to increased frequency of the magnetic field.

In [7] authors had given a brief explanation about the heat conduction prob-
lems for the thermosensitive bodies and use Kirchoff’s variable transformation
to convert nonlinear into the linear form of problem. [8] discussed the effect of
thermosensitive material properties on temperature and stresses in a function-
ally graded rectangular plate.

The idea of this paper is to study the theoretical development of time-varying
external magnetic field on two-dimensional thermosensitive finite conducting
plate. The heat source is taken as eddy current loss and temperature-dependent
material properties are considered. The external magnetic field varies exponen-
tially with time. The induced eddy current due to time-varying magnetic field
are obtained on the theory of the quasi-stationary current. The Kirchhoff’s vari-
able transformation is used to convert nonlinear to linear form of heat equation.
The magnetic field, temperature change are simplified by using integral trans-
form technique. The stresses in plane strain conditions are obtained by using
Airy’s stress function. The magnetic field, eddy current loss, temperature field
and stresses variations are discussed analytically and presented graphically.
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2. FORMULATION OF PROBLEM

2.1. Electromagnetic Field. A two dimensional problem of finite conducting
plate with length a and thickness b, subject to time-dependent magnetic field
H0φ(τ) which is uniformly distributed along the x and y direction. The mag-
netic field be H = (0, 0, Hz), and the electric field E = (Ex, Ey, 0) in the con-
ducting plate. Disregarding the displacement current due to the effect of quasi-
stationary current.

The governing equations of the electromagnetic field and the constitutive re-
lations are given by [5] :

(2.1) curl E = −Ḃ

(2.2) curl H = J

(2.3) J = σE

(2.4) B = µmH,

where E,B and H represent electric field, magnetic flux and magnetic field in a
conducting plate. J, σ and µm are current density, electric conductivity and the
magnetic permeability.

Solving eqs. (2.1)–(2.4) the equation for magnetic field is given by

(2.5)
∂2Hz

∂x2
+
∂2Hz

∂y2
= µmσ

∂Hz

∂t
.

The boundary conditions and initial condition are

(2.6) Hz (x, y, t) = H0φ(τ) at x = 0, a,

(2.7) Hz (x, y, t) = H0φ(τ) at y = 0, b,

(2.8) Hz (x, y, t) = 0 at t = 0.

Components of current density Jx and Jy are obtained as

(2.9) Jx (x, y, t) =
∂Hz

∂y
,

(2.10) Jy (x, y, t) = − ∂Hz

∂x
.
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Eddy current loss is defined as

(2.11) w (x, y, t) =
J2
x + J2

y

σ
.

A change of variable is consider for homogeneous boundary conditions defined
for Hz as follows

(2.12) Hz (x, y, t) = hz (x, y, t) +H0φ(τ).

2.2. Temperature Field. We choose a two-dimensional transient heat conduc-
tion equation with temperature dependent material properties in a conducting
plate with internal heat generation as eddy current loss. The fundamental equa-
tion for temperature change T (x, y, t) is given by

(2.13)
∂

∂x

[
K (T )

∂T

∂x

]
+

∂

∂y

[
K (T )

∂T

∂y

]
+ w(x, y, t) = C (T ) ρ

∂T

∂t
.

The boundary conditions and initial condition are

(2.14) T = 0 at x = 0, a and y = 0, b,

(2.15) T = F (x, y) at t = 0,

where w(x, y, t) is the eddy current loss and ρ is mass density. K(T ), C(T ) are
the thermal conductivity and specific heat capacity dependent on temperature.

2.3. Elastic Field. The components of stresses in the form of stress function χ

are given by [6]

(2.16) σxx =
∂2χ

∂y2
+
µmH

2
z

2
,

(2.17) σyy =
∂2χ

∂x2
+
µmH

2
z

2
,

(2.18) σxy = − ∂2χ

∂x∂y
.

The boundary conditions are

σxx = 0, σxy = 0 on x = 0, a;

σyy = 0, σxy = 0 on y = 0, b.
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By using compatibility equation, equilibrium equation and hooks law [9], the
equation of thermal stress function χ called as Airy’s stress function is given by

(2.19) ∇4 χ = −(1− 2v)µm
2(1− v)

∇2H2
z −

α(T )E(T )

1− v
∇2T,

where v, α(T ) and E(T ) denote the Poisson ratio, coefficient of linear thermal
expansion and Young modulus.

Dimensionless quantities: For the convenience we use dimensionless quan-
tities as follows
(2.20)

x =
x

a
, y =

y

a
, b =

b

a
,
(
Hz, hz

)
=

(Hz, hz)

H0

, τ =
t

µmσa2
,

(
Jx, Jy

)
=

(aJx, aJy)

H0

, w =
σa2

H4
0

w, T =
ρ

µmH2
0

T, F (x, y) =
ρ

µmH2
0

F (x, y),

(σxx σyy, σxy) =
2

µmH2
0

× (σxx, σyy, σxy) , χ =
2

µmH2
0

χ.

3. SOLUTION

3.1. Solution of Electromagnetic Field. Using eq. (2.20) in eqs. (2.5)–(2.8)
the fundamental equation for magnetic field is given by( neglecting bar for con-
venience)

(3.1)
∂2Hz

∂x2
+
∂2Hz

∂y2
=
∂Hz

∂t
.

The boundary conditions and initial condition are

(3.2) Hz (x, y, τ) = φ(τ) at x = 0, 1;

(3.3) Hz (x, y, τ) = φ(τ) at y = 0, b;

(3.4) Hz (x, y, τ) = 0 at τ = 0.

Using dimensionless quantities in eq. (2.12) we get

(3.5) Hz (x, y, t) = hz (x, y, t) + φ(τ).
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Using eq. (3.5) in eqs. (3.1)–(3.4) reduces to

(3.6)
∂2hz
∂x2

+
∂2hz
∂y2

=
∂hz
∂τ

+ φ′(τ).

The initial condition and boundary conditions are

(3.7)

hz (x, y, τ) = −φ(τ) at τ = 0;

hz (x, y, τ) = 0 at x = 0, 1;

hz (x, y, τ) = 0 at y = 0, b.

Solution of a magnetic field is obtained by using finite Fourier double sine trans-
form with respect to coordinates x and y is defined as [10]

(3.8) hz (βm, νn, τ) =

∫ 1

0

∫ b

0

k (βm, x)k (νn, y)hz (x, y, τ)dxdy,

where k (βm, x) =
√

2 sin (βm.x), k (νn, y) =
√
2√
b

sin (νn.y) , βm = mπ, νn = nπ
b

.
Taking Fourier transform of eqs. (3.6) and (3.7) by using eq. (3.8) we get

∂hz
∂τ

+ (βm
2 + νn

2)hz = φ′(τ)
2√
b

(1− cosβm)(1− cosνnb)
βmνn

.

The solution of internal magnetic field hz is obtained as
(3.9)

hz = e−(βm
2+νn2)τ 2√

b

(1− cosβm)(1− cosνnb)
βmνn

[∫ τ

0

e(βm
2+νn2)τφ′(τ)dτ + φ(τ)

]
.

By taking double Fourier inversion transform of equation eq. (3.9) becomes

(3.10) hz =
∞∑
m=1

∞∑
n=1

Bmn(τ)sin βmxsin νny,

where Bmn(τ) is given by

Bmn(τ) =
∞∑
m=1

∞∑
n=1

4

b

(1− cosβm)(1− cosνnb)
(βmνn)

e−(β
2
m+νn2)τ

·
[∫ τ

0

e(βm
2+νn2)τφ′(τ)dτ + φ(τ)

]
.

The magnetic field is obtained by substituting eq. (3.10) in eq. (3.5) we get

Hz(x, y, τ) = φ(τ) +
∞∑
m=1

∞∑
n=1

Bmn(τ)sin(βmx)sin(νny).
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Dimensionless form of current density components Jx and Jy are obtained from
eqs. (2.9) and (2.10) as

(3.11) Jx (x, y, τ) =
∂Hz

∂y
=

∞∑
m=1

∞∑
n=1

νnBmn(τ)sin βmxcos νny,

(3.12) Jy (x, y, τ) = −∂Hz

∂x
= −

∞∑
m=1

∞∑
n=1

βmBmn(τ)cos βmxsin νny.

Equation (2.11) in dimensionless form is given by

(3.13) w (x, y, τ) = J2
x + J2

y .

Substituting eqs. (3.11) and (3.12) in eq. (3.13), eddy current loss is expressed
as

w (x, y, τ) =
∞∑
m=1

∞∑
n=1

ℵmnkl (τ)
(
ν2nsin2 βmxcos2 νny + β2

mcos2 βmxsin2 νny
)
,

where ℵmnkl (τ) = B2
mn(τ).

3.2. Solution of temperature Field. The dimensionless form of heat conduc-
tion equation from eq. (2.13) is (dropping bar for convenience)

(3.14)
C(T )

C1

∂T

∂τ
=

∂

∂x

[
K (T )

∂T

∂x

]
+

∂

∂y

[
K (T )

∂T

∂y

]
+
w(x, y, τ)

C2

.

Dimensionless form of eqs. (2.14) and (2.15)

(3.15)
T = 0 at x = 0, 1 and y = 0, b;

T = F (x, y) at τ = 0.

We assume K(T ) = K0 e
T , C(T ) = C0 e

T , K0, C0 are the reference values.
Introducing the kirchhoff’s variable by following [7],

Θ (T ) =

∫ T

0

K (T ) dT .

Using Kirchoff’s variable in eqs. (3.14) and (3.15) we obtain

(3.16)
[
∂2Θ

∂x2
+
∂2Θ

∂y2

]
+
w(x, y, τ)

C3

=
1

C4

∂Θ

∂τ
,

(3.17)
Θ = 0 atx = 0, 1and y = 0, b,

Θ = F (x, y)at τ = 0,
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C1 =
µmσ

ρ
, C2 =

µ2
mσ

ρ2
=
C2

1

σ
, C3 = λ0C2 and C4 =

λ0C1

C0

.

Solution of heat conduction equation with eddy current loss can be solved by
using integral transform technique for x and y variable and defined as

(3.18) Θ (ηi, ζj, τ) =

∫ 1

0

∫ b

0

k (ζl, x)k (ηk, y)Θ (x, y, τ)dydx,

where k (ζl, x) =
√

2 sin(ζl.x), k (ηk, y) =
√

2
b

sin (ηk.y), and where ζl = nπ, ηk =
nπ
b

.
Using eq. (3.18) in eqs. (3.16) and (3.17) we get

(3.19)
∂Θ

∂τ
+ C1(ζl

2 + ηk
2)Θ =

C4

C3

w(ζl, ηk, τ)

The solution of eq. (3.19) is obtained as

Θ = e−C4(ζl
2+ηk

2)τ

[∫ τ

0

C4

C3

weC4(ζl
2+ηk

2)τdτ

+
2√
b

∫ 1

0

∫ b

0

F (x, y) sin(ζlx) sin(ηky)dydx

]
.

(3.20)

Taking double fourier inversion transform, eq. (3.20) becomes

Θ =
∞∑
l=1

∞∑
k=1

Clk(τ) sin(ζlx) sin(ηky),

where

Clk(τ) = e−C4(ζl
2+ηk

2)τ

[∫ τ

0

C4

C3

weC4(ζl
2+ηk

2)τdτ

+
2√
b

∫ 1

0

∫ b

0

F (x, y) sin(ζlx) sin(ηky)dydx

]
.

w(ζl, ηk, τ) =

∫ 1

0

∫ b

0

sin ζlxsin ηkyw(x, y, τ)dydx.

Inverse transformation from Θ to T becomes

(3.21) Θ = λ0(e
T − 1).

Solving eq. (3.21) and neglecting the order more than one we obtain

T =
∞∑
l=1

∞∑
k=1

Clk(τ)

λ0
sin(ζlx) sin(ηky).
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3.3. Solution of Elastic Field. Using eq. (2.20) in eqs. (2.16)–(2.19) and sec-
tion 2.3 stress components and governing equation of stress function is ex-
pressed in the form as (neglecting bar over quantities):

(3.22) σxx =
∂2χ

∂y2
+H2

z ,

(3.23) σyy =
∂2χ

∂x2
+H2

z ,

(3.24) σxy = − ∂2χ

∂x∂y
,

(3.25) ∇4 χ = −C5∇2H2
z − C6e

2T ∇2T,

where

∇4 = ∇2∇2 =

(
∂2

∂x2
+

∂2

∂y2

)(
∂2

∂x2
+

∂2

∂y2

)
=

∂4

∂x4
+2

∂4

∂x2∂y2
+
∂4

∂y4
,

and

C5 =
1− 2ν

1− ν
, C6 =

−2α0E0

(1− ν)ρ
.

The stress function χ solution is a combination of complementary solution χc

and the particular solution χp. Solution of eq. (3.25) χ is obtained as

χ =
∞∑
λ=1

d11 x cosλx sinhλy + d12 y sinλx coshλy + d13 sinλx sinhλy

+ d14 sinλx coshλy − C5 φ(τ)
∞∑
m=1

∞∑
n=1

Bmn(τ) sin (βm x) sin (νny)

(β2
m + ν2n)2

− C6

∞∑
l=1

∞∑
k=1

Clk(τ) e2T sin (ζl x) sin (ηky)

(ζ2l + η2k)
2

.



566 L.C. Bawankar and G.D. Kedar

Substituting stress function in eqs. (3.22)–(3.24), we get

(3.26)

σxx =
∞∑
λ=1

d11 (λ2)x cosλx sinhλy

+ d12 sinλx (λ2y coshλy + 2 λ sinhλy)

+ d13 λ
2sinλx sinhλy + d14λ

2 cosλx sinhλy

+
∞∑
m=1

∞∑
n=1

[
C5 ν

2
n

(β2
m + ν2n)2

+ 2

]
φ(τ) Bmn(τ) sin (βm x) sin (νny)

+ 16 C6

∞∑
l=1

∞∑
k=1

η2k C
2
lk(τ) sin2 (ζl x) sin2 (ηky)

(ζ2l + η2k)
2

,

(3.27)

σyy =
∞∑
λ=1

−d11(λ2x cosλx− 2 λ sinhλx) coshλy sinhλy

− d12 λ2 sinλx coshλy − d13 λ2sinλx sinhλy

− d14λ2 cosλx sinhλy

+
∞∑
m=1

∞∑
n=1

[
C5 β

2
m

(β2
m + ν2n)2

+ 2

]
φ(τ) Bmn(τ) sin (βm x) sin (νny)

+ 16 C6

∞∑
l=1

∞∑
k=1

ζ2l C
2
lk(τ) sin2 (ζl x) sin2 (ηky)

(ζ2l + η2k)
2

,

(3.28)

σxy =
∞∑
λ=1

−d11 λ (−λx sinλx+ cosλx) sinhλy

− d12 λ cosλx(λy sinhλy + coshλy)

− d13 λ2cosλx coshλy + d14λ
2 sinλx coshλy

+
∞∑
m=1

∞∑
n=1

C5 βm νn
(β2

m + ν2n)2
φ(τ) Bmn(τ) sin (βm x) sin (νny)

+ 3 C6

∞∑
l=1

∞∑
k=1

ζl ηk C
2
lk(τ) sin (ζl x) sin (ηky) cos (ζl x) cos (ηky)

(ζ2l + η2k)
2

,

where d11, d12, d13 and d14 are to be calculated by using dimensionless stress free
boundary conditions we get
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(3.29)
σxx = 0, σxy = 0 on x = 0, 1;

σyy = 0, σxy = 0 on y = 0, b.

Using eq. (3.29) in eqs. (3.26)–(3.28) we obtained the simultaneous equations
and solved the unknown coefficients by using MatLab software.

4. NUMERICAL RESULTS AND DISCUSSION

The numerical calculation has been carried out for the temperature field,
magnetic field, and elastic field. The effect of eddy current loss on a ther-
mosensitive temperature field and time-varying magnetic field in the plate is
observed. We choose aluminum material for the conducting plate with dimen-
sions (b̄ = b

a
), a = 1, b = 2 and the function φ(τ) is defined as

φ(τ) = sin(ωτ),

where ω is the non-dimensional frequency of the magnetic field.
Dimensions of physical parameters are
H0 = 1

4π×10−7 A/m, µm = 4π × 10−7 H/m,
σ = 2.5× 107 S/m, ρ = 2.7× 103 kg/m3,
C = 0.9× 103 J/kgK, K = 230 W/mK, ν = 0.33,
E = 70 GPa, α= 24× 10−6 1/K

We consider a numerical example that gives the variation in a magnetic field,
eddy current loss, temperature change, and elastic field. For all graphs the value
x = 0.1 is chosen. The fig. 1 is the plot of magnetic field versus τ for different
value of time ω = 3, 6, 8, 10. The graph is initially increasing and then decreases
gradually with the passage of time. Due to increase in frequency of magnetic
field the nature and speed of waves changes. The fig. 2 shows variation of
eddy current loss with time for different values of ω. Significant variation with
different frequencies is observed.

Figures 3 and 4 represent temperature variation for different values of x and
τ . Significant changes of temperature is observed with space variables and dif-
ferent values of time. Temperature increases initially and then decreases grad-
ually. In figs. 5 and 6 represent variation of stresses σxx and σyy for different
values of τ . Elastic changes observed significantly with time. After graphical
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analysis it is observed that significant effect of thermosensitive properties ob-
served on a finite conducting plate which is not discussed earlier in uncoupled
problem with eddy current loss.
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5. CONCLUSION

In the study of magneto-thermoelastic problem with eddy current loss in a
thermosensitive conducting rectangular plate is considered. Sinusoidally time
varying external magnetic field is applied to a rectangular plate. The internal
heat generation is due to eddy current loss and effect of temperature depen-
dent material properties is observed. The solution of magnetic field, eddy cur-
rent loss, temperature and elastic field is derived numerically by using integral
transform technique. Because of skin effect in the eddy current, heat genera-
tion due to eddy current loss is observed in a rectangular plate except at the
boundary due to increase in frequency of time varying magnetic field. Temper-
ature rises initially and then gradually decreases. The compressive stress occurs
with mechanical stress free boundary conditions. The effect of thermosensitive
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properties as well as time varying magnetic field with the increase in frequency
is observed graphically. The theoretical development of this model will prove
useful to the researchers working in the area of magneto-thermoelasticity.
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